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Abstract

We find heterogeneous impulse responses of monthly U.S. dollar (USD) real exchange rates

of 76 countries to global temperature shocks. Four years after a positive 1oC increase in

global temperature over its historical average, the Czech Republic currency appreciates by

14.5 percent against the USD while the currency of Burundi depreciates by 4.2 percent. The

determinants of response heterogeneity are studied by regressing local projection response

coefficients on country characteristics. A country’s currency more likely to depreciate if it

is of low latitude, if the country has grown faster, is richer, more dependent on agriculture

and tourism, and is less open to trade.

Keywords: temperature, climate, exchange rates

JEL: F31, G0, Q51, Q54, Q59

∗Corresponding author. E-mail address: nmark@nd.edu. Comments from two anonymous referees helped

improve the paper and are acknowledged with thanks. We also thank Martina Cha, who started the project

with us but subsequently had to withdraw.



Introduction

This paper studies how monthly U.S. dollar (USD) real exchange rates of 76 countries respond

to global temperature shocks. The study employs a two-step empirical methodology. In the first

step, we employ local projections (Jordà (2005)) to estimate the real exchange rate response

to temperature shocks at various horizons. The local-projection slope coefficients measure the

real exchange rate’s exposure to a temperature shock. In finance, these estimates would be

referred to as real exchange rate ‘betas’. In the second step, we regress the local-projection

slope coefficients on various country characteristics to study potential explanations for the

variation in the estimated impulse responses. This procedure shares similarities with research

in finance where average returns are regressed on ‘betas’ to determine if various risk factors

are ‘priced’ and is particularly close to Lustig and Richmond (2020), who regress the exchange

rate’s dollar-factor ‘beta’ on gravity variables.

Two features distinguish our research design. First, instead of using country-specific tem-

peratures, as is typically done in extant macroeconomic and financial research on climate, we

work with a common global temperature factor, which is formed from the cross-section of coun-

try temperatures. This approach emphasizes the notion that climate change is a global, rather

than a country-specific phenomenon, and focuses on differential exposure of exchange rates to

common global temperature risks. In this dimension, we are following Lustig et al. (2011),

who studied heterogeneous exchange rate exposure to common global financial risks. Second,

is our focus on estimating and understanding the cross-country heterogeneity of exchange-rate

responses to a common climate shock. To focus on this heterogeneity, we intentionally down-

play panel estimation methods. Instead, our analysis centers on impulse responses estimated

from single-equation local projections. If it is the case that real currency strength represents

relative strength in that country’s current and future economic fundamentals, a real appre-

ciation caused by a global temperature shock should be reflected in foreign exchange market

participants beliefs that the country in question is less adversely affected by the shock than

the U.S.

Our estimates reveal substantial response heterogeneity. In many cases, the impulse re-

sponses appear to be permanent. At some horizon (from 1 to 48 months), a positive global

temperature shock yields a 5 percent statistically significant appreciation against the USD in

70 percent of the sample countries and a significant depreciation in 61 percent of the countries.1

1The total adds to more than 100 because some exchange rates show a significant appreciation at one horizon
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Four years after a positive global 1-degree Celsius (1.8-degree Farenheit) temperature shock,

the real value of Burundi’s currency falls by 4.2 percent against the USD, while the currency of

the Czech Republic appreciates by 14.5 percent. At horizons of 36 and 48 months, a country’s

currency more likely to depreciate if it is of low latitude, if the country has grown faster, is

richer, more dependent on agriculture and tourism, and is less open to trade.

Our motivation for studying the effect of climate shocks on the exchange rate is the view

that the exchange rate is an asset price that reflects macroeconomic value. To cite Engel

(2016),

‘The foreign exchange rate is one of the few, if not the only, aggregate asset for an

economy whose price is readily measurable, so its pricing offers an opportunity to

investigate some key predictions of asset pricing theories.”

Thus, as a national asset price, the exchange rate is determined by forward-looking market

participants who assess effects of today’s climate shocks on future economic fundamentals.

Since harmful effects generated by current greenhouse gas emissions are realized in the future

(Stern (2007)), it makes sense to assess these effects through the lens of asset prices (here, real

exchange rates).

The economics that connects climate shocks to the exchange rate is the principle that a

strong economy has a strong currency. If temperature shocks cause economic harm, as reported

in the empirical damage assessment literature (discussed below), and market participants view

a positive shock is more harmful to a particular country than to the U.S., they will draw down

the real value of that country’s currency.2 To illustrate this linkage, we also present evidence

that following a temperature shock, the subsequent consumption growth of countries whose

currencies fall is more likely to be lower than U.S. consumption growth.

Our paper is part of an empirical literature that assesses the impact of climate shocks on

macroeconomic activity and on asset prices. In aggregate asset pricing, Bansal et al. (2016)

finds global temperature to have a negative impact on international equity valuations, but

they do not investigate response heterogeneity. On the macroeconomics of climate change, the

and a significant depreciation at another.
2Not all economies need be harmed by higher temperature, at least within some range. Stern (2007) notes

that positive temperature shocks can potentially be good news for some very high latitude countries. For these
countries, some short-run warming can improve crop yields, lower heating bills, and reduce cold-related deaths.
See also Nordhaus and Yang (1996) and Tol (2002) who report results from regional integrated assessment
models.
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current evidence on exposure heterogeneity and the impact of temperature is mixed. Study-

ing the effect of temperature on income growth within the U.S., Hsiang et al. (2017) finds

that low-income U.S. counties are more adversely affected than high-income counties. At the

state level, Colacito et al. (2019) finds differentiation in U.S. states by latitude, where higher

temperatures reduce income growth by more in southern states, but they find the adverse

effects of temperature on income growth does not vary by the level of state development. In

research using international data, Letta and Tol (2019) and Henseler and Schmuacher (2019)

find that total factor productivity of low-income countries are more adversely affected than

higher-income countries by higher temperatures. Similarly, Burke et al. (2015), and Dell et al.

(2012) find negative effects on GDP growth of temperature but only for low-income countries.

In contrast, Kahn et al. (2019) finds no difference in the deleterious effects of temperature

between high- and low-income countries. Existing macroeconomic studies generally employ

annual data and use local temperature measures. The contrast provided by our paper is that

we construct shocks to global temperature factors, use data sampled at monthly intervals, and

allow extensive heterogeneity by using single-equation methods.3

The remainder of the paper is organized as follows. The next section discusses the data

and construction of the global temperature factors. Our first-stage local projection estimates

are reported in Section 2. Section 3 contains a robustness analysis. Section 4 presents evidence

for an economic mechanism linking relatively bad temperature news for a country’s economy

to a real currency depreciation. The cross-sectional analysis is presented in Section 5. Section

6 concludes.

1 Real Exchange Rate and Climate Data

Real Exchange Rate Data. Monthly nominal exchange rates and consumer price indices are

from DataStream which were available for 75 countries plus the Euro.4 Let Sj be the USD

price of currency j, P0 be U.S. price level, and Pj the price level of country j. Then the real

3Climate research from a finance perspective also includes Bernstein et al. (2019), who estimate the discount
on houses subject to flooding due to sea-level rise and Hong et al. (2018) who report that stock prices of food
companies respond (but insufficiently so) to country-specific drought trends. In other work, Gorgen et al. (2019)
estimate a brown-minus-green risk premium internationally for firms, Balachandrana and Nguyen (2018) show
a dependence of firm dividend policy on its carbon risk, while Choi et al. (2019) estimate how local temperature
shocks cause people to adjust their portfolios between stocks with high and low climate sensitivities.

4Defining the euro area was not straightforward because countries joined at different times. We set the
Euro area to be Germany, Belgium, Cyprus, Spain, Finland, France, Ireland, Italy, Luxembourg, Netherlands,
Austria, Portugal.
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exchange rate, Qj = SjPj/P0, is the real USD price of currency j with qj = ln(Qj). An

increase in Qj means a real appreciation of currency j or a real depreciation of the USD.

Climate Data. We construct population-weighted temperature data for each country and

month from 1970 to 2017. The global temperature data are from Willmott, Matsuura and

Collaborators’ Global Climate Resource Pages. These are monthly observations of air temper-

ature (Celsius) on a 0.5-degree by 0.5-degree latitude/longitude grid. We use the shape file

from thematicmapping to identify grid points within countries.

The population data are from the Gridded Population of the World database (GPW.v4)

of the Center for International Earth Science Information Network (CIESIN), which includes

population counts in 2010 for grid cells matching the grid of the temperature data http://www.

ciesin.org/search.html?q=gridded+population&btnG=Search. We weight the monthly

station temperature observations from the grid by population. We then aggregate to the

country level by summing the population-weighted temperature points and dividing by the

country’s total population.5

1.1 Temperature Shocks

The econometric analysis requires variables to be stationary but global temperatures are trend-

ing upwards. We detrend and seasonally adjust the monthly population-weighted country-level

temperature readings by regressing on monthly dummy variables and a linear trend. The cross-

sectional average of the adjusted country temperatures then serves as our global temperature

measure, Tt. As is well known, the cross-sectional average is approximately the first principal

component.6

Figure 1 displays the cross-sectional average of unadjusted country temperatures (Panel A),

of seasonally adjusted temperatures (Panel B) and of the adjusted and detrended temperatures

(Panel C). Panel B is striking in showing an obvious upward trend in global temperatures

starting in the 1980s. The estimated trend coefficient is 0.002 which translates to an increase

of 0.24oC per decade during our sample.

To give the global temperature factor more of a shock-like interpretation, we use τt, the

5Willmott, Matsuura and Collaborators’ data: http://climate.geog.udel.edu/~climate/. Greidded Pop-
ulation database: http://thematicmapping.org.

6Regressing the 1st principal component of the adjusted country temperatures on the cross-sectional average
of adjusted temperatures yields a regression R2 = 0.709.
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Figure 1: Global Temperature

A. Unadjusted

B. Seasonally Adjusted

C. Seasonally Adjusted and Detrended
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deviation from the backward-looking average,

τt = Tt −
1

t

t∑
j=1

Tj , (1)

where Tt is the cross-sectional average of seasonally adjusted and detrended country tempera-

tures.7

2 Local Projections

We estimate the response of each country’s log real exchange rate (in percent) with local

projections (Jordà (2005)). The local projections are the sequence of regressions at monthly

horizons h = 1, ..., 48, estimated separately for each exchange rate j = 1, . . . , 76,

100 (qjt+h − qjt) = βjhτt +X ′jtajh + ujt+h, (2)

where Xjt is a vector containing the current and three lags of real depreciations as controls

and a 1 for the constant. The coefficient of interest is βjh, which measures the percent change

in the real exchange rate response from time t to t+ h due to the temperature shock at time

t.8 Standard errors are computed by Newey and West (1987).

As there are a large number of impulse response results (48 horizons, 76 exchange rates),

the full set of response plots is relegated to the appendix (Figure A–1). Here, we begin with

Table 1, which summarizes the distributional responses across horizons. At each horizon, the

table shows the number of negative (-) and positive (+) point estimates, and the number of of

those estimates that are significant at the 5 percent level.

At short horizons (1-5 months), most responses are positive. Currencies tend to appreciate

against the dollar. From horizons 6-21, the count between positive and negative responses are

roughly equal. Horizons 22-31 show a preponderance of negative responses. At long horizons

(36-48), the vast majority of responses are positive. Substantial and significant response het-

7As in Burke et al. (2015), Dell et al. (2012), Colacito et al. (2019), and Hsiang et al. (2017), we assume weak
exogeneity of the temperature shocks, so it is not strictly necessary to control for past depreciations. While it
is widely believed that climate change has been caused by human activity, we are assuming that the climate
shocks we employ are exogenous to the exchange rate. The backward looking average is what Kahn et al. (2019)
refer to as the historical norm.

8The local-projection coefficients are asymptotically equivalent to the impulse response function from a vector
autoregression [Jordà (2005) and Plagborg-Møller and Wolf (2021)].
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erogeneity is observed across countries. The temperature shock induces some currencies to

appreciate and others to depreciate. Significant appreciations outumber significant deprecia-

tions.

The overall statistical significance of these local projection responses is not overwhelming.

Because the local projections estimate the exchange rate response relative to the U.S., which

range from positive to negative, there will be many responses that are close to zero. It can

be no surprise, then, that many of these responses will not display statistical significance. We

will address the statistical significance of the responses further in Section 3.

In Figure 2, we plot individual impulse responses with ±1.96 standard-error bands for nine

countries selected from each income terciles based on 2017 real per capita GDP. The responses

for the poor countries shown are a mix of U-shaped (Bangladesh, Kenya, Mozambique, Sierra

Leone) and hump-shaped (India, Sudan) responses. For most of the middle income and rich

countries shown, real exchange rates show a long-horizon appreciation. The general apprecia-

tion of middle-income and rich countries versus the mixed or depreciated response of the poor

seems to conform to the conventional wisdom that poor countries (which are generally hot)

have the highest exposure to climate. Positive exchange rate responses of middle-income and

rich countries indicate that they are less adversely affected by higher temperatures than the

U.S.

As we are interested in examining dimensions of response heterogeneity, we don’t want

to impose false homogeneity restrictions by pooling. However, some limited pooling, may be

useful as a summary device and to demonstrate a higher degree of statistical significance. For

each tercile, we estimate the panel local projection

100 (qjt+h − qjt) = βhτt +X ′jtajh + ujt+h, (3)

at horizons h = 1, ..., 48. Only the slope on τt is constrained to be identical across the in-

dividual exchange rates in the group while the constant and lag coefficients are allowed to

vary.9 The system is estimated by generalized method of moments (GMM) where the regres-

9Listed by per capita real GDP from low to high. Poor: Burundi, Liberia, Mozambique, Sierra Leone,
Ethiopia, Rwanda, Mali, Kenya, Bangladesh, Tajikistan, Sudan, Nigeria, Angola, Pakistan, Ghana, India,
Philippines, Jamaica, Venezuela, Morocco, Jordan, Ukraine, Armenia, Ecuador, Egypt. Middle: Tunisia,
Namibia, Peru, Algeria, South Africa, Colombia, China, Brazil, Iran, Costa Rica, Thailand, Mexico, Bulgaria,
Uruguay, Kazakhstan, Russia, Croatia, Romania, Greece, Malaysia, Latvia, Turkey, Portugal, Hungary, Poland.
Rich: Lithuania, Slovenia, Cyprus, Czech Rep, Spain, Korea, Israel, New Zealand, Italy, Japan, France, Britain,
Finland, Canada, Belgium, Sweden, Australia, Germany, Denmark, Netherlands, Iceland, Austria, Switzerland,
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Figure 2: Impulse Responses to Global Temperature Shocks

A. Nine Poor Countries

B. Nine Middle Income Countries

C. Nine Rich Countries

Note: Shaded area indicates plus and minus 1.96 standard error band.
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Table 1: Local Projection Summary

Signi- Signi- Signi- Signi-

ficant ficant ficant ficant

Nega- Nega- Posi- Posi- Nega- Nega- Posi- Posi-

Horizon tive tive tive tive Horizon tive tive tive tive

1 29 4 47 3 25 46 4 30 2

2 29 4 47 3 26 47 1 29 2

3 33 4 43 4 27 47 2 29 2

4 28 5 48 5 28 47 3 29 2

5 28 4 48 5 29 44 3 32 4

6 40 5 36 6 30 41 2 35 2

7 40 7 36 6 31 41 1 35 6

8 42 7 34 4 32 38 1 38 7

9 36 4 40 5 33 35 1 41 9

10 37 3 39 4 34 35 1 41 12

11 35 3 41 4 35 33 0 43 12

12 37 3 39 5 36 33 0 43 11

13 38 3 38 4 37 31 0 45 11

14 41 2 35 7 38 22 0 54 11

15 37 1 39 9 39 23 0 53 10

16 37 2 39 9 40 24 0 52 8

17 38 2 38 10 41 25 0 51 6

18 38 2 38 9 42 21 0 55 5

19 36 2 40 6 43 18 0 58 8

20 38 2 38 4 44 17 1 59 9

21 39 2 37 4 45 14 1 62 12

22 44 4 32 4 46 10 0 66 15

23 44 4 32 2 47 10 0 66 16

24 45 5 31 3 48 9 0 67 20

Notes: Standard errors computed by Newey and West (1987). Table shows the count of exchange rates for which the
local-projection coefficient is negative or positive at some horizon. Significance is at the 5 percent level for a two-sided
test.

sors in the individual equations serve as instruments. The GMM standard errors are panel

versions of Newey and West (1987) which control for serial correlation induced by overlapping

Ireland, Luxembourg.
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Figure 3: Pooled By Income Terciles

Note: Shaded area indicates plus and minus 1.96 standard error band.

observations.

Figure 3 shows the pooled response functions, which provides a reasonable summary of

general patterns shown by the individual responses sorted by income in Figure ??. The general

pattern is for the poor to depreciate, at least initially, and for emerging markets and rich

countries to appreciate with respect to the USD. However, even currencies of poor countries

are seen to appreciate at 48 months.

To summarize, this section has documented evidence that global climate shocks have sig-

nificant and heterogeneous effects on real exchange rates across countries. Pooling can achieve

higher statistical significance, but our primary interest is in observing individual response het-

erogeneity. Before further examination of response heterogeneity, we briefly report results from

a robustness analysis.

3 Robustness

We evaluated the sensitivity of the local projections by performing a number of robustness

checks. Again, the complete set of results are reported in the appendix. Here, we discuss

the main findings of this analysis and provide a summary of the robustness analysis in Table

2. The intent of the table is to efficiently summarize the distributional aspects of alternative

estimates of the impulse responses with the results reported above. For example, the column

labeled (A) reports the raw count of exchange rates that had a significantly negative response
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to the temperature shock at some horizon. Column labeled (B) shows the analogous counts

for significantly positive responses. Column labeled (C) is the count of exchange rates that

had a significantly negative and positive responses (at different horizons, obviously). Columns

(D)-(F) show these results as proportions of the sample.

Line 1 of Table 2 is the result summary of the local projection analysis from Section

2. As mentioned, these estimates are unlikely to be the result of pure chance, but statistical

significance is not overwhelming. While pooling by terciles showed significant impulse responses

it may have imposed false homogeneity restrictions. Additional statistical significance can be

achieved, however, with little distortion in the point estimates by estimating small pseudo-

panels. Pseudo-panel estimation proceeds as follows.

For each horizon, sort countries by their local-projection betas. Form groups of 5 countries

and estimate the panel version of the local projection, eq. (3), for each group. The homogeneity

constraint is imposed only on the global temperature shock slope. We call these pseudo-

panels because the group membership can change from one horizon to the next. The pseudo-

panel estimation amounts to limited pooling of countries with similar sized local-projection

coefficients, primarily for the purpose of standard error reduction.

Line 2 of 2 shows the pseudo-panel summary. There is a marked increase in statistical

significance is achieved whereby the overall proportion of countries for which there is at least

one significantly negative estimate increases from 0.197 to 0.605. The pseudo-panel point

estimates generally mimic the local-projection single-equation estimates (Appendix, Figure A–

2), but the responses and standard errors are more jagged (appendix, Figure A–3).

There is some autocorrelation in the global temperature measure (first-order autocorrela-

tion = 0.29). To check contamination of the impulse responses from omitted variables bias,

we include a lag of temperature τt−1 in the local projections. The summary for coefficients on

τt are shown in line 3. As can be seen, the overall effect on statistical significance is modest,

but more importantly, the effect on the point estimates from adding lagged temperature are

miniscule (Appendix Figure A–4).

Apart from the direct, first-moment effects of temperature, one can raise concerns re-

garding climate-related uncertainty. There is uncertainty in the climate science, in terms of

natural greenhouse gas (GHG) removal (effectiveness of so-called carbon sinks) and carbon

sensitivity (temperature change caused by a unit increase in GHGs). Projected future temper-

ature changes generated by complicated general circulation models (e.g., the Coupled Model

11



Table 2: Local Projection Summary for Robustness Checks

Counts of Significantly Proportions of Significantly

Negative Positive Neg. & Pos. Negative Positive Neg. &Pos.

(A) (B) (C) (D) (E) (F)

1. Basic Local Projections 15 28 0 0.197 0.368 0

2. Pseudo Panel 46 53 29 0.605 0.697 0.382

3. Include Lagged Temp. 14 24 0 0.184 0.316 0

4. Include Temp. GARCH 15 28 0 0.197 0.368 0

5. Response to Temp. GARCH 15 45 6 0.197 0.592 0.079

6. Include Interest Differential 13 23 1 0.171 0.303 0.013

7. Include Recession Dummy 9 27 1 0.118 0.355 0.013

Notes. (A): Count of exchange rates displaying a significant negative response at some horizon. (B):
Count of exchange rates displaying a significant positive response at some horizon. (C): Count of
exchange rates displaying a significant negative response at some horizon and a significant positive
response at a different horizon. (D)-(F) convert the counts into sample proportions.

Intercomparison Project [(Eyring et al., 2016))]) show substantial variation across models.10

There is also uncertainty about the extent of past and future economic damages caused by

climate change. The social cost of carbon estimated from integrated assessment models varies

considerably depending on how uncertainty and potential climate tipping points are handled.11

While a full-fledged investigation into the effects of climate-induced uncertainty on the

exchange rate is beyond the scope of this project, we investigate possible bias from omission of

a GARCH measure of temperature uncertainty.12 Here, we estimate a GARCH(1,1) model for

τt and include the estimated conditional variance in the local projections. The GARCH model

is fitted to the residual from τt = ρ0 + ρ1τt−1 + εt, where Et−1(ε2t ) = gt = α0 + α1ε
2
t−1 + γgt−1.

The GARCH model estimates and a plot of the estimated conditional variance are reported in

the appendix (Table B and Figure B–9).

Line 4 of the table shows the summary impulse response to temperature shocks with gt

included in the regressions. As can be seen, including the conditional variance of temperature

10See also Hsiang and Kopp (2018), Pindyck (2020) and Dietz et al. (2020) on climate science uncertainty.
11For example, see Nordhaus (2007), Nordhaus and Yang (1996), Golosov et al. (2014), Cai and Lontzek

(2019), Bansal et al. (2016). Barnett et al. (2020) study optimal climate policy decisions under uncertainty.
If climate-induced uncertainty causes future the distribution of future consumption growth to be fat-tailed,
Weitzman (2009) and Weitzman (2014) shows that the social cost of carbon can be infinite–a result known as
the ‘Dismal Theorem.’

12This was kindly suggested by a referee.
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has no substantive effect on the impulse responses to temperature shocks. Plots comparing

impulse responses estimated with and without the conditional variance in the local projections

(appendix Figure A–5) show virtually no differences.

Line 5 of the table reports the summary on impulse responses to shocks in the temperature

conditional variance (plots in appendix Figure A–7). Most countries experience real currency

appreciations relative to the dollar in response to shocks in global temperature conditional

variance. Apparently, shocks to global temperature variance (uncertainty) is relatively bad

news for the United States compared to most of the countries in the sample. These results

introduce a second facet of climate on exchange rates through the uncertainty surrounding

currently predicted damages and risk assessments due to current emissions. Since asset markets

are institutions where risk and uncertainty are priced into traded assets, it is again natural

to look to how foreign exchange market participants assess the impact of climate risks and

uncertainty on national economies. While it is beyond the scope of this paper, these results

suggest there are useful avenues to pursue, but we leave a careful and complete analysis for

future work.

Line 6 shows the summary results when the real interest differential is included as a control

in the regression. Real interest differentials might be thought of as the default explanatory

variable for real depreciations working through interest parity. Interest rate and consumer

price data are from IMF International Financial Statistics (IFS). Including the real interest

differential as a control variable has a very modest effect on the estimated response significance.

For most exchange rates, the effect on the point impulse responses are trivial (appendix,

Figure A–7). There are a few exceptions (notably Ecuador, Iran, Korea, Poland), whereby the

response has been dampened, but also a number of instances where the response is magnified

(Cyprus, Greece, Israel, Kenya, Lithuania, and Latvia).

Finally, we include recession dummies as controls. The recession dummies are based on

annual real GDP growth obtained from the IFS. For each country, every month in the calendar

year is coded as a recession if real GDP growth that year for the country is negative. Line 7

shows the response summary to temperature shocks when recession dummies are included. The

number of significant negative responses declines from 15 to 9 but the number of significant

positive responses is reduced only from 28 to 27. In terms of the point estimates (appendix,

Figure A–8), including recession dummies results in dampened responses only in a handful

of cases (Croatia, Czech Republic, Ecuador, Poland, and Slovenia), but magnified responses

in many more cases (Austria, Belgium, Italy, Lithuania, China, Spain, Netherlands, Irealand,

13



Iceland, Israel, and Portugal).

4 Linking Temperature to the Real Exchange Rate

What is the economic mechanism linking the real exchange rate to global temperature shocks?

The canonical utilty-based exchange rate pricing model under complete markets (sometimes

referred to as the stochastic discount factor (SDF) approach to the exchange rate (Lustig and

Verdelhan (2012))) provides one possible story. In this section, we first present this framework

as an elegant and possible organizing framework for thinking about the temperature–exchange

rate mechanism. The drawback, however, is the substantial empirical challenge to this frame-

work posed by the data. After documenting some of these challenges, we present a empirically-

based argument that links temperature shocks, relative economic responses and real exchange

rate responses.

4.1 A Complete-Markets Utility-Based Mechanism

Let there be n + 1 countries, indexed by j = 0, 1, ..., n, where the United States is country 0.

Let mjt be the logarithm of country j’s stochastic discount factor. Under complete markets,

the real dollar depreciation relative to currency j is equal to the difference in log stochastic

discount factors (Lustig and Verdelhan (2012), Backus et al. (2001), Backus and Smith (1993),

Brandt et al. (2006))13,

∆qjt+1 = mjt+1 −m0t+1. (4)

Note that if there is no heterogeneity in the cross-country stochastic discount factors (in the

sense that mjt and m0t are perfectly correlated), the exchange rate will be constant. Because

real exchange rates are observed to vary (quite a bit) over time, there must be heterogeneity in

the way that discount factors of different countries respond to shocks. This heterogeneity might

stem from cross-country differences in income, stage of economic development, geography, and

latitude. The heterogeneity of interest in our context is the different ways country j and the

U.S. stochastic discount factors are affected by common global temperature shocks τt.

Let cjt = lnCjt be log consumption. If economic agents across countries have identical

13Alternatively, the log intertemporal marginal rate of substitution.
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time-separable, constant relative risk aversion utility,

U (Cjt) =
e(1−γ)cjt − 1

1 − γ
(5)

where Cjt is consumption, and γ is the coefficient of relative risk aversion, then the log stochas-

tic discount factor is

mjt+1 = −ρ− γ∆cjt+1, (6)

where ρ is the subjective rate of time preference. Combining eqs.(5) and (6), and by the

log-linearity of the SDF, we can express the h-horizon real depreciation as

qjt+h − qjt = γ [(c0t+h − c0t) − (cjt+h − cjt)] . (7)

A key feature of integrated assessment models (e.g., Nordhaus (2007), Nordhaus and Yang

(1996), Golosov et al. (2014), Cai and Lontzek (2019), Bansal et al. (2016)), is the damage

function, which maps increased temperature onto reductions in income, consumption, and

welfare. Drawing on these studies, we postulate the direct dependence of consumption growth

on temperature shocks. If τjt is country j′s temperature shock, projecting consumption growth

on τjt gives,

cjt+h − cjt = δjhτjt + ujt+h + φjh, (8)

where ujt+h is the projection error and φjh is a constant. Next, decompose country-specific

temperature τjt, into orthogonal components consisting of a common global temperature factor

τt and an idiosyncratic temperature factor τ ojt,

τjt = λjτt + τ ojt, (9)

where λj is the global temperature factor loading.14 Substituting (9) and (8) into (4) gives

qjt+h − qjt = βjhτt + εjt+h + µjh, (10)

14An earlier version of our paper explored the role of idiosyncratic temperature shocks, and concluded that
they were uninteresting in the sense that exchange rate responses did not systematically vary with country
characteristics (the analysis of Section 5 below). Those results align with predictions from the theory of finance,
which says that unsystematic risks should not be priced into assets. Consequently, we have dropped the analysis
of the idiosyncratic temperatures from the paper.
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where βjh = γ (δ0hλ0 − δjhλj) , εjt+h = γ
(
u0t+h − ujt+h + δ0hτ

o
0t − δjhτ

o
jt

)
is a composite error

term, which is orthogonal to τt, and µjh = γ (φ0h − φjh) is a constant.

Eq.(10) gives the local projections of the exchange rate depreciation on global temperature

shocks. A temperature shock is bad news for country j′s currency if βjh < 0 and δjhλj > δ0hλ0.

This would be relatively bad economic news for j if the temperature shock causes a temporary

contemporaneous relative decline in current consumption cjt, and a relatively higher expected

consumption growth rate, ∆cjt+h, as future consumption to returns to ‘normal.’

The problem with this argument is the empirical failure of equation (4) under constant-

relative-risk aversion utility–a feature of the data known as the Backus and Smith (1993) puzzle

and/or as the consumption real-exchange rate anomaly (Kollmann (2016)). We illustrate this

issue with our data by running the regression implied by eq.(7). We run eq.(7) using the

countries in our sample (subject to consumption data availability). The theory predicts a

positive slope γ > 0.15

15For these regressions, the real exchange rates are point-sample annualized because the consumption data
are annual.
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Figure 4: Point Estimates of γ from eq.(7) at Horizon 4

Notes: Slope estimates from regressing qjt+4 − qjt on (c0t+4 − c0t) − (cjt+4 − cjt). Horizon measured
in years.

Histograms of the γ̂ estimates at horizons 1 − 4 are shown in the appendix, Figure C–

10. Here, we display the point estimates at horizon 4 in Figure 4. As can be seen, most

of the individual point estimates of γ are negative, which is the wrong sign. This is also

troubling because risk aversion coefficients typically need to be quite large for asset returns to

be consistent with consumption data. Hence, we would expect large positive estimates of γ,

but instead we get estimates that are the wrong sign.

4.2 Empirical Evidence for the Mechanism

Given the empirical challenges to the above framework, we turn to an empirically-based argu-

ment that a temperature shock which is relatively bad economic news for country j is also bad
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news for its currency.

Figure 5: Relative Consumption Growth Local Projection (Equation 11) at Horizon 4

Notes: Slope estimates from regressing (cjt+4 − cjt)− (c0t+4 − c0t) on τt. Horizon is measured in years

We estimate the relative economic impact of temperature shocks, with local projections of

consumption growth, relative to the U.S.,

(cjt+h − cjt) − (c0t+h − c0t) = αjhτt + εt+ht +X ′jtdjh, (11)

where Xjt is a vector containing the scalar 1 for the constant and ∆cjt − ∆c0t as a control.

An increase in global temperature is relatively bad news for country j if αjh < 0. We estimate

(11) at horizons h = 1, 2, 3, and 4 years. Histograms of the estimates at each of these horizons,

and plots of the full set of impulse responses are relegated to the appendix (Figures C–11
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and C–12). Here in the text, we illustrate the general pattern in Figure 5, which plots the

local projections coefficients αj4 at horizon h = 4. Interestingly, the estimates are positive

for most countries in our sample. The U.S. is more adversely affected by global temperature

shocks compared to most countries in our sample. Also, the relative consumption growth local

projection coefficients also tend to persist. Relatively good news from increased temperature

leads to higher relative growth not just in year 1 but also in years 2, 3, and 4. This persistency

may provide a clue as to why the SDF approach doesn’t work. Temperature news doesn’t just

have a transitory impact on current consumption with future consumption expected to revert

back to normal. Bad news about temperature seems to lead to persistently lower consumption

growth and persistently lower currency valuation.

If higher temperature is both bad economic news and bad exchange rate news, the αjh

from the relative consumption local projections eq.(11) and the βjh from the exchange rate

local projections eq.(10) should be positively correlated. To investigate whether this is true, for

each horizon h = 1, 2, 3, 4, we run a cross-sectional regression of the estimated real exchange

rate local projection coefficients β̂jh on the estimated relative consumption local projection

coefficients α̂jh,

β̂jh = ϕjhα̂jh + bjh + ejh, (12)

where ϕjh is the regression constant.16 The estimation results are shown in Table 3 and

Figure 6. The positive estimates of bjh is consistent with the mechanism whereby relatively

bad economic news for country j is associated with a real depreciation of currency j. If

αjh < αj′h, the temperature news is worse for j than j′. We then also expect a lower valuation

of j′s currency relative to j′, indicated by βjh < βj′h.

Table 3: Slope Estimates from β̂jh = ch + bjhα̂jh + ejh with Generated Regressor Adjustment

Horizon

1-year 2-years 3-years 4-years

Estimate 0.369 0.055 0.750 1.036

T-Ratio 7.035 71.117 9.454 7.065

Notes: Slope estimate and standard error adjusted to account for generated regressors problem by the method
of Meng et al. (2016).

16The α̂jh are generated regressors which cause OLS estimates of bjh to be biased and standard errors
distorted. We correct for bias and size distortion by Meng et al. (2016). See Appendix D.
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Figure 6: Scatter Plots of α̂jh and β̂jh

5 Analysis of Cross-Sectional Real Exchange Rate Response

Heterogeneity

The exchange rate local projection estimates found response heterogeneity. The United States

was to be more adversely affected by global climate shocks than many countries (the apprecia-

tors) and to be less adversely affected than others (the depreciators). In this section, we study

the role that differences in geography, economic structure, and economic development might

play in explaining the response variation across countries.

This investigation is conducted by regressing the horizon h local-projection coefficients

β̂h,j on a set of country characteristics observed in 2017. If Xj is a vector of country j′s

characteristics and the scalar 1 for the constant, we run the cross-sectional regression

β̂h,j = X ′jθh + uj , (13)

The methodology is closely related to Lustig and Richmond (2020), who regress the exchange
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rate’s base factor ‘betas’ on ‘gravity’ variables. There is no generated regressors problem

or ‘first-stage error’ problem in this analysis, because the local projection response is the

dependent variable in the regression.

We consider country characteristics that potentially inform about the country’s economic

exposure to warming. The variables and rationale for including them are as follows.17

1. Latitude (absolute value of). Country latitude is inversely related to its average tem-

perature. The inverse cross-sectional relationship between income and temperature or

between income and latitude, is a well known phenomenon.18 The presumption is that

low latitude countries, which tend to be poor and already hot, suffer more from higher

temperature than cooler countries. High latitude, very cold countries could benefit from

warming, at least over a certain range of temperatures (Stern (2007)). Cook and Heyes

(2020) reports evidence that outdoor cold has adverse effects on indoor cognitive per-

formance. Hence, warming could potentially improve high-skilled labor productivity in

some locations. Hence, we expect responses tending towards appreciation to increase

with latitude. Latitude should enter with a positive sign.

2. GDPPC – Per capita GDP. The presumption is that richer countries have more resources

to devote towards adapting to rising temperatures. Lower-income countries employ tech-

nologies that are more labor intensive and for which labor is more exposed to climate (e.g.,

they tend not to work in air-conditioned offices). Microeconomic studies estimate nega-

tive effects of higher temperature on labor productivity. Heal and Park (2016) reviews

the empirical literature on the direct effects of high temperatures on labor productivity

and concludes that the negative effects are of first-order significance. There are multiple

channels linking income to climate exposure, such as adverse effects on health, labor

productivity, and possibly reductions in human capital accumulation. Due to resource

limitations, lower-income countries are less able to adapt to warming, which leaves them

more exposed. Per capita GDP should enter with a positive sign.

3. Agriculture/GDP – the share of agriculture in GDP. Macroeconomic exposure to warming

17Per capita GDP data are from the Penn World Tables. The other data on country characteristics are from
the World Bank database. We use year 2017 for all variables, or the most recent year available. We omit the
U.S., since the exchange rate response is relative to the dollar, and including U.S. variables does not contribute
any variation.

18See Dell et al. (2009). Acemoglu et al. (2002), Easterly and Levine (2003) and Rodrik et al. (2004) argue that
latitude and temperature proxy for institutional quality which is the main driver of long-run growth outcomes.
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through agriculture is ambiguous. From Stern (2007), crop yields may increase initially

in the higher latitudes, due to the carbon fertilization effect. For these countries, agri-

cultural productivity may display a hump-shape with respect to temperature–warming

initially benefits agriculture but only up to a certain point. However, in tropical regions,

warming may have adverse effects on agricultural yield. Climate change also increases

the frequency of heatwaves, droughts, and severe floods leaving countries with large agri-

cultural sectors to be more exposed to these risks. But physical crop yields are not

the only consideration. Agriculture represents a larger share of GDP in lower-income

countries and employs a larger share of labor who are directly exposed to the elements.

Agricultural share should enter with a negative sign.

4. Trade/GDP – the share of trade to GDP (openness). Trade is measured as the sum

of exports and imports. We expect the trade variable to enter with a positive sign.

While standard trade theory predicts that increased openness through reductions of trade

barriers leads to greater efficiency, more recently, the literature has presented convincing

evidence that openness leads to higher economic growth (see Irwin (2019) for a survey

of recent work).19 Furthermore, economies of countries that do more trade may be more

diversified, making them more resilient to temperature shocks. The trade share should

enter with a positive sign.

5. Tourism/Export – tourism as a share of exports. Tourism is measured as expenditures

by international visitors. Macroeconomic exposure through tourism is ambiguous. On

the one hand, tourist spending on cold-weather related leisure activities, such as alpine

skiing, are clearly at risk.20 Similarly, for countries that are already hot, tourism may

decline with additional warming. Alternatively, warming could enhance leisure tourism

by extending warm-weather activities. Chan and Wichman (2020), using data from

bike-sharing programs finds potential gains for outdoor recreation, at least initially, from

warming. Ex ante, the sign on tourism is ambiguous.

6. Long-Term Growth – measured as real per capita GDP growth experienced from the first

19Irwin (2019) points out that some of the largest and most important growth accelerations (in Taiwan (1962),
Brazil (1967), China (1991), India (1991), and Poland (1991)), seemed to occur around the time of major trade
reforms.

20See “Climate Change is Killing Alpine Skiing as We Know It,”
https://www.bloomberg.com/news/articles/2020-01-15/climate-change-is-killing-alpine-skiing-as-we-know-it,
and “How Climate Change is Affecting Tourism,”
https://www.travelpulse.com/news/destinations/how-climate-change-is-affecting-tourism.html.
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year to the last year in the sample. On the one hand, countries that have experienced

high sustained growth might be better equipped to deal with climate change. On the

other hand, high growth countries are less industrialized and less developed than the

rich countries, and have younger populations and higher fertility rates, which could work

against their ability to deal with global warming. Ex ante, the sign on long-term growth

is ambiguous.

Table 4 shows the correlation matrix of the country characteristics. The well-known neg-

ative correlation between per capita GDP and temperature shows up prominently. The neg-

ative (positive) correlation between agricultural share and latitude (temperature) illustrates

how agriculture plays a larger economic role in poor, hot countries nearer to the equator. Rich

countries are seen to be more open to trade. Export earnings from tourism and long-term

growth are not highly correlated with the other characteristics.

Table 5 splits cross-sectional means of country characteristics across broad country classi-

fications. Hot and cold, poor and rich, classified by being above or below the median value.

As can be seen, poor countries tend to be hotter. Hot and poor countries do less trade and

do more agriculture. Tourism plays a larger role in export earnings for hot countries, but the

differences between rich and poor countries is less pronounced.

Table 4: Correlations Amongst Characteristics

Avg. Trade/ Agriculture/ Tourism/ Long-term
Latitude Temp. GDPPC GDP GDP Export Growth

Latitude 1 -0.888 0.685 0.412 -0.603 -0.163 0.034
Avg. Temp. 1 -0.662 -0.372 0.582 0.150 0.037
GDPPC 1 0.640 -0.637 -0.204 0.220
Trade/GDP 1 -0.329 -0.096 0.068
Agriculture/GDP 1 0.078 -0.224
Tourism/Export 1 -0.078

Perhaps the most time-honored variable concerning the geography of economic performance

is latitude. In Table 6 we regress the cross-section of local-projection coefficients at horizons

1, 6, 12, 24, 36, and 48 months only on latitude and a constant. The regressions show a

consistent pattern across these horizons that currencies of countries farther from the equator

are more likely to appreciate following a global temperature shock. But as mentioned earlier,
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Table 5: Mean Country Characteristics by Broad Classifications

Hot Cold Poor Rich

Latitude 0.196 0.517 0.246 0.368
Avg. Temp 22.032 9.809 19.573 15.502
GDPPC 11.502 35.591 9.587 24.371
Trade/GDP 62.517 101.228 60.705 83.198
Agriculture/GDP 15.258 3.943 15.043 9.213
Tourism/Export 13.156 9.193 12.146 11.039
Long-term Growth 1.041 1.150 0.965 1.099

Notes: Ratios stated in percent.

latitude is strongly correlated with income. The table also shows estimates from regressing the

local-projection coefficients on per capita real GDP. Point estimates say richer countries tend

towards appreciation, but GDPPC loses significance at the longer (24,36,48) horizons. To see

which variable dominates, we include both latitude and GDPPC. Income is significant only at

horizon 1, whereas latitude seems to drive out GDPPC, retaining at least marginal significance

at horizons 6, 12, 36, and 48.

Table 6: Regression of Local Projection Slopes on Latitude and Real Per Capita GDP

Horizon 1 6 12 24 36 48

Latitude 1.166 4.354 5.543 2.784 5.541 6.883
t-ratio (1.694) (2.082) (2.468) (1.003) (2.068) (2.147)
R2 0.060 0.076 0.084 0.016 0.064 0.074

GDPPC 0.012 0.028* 0.049 0.018 0.027 0.025
t-ratio (2.710) (1.787*) (2.532) (0.759) (1.237) (0.923)
R2 0.064 0.031 0.063 0.006 0.014 0.009

Latitude 0.631 4.704* 4.267* 3.073 7.194* 10.045
t-ratio (0.774) (1.959*) (1.684*) (0.936) (1.853*) (2.041)
GDPPC 0.008 -0.005 0.019 -0.004 -0.024 -0.047
t-ratio (2.185) (-0.398) (0.998) (-0.165) (-0.669) (-0.938)
R2 0.073 0.077 0.089 0.017 0.071 0.091

Notes: Bold indicates significance at the 5% level. Asterisks indicate significance at the 10% level.

Table 7 reports the cross-sectional regressions on the full set of country characteristics.

Although latitude seems to drive out GDPPC, we keep both variables as controls. The coef-

ficients in the regressions of shorter horizon local-projection slopes tend not to be significant
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but the signs are quite consistent across horizons. The best precision occurs at either the 36

or 48 month horizon.

Latitude tends to lose significance in these regressions. Looking at the 48-month horizon

regression, country currencies tend towards appreciating after a global temperature shock if

they are poorer, more open, less reliant on agriculture and tourism, and have experienced less

rapid growth. The signs on the coefficients for the trade share and agricultural share are as

expected. The negative signs on per capita GDP and long term growth were not. The negative

sign on the tourism variable is instructive.

Next, we consider whether explanatory power of country characteristics differs across broad

country classifications? Table 8 reports regressions that stratifies responses to global temper-

ature shocks by the two broad classifications used in Table 5. Since the most interesting and

significant results from Table 7 are found for the 48 horizon responses, we focus our attention

to β̂48,j .

Table 7: Regression of Local Projection Slopes on Full Set of Characteristics

Trade/ Agriculture/ Tourism/ Long-Term
Horizon Latitude GDPPC GDP GDP Export Growth R2

1 0.015 0.005 0.001 -0.006 0.011 0.173 0.256
(0.043) (1.082) (0.560) (-0.900) (2.044) (1.934)*

6 2.267* -0.014 -0.001 -0.040 -0.003 0.369 0.112
(1.834)* (-0.727) (-0.159) (-1.297) (-0.171) (1.488)

12 1.129 0.001 0.003 -0.071 0.000 -0.053 0.108
(0.644) (0.039) (0.367) (-1.590) (-0.013) (-0.110)

24 1.083 -0.036 0.012 -0.010 -0.017 0.675 0.041
(0.500) (-1.141) (1.602) (-0.133) (-0.556) (1.157)

36 2.710 -0.090 0.021 -0.147 -0.050 -0.923* 0.191
(0.828) (-2.514) (2.152) (-2.907) (-1.346) (-1.689)*

48 5.157 -0.133 0.036 -0.127 -0.085* -1.405 0.268
(1.288) (-3.161) (3.401) (-2.911) (-1.828)* (-2.088)

Notes: Bold indicates significance at the 5% level. Asterisks indicate significance at the 10% level.

The differences between hot and cold countries are that income and long-term growth main-

tain their negative and significant effects for cold countries and tourism maintains its negative

effect and becomes significant for hot countries. Trade openness is about equally important

in explaining responses for both hot and cold countries. Agricultural share is insignificant for
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Table 8: Horizon 48 Split Across Broad Characteristics

Trade/ Agriculture/ Tourism/ Long-Term
Latitude GDPPC GDP GDP Export Growth R2

Hot -0.994 -0.086 0.036 -0.079 -0.095 -0.178 0.395
(-0.205) (-1.403) (1.988) (-1.598) ( -2.770) (-0.115)

Cold -13.064 -0.185 0.040 -0.398 -0.056 -2.687
(-1.329) (-2.485) (2.565) (-1.610) (-0.939) (-3.345)

Poor 7.702 0.320 0.035* 0.026 -0.104 -1.794 0.345
(1.392) (1.624) (1.716*) (0.357) (-2.749) (-2.166)

Rich -0.191 -0.153 0.039 -0.111 -0.033 -2.264
(-0.028) (-2.319) (2.891) (-0.217) (-0.429) (-1.464)

Notes: Bold indicates significance at the 5% level. Asterisks indicate significance at the 10% level.

both the hot and cold.

The differences in the poor and rich classifications are that trade openness and income

remain significant only for the rich whereas tourism and long-term growth are significant only

for the poor. Trade openness is significant at the 10 percent level for poor countries, however.

Agricultural share is insignificant for both the poor and rich.

For the hot-cold and poor-rich splits, the negative relationship between GDP per capita

and exchange rate response appear to be driven primarily by cold and rich countries. That is,

the poor among the rich (or the hot amongst the cold) tend to appreciate.

We close this section with an additional comment. The explanatory power of country

characteristics on the exchange rate response seems confined as a USD phenomenon, possibly

due to the outsized economic and financial importance of the U.S. We also conducted our

analysis with the Swiss franc and the British pound as numeraire currencies. The impulse

responses for an alternative numeraire amounts to a simple rotation of eq.(2). While we find

significant and heterogeneous impulse responses, they showed little systematic variation with

country characteristics.

6 Conclusion

This paper presents evidence that temperature shocks move real exchange rates. As a national

asset, the exchange rate values current and future relative fundamentals, and its response to
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temperature shocks can inform how market participants view the economic consequences of

those shocks.

Our ultimate interest is in how climate change impacts national economies. However cli-

mate change is a gradually evolving process which doesn’t lend itself well to time-series re-

gression. As a result, we followed the empirical literature by analyzing the real exchange rate

response to temperature shocks. The responses to global temperature shocks are systemati-

cally related to country characteristics. Countries that lie closer to the equator, those that

have grown faster, richer, more dependent on agriculture and tourism, and is less open to trade

tend to appreciate in real terms against the U.S. dollar.
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A Appendix

This appendix is not intended for publication, but will be made easily accessible.

Section A shows individual real exchange rate impulse response plots for each of the spec-

ifications discussed in the main text. Section B shows the GARCH(1,1) process estimated

on τt. Section C reports details on estimates of the coefficient of relative risk aversion from

estimating eq.(7) and the relative consumption local projection coefficients from estimation of

eq.(11). Finally, Section D traces out the generated regressor adjustments employed in Section

4 of the paper.
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Figure A–1: Local projection impulse response for all countries



Figure A–2: Pseudo-panel and local projection impulse response. Mali and Ethiopia excluded due to convergence issues
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Figure A–3: Pseudo-panel impulse response
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Figure A–4: With and Without Lagged Temperature
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Figure A–5: Impulse Response to Temperature with and without Conditional Variance
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Figure A–6: Impulse Response to Conditional Variance Shock
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Figure A–7: Impulse Response to Temperature with (dashed red) and without (solid black) Interest Differentials
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Figure A–8: Impulse Response to Temperature with (dashed red) and without (solid black) Recession Dummies
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B GARCH in Global Temperature

Table B–1: GARCH(1,1) for Global Temperature

Coefficient T-ratio

ρ0 -0.016 -0.914
τt−1 0.337 6.219
α0 0.113 4.007
α1 0.190 3.135
γ 0.197 1.158

Figure B–9: Estimated GARCH(1,1) for Global Temperature
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C Backus-Smith Puzzle

Figure C–10: Histograms of Eq.(7) Slope Estimates at Horizons 1-4

Table C–2: Summary of Risk Aversion Estimates across Horizons 1-4 from Regressions of
Eq.(7)

A. Number of Countries

Positive Estimates 14 Significantly Positive 2

Negative Estimates 53 Significantly Negative 22

B. Proportion of Countries

Positive Estimates 0.209 Significantly Positive 0.029

Negative Estimates 0.791 Significantly Negative 0.328

Notes: Standard errors computed by Newey-West. Significantly Positive (Negative) : Number of countries for which γ̂

is significantly positive (negative) at the 5 percent level for a two-sided test, for some h. Significantly Pos. and Neg.:

Number of countries for which γ̂ is significantly positive at some h and significantly negative at some h′, h 6= h′.
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Figure C–11: Histograms of Eq.(11) Slope Estimates at Horizons 1-4
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Figure C–12: Relative Consumption Impulse Response to Temperature
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D Standard Error Adjustments for Generated Regressors

The regressions of the exchange rate local projection coefficients on the relative consumption

local projection coefficients are regressions with generated regressors. In our case, OLS is

unbiased but gives the wrong standard errors. We adjust the standard errors by the method

described in Meng et al. (2016).

We are interested in the cross-sectional regression where αi is the real exchange rate local

projection coefficient and βi is the relative consumption growth local projection coefficient,

αi = bβi + εi + zib0, (A.1)

and βi is estimated. We are interested in estimating and drawing inference about the slope b.

The fact that αi is estimated is innocuous. We will omit the ‘hat’ from α in this presentation,

but it is understood that the αi are also estimated. i = 1, .., N indexes the countries in the

cross-section. zi is the scalar 1, and b0 is the regression constant. Let ui be the sampling error

from estimating β̂i,

β̂i = βi + ui. (A.2)

Then substituting (A.2) into (A.1) gives,

αi = bβ̂i + zb0 + (εi − uib) ,

which shows that the composite error term is correlated with β̂i through ui. We note that the

sampling error ui is allowed to be heteroskedastic and have a non-zero mean ci,

ui = ci + σiζi

where ζi is a random variable with mean 0 and variance 1. In our case, however, β̂i is unbiased,

so we set ci = 0.

The least squares estimator of b is

b̂ =
β̂′MzA

β̂Mzβ̂

14



where

A =


α1

α2

...

αn

 , β̂ =


β̂1

β̂2

...

β̂n

 , Z =


1

1
...

1

 ,

and

Mz = I − Z
(
Z ′Z

)−1
Z ′.

Let

σ̂ =


σ̂1

σ̂2

...

σ̂n

 and ϕ =
σ̂′σ̂

β̂′Mzβ̂
.

Then the adjusted slope b̃ and its standard error se
(
b̃
)

are,

b̃ =
b̂

1 − ϕ
, (A.3)

se
(
b̃
)

=

√(
β̂′Mzβ̂

)−1
[(
β̂′Mz ε̂

)′ (
β̂′Mz ε̂

)](
β̂′Mzβ̂

)−1

1 − ϕ
, (A.4)

where

ε̂ = Mz

(
A− β̂b̃

)
. (A.5)
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