
A Self Manageable Infrastructure for Supporting Web-based Simulations

Yingping Huang Xiaorong Xiang Gregory Madey
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556�

yhuang3, xxiang1, gmadey � @nd.edu

Abstract

Imagine if you would like to deploy your new simula-
tion online and your systems can just take care of itself.
Needed web interface could be generated, database schema
objects could be created, simulation programs could be
installed and configured on your execution servers, data
analysis and reports could be generated automatically. In
this paper, we describe the design and implementation of a
self-manageable multi-tier infrastructure to support scien-
tific simulations. This infrastructure demonstrates not only
the successful integration of web servers, execution servers,
database servers, reports servers, data warehousing and
data mining, but also the ability to achieve self manageabil-
ity, including self-configuring, self-healing, self-protecting
and self-optimizing. A scientific simulation program, NOM,
is employed to demonstrate the effectiveness of this infras-
tructure.

1. Introduction

Simulation is the process of designing a model of a real
system and conducting experiments on this model for the
purpose of understanding the behavior of the system or of
evaluating various strategies for the operation of the system.
The power of simulation is the ability to model the dynam-
ics of a real system and to analyze the results. It is important
to analyze the simulation data so that the output of the sim-
ulation is not misinterpreted. The complexity of simulation
data often requires more sophisticated analysis other than
statistical analysis, such as data warehousing and data min-
ing.

Most simulation models currently available in the fields
of scientific simulations run in stand-alone or traditional
client-server architecture. Both of these models require in-
stalling software on user’s computers. This presents a sig-
nificant barrier due to incompatibility that complicates or

prevents installations. Meanwhile, the stand alone or tra-
ditional client-server approach has some significant draw-
backs: (1) lack of scalability since it’s a single user pro-
gram, (2)lack of collaboration features, such as information
sharing among users, (3) lack of reliability since usually no
fault-tolerant feature is built in simulation, and (4) lack of
centralized simulation management and data analysis.

To overcome these drawbacks, many Web-based simula-
tions have been developed recently using server-side tech-
nologies. But these Web-based simulation environments
lack the ability of self management. Professional IT staff
seems necessary to maintain the reliability and availability
of the simulation environments. In this paper, we present a
multi-tier infrastructure such that simulation developers can
deploy their simulations online automatically and users can
run simulations and view simulation reports just using their
web browsers, such as Netscape and Internet Explorer. The
users only need to specify inputs for their simulations, data
analysis and reports are completed at the back end and de-
livered to the users through the reports server.

This infrastructure can serve multiple users and each
user can run multiple simulations. Scalability and re-
liability can be achieved through the built-in self-
management features. The self-management features in-
clude self-configuring, self-healing, self-protecting and
self-optimizing. Besides, this infrastructure has other ben-
efits. For example, centralized data repository makes data
analysis, information sharing and collaboration easier. Fur-
ther more, large volume of data often requires more so-
phisticated analysis besides statistics and thus brings the
opportunity for data warehousing and data mining. This in-
frastructure can serve as a template or guideline for
future web-based simulation model design. That’s the re-
search goal of this work.

The rest of this paper is organized as follows. In section
2, we list some related Web-based simulations and present
our NOM project. We also briefly introduce the components
of a self manageable infrastructure. In section 3, we demon-
strate our infrastructure and show that our infrastructure can

achieve high scalability and availability. In section 4, we
present the self management features of our infrastructure.
Finally, in section 5, we draw conclusions of this work and
point out some directions of future work.

2. Background and Related Work

In this section, we briefly review the Web-based simula-
tion development, then we introduce the NOM simulation
project, finally we’ll discuss the components of a self man-
ageable infrastructure.

2.1. Web-based Simulation

Web-based simulation represents the combination of
WWW technologies and simulation science. The abil-
ity of Web technologies enhances the power of simula-
tion in that Web can service large simulation communities
and allow developers to distribute models and simula-
tions to end users. Along with the advancement of Web
technologies, many Web-based simulations and simula-
tion support systems have been developed.

Holmes et. al. [4] demonstrated an integration of stan-
dards based web services technologies, grid-enabling soft-
ware and a component framework for parallel computing,
resulting in a service-oriented architecture which provides
end users the ability from their desktops to manage and un-
derstand simulation results for very large, complex prob-
lems. Fernandez et. al [3] proposed an interval caching strat-
egy to enhance the performance of integrated storage sys-
tems. A web-based simulation was developed to compare
their strategy and other known algorithms for the purpose
of evaluation. Sarhan and Das [9] developed Web-based
simulations to evaluate scheduling policies of multimedia
servers.

Huang and Miller [6] presented a prototype implemen-
tation of a Web-based federated simulation system using
Jini and XML. Holmes et. al [5] proposed a multi-tier ar-
chitecture to allow web access to visualization tools run-
ning on MP systems. Belfore and Chitithoti [1] described
multiuser extensions of the Virtual Reality Modeling Lan-
guage (VRML) that integrate a database interface to create
web based simulation environments.

Some of the above Web-based simulations made use of
multi-tier architectures. But due to the lack of self manage-
ability, it’s often costly to successfully achieve high reliabil-
ity and high performance of Web-based simulation environ-
ments. The major contribution of our work is to design and
implement a self manageable infrastructure to support sci-
entific simulations.

2.2. The NOM Project

Natural organic matter (NOM) is a mixture of molecu-
lar components with different types of structures, composi-
tions, functional group concentrations, molecular weights,
and different degrees of reactivity. NOM comes from an-
imal and plant material in the natural environment. It ex-
ists everywhere in the world, from terrestrial ecosystems to
aquatic environments. NOM plays a crucial role in ecologi-
cal and bio-geochemical processes such as the evolution of
soils, the transport of pollutants and the global biochemical
and geochemical cycling of elements [2]. The evolution of
NOM over time from precursor molecules to mineralization
is an important research area in a wide range of disciplines,
including biology, geochemistry, ecology, soil science, and
water resources. NOM, micro-organisms and their environ-
ment form a complex system. The global phenomenon of
a complex system can often be observed by simulating the
dynamic behavior of individual components and their inter-
actions in the system.

The NOM project is a multi-disciplinary project sup-
ported by the US National Science Foundation. Currently,
two Web-based NOM simulators have been developed and
deployed to meet requirements from different groups of
users. Each of the NOM simulators used an agent-based
stochastic simulation model to simulate the behavior of
molecules. The purpose of the NOM simulation is to let sci-
entists to conduct experiments on it to better understand the
evolution of natural organic matter [10].

2.3. Self Manageable Infrastructure

A computing system often consists of storage de-
vices, networks, databases and servers. These compo-
nents have workflow dependencies and interact among
themselves. Managing the system involves configur-
ing the individual components so that the overall sys-
tem goals can be achieved. Jim Gray in his Turing award
speech ”What next? - A dozen IT research goals” empha-
sized the need for self-manageable systems in which the
administrator sets system goals and creates high-level poli-
cies, while the system by itself decides how they can
be achieved. IBM calls self manageable systems ”auto-
nomic computing” [7].

A self manageable infrastructure for support Web-based
simulations consists of the following components:

� Self-configuring: New features, new software and ad-
ditional servers can be added to the system with little
human interaction while the system is up and running.
Given the input and output metadata of simulations,
the system can create user forms and create database
schema objects without human involvement.

Clients

Internet

Firewall
Router

Web Server
Reports Server

Execution
Servers

Database
Servers

Data
Warehouse

Simman

Figure 1. The Multi-tier Infrastructure

� Self-healing: The system detects malfunctioning com-
ponents and brings them off-line for recovering and
brings them back on-line once recovered. The system
needs to be designed with redundancy and backup rou-
tines such that self-healing can occur transparently to
users.

� Self-protecting: The system resource can only be ac-
cessed by authorized users to prevent data lose and
misconfiguration.

� Self-optimizing: The system makes best use of re-
sources by providing load-balancing features across
Web servers, execution servers and database servers.
Further more, self tuning features could be added in
the database tier such that the database servers can tune
themselves as needed.

In the next section, we first show the infrastructure for
supporting scientific simulations.

3. Overview of the Infrastructure

The NOM project development team has designed an
infrastructure built on a multi-tier architecture to support
high scalability through load balancing and high availability
through redundancy. The HTTP client tier communicates
with the HTTP server tier through a firewall. The HTTP
server tier routes the requests of simulations to the execu-
tion server tier, which connects to the database server tier.
The reports servers connect to the database servers and de-
livers reports to HTTP clients. A simulation manager (Sim-
man) generates necessary Web applications and deploys
them to the Web server tier. And it generates SQL scripts
to build database schema objects for a simulation. Further
more, it talks to intelligent agents on the execution server
tier for the purpose of self-management. Each of the tiers
can be scaled individually by building clusters of servers
for supporting load balancing and redundancy.

Figure 1 shows the infrastructure. Oracle9i Application
Server and Reports Server are used in the Web server tier

Figure 2. A sample report

and Oracle9i is used in the database server tier. Users lo-
gon to the system, specify inputs for the simulations through
some HTML forms, and submit the simulations. The sim-
ulation inputs will be stored in the database and the sim-
ulation will be executed on one of the execution servers.
Data generated by the simulations will be either stored in
the databases through JDBC (Java DataBase Connectivity)
or transfered to the data warehouse through SQL*Loader.
Data analysis and reports will be generated at the backend
automatically and delivered to the users through the reports
server.

A reports server is configured inside the Web server tier.
The major function of the reports server is to deliver simu-
lation results to the users. Both graphical reports and XML
reports are supported in our infrastructure. The graphical re-
ports are generated by the simulation manager and delivered
by the Oracle9i Reports Server. The XML reports are gen-
erated using XSQL (XML SQL) and transformed by XSLT
to HTML file. Figure 2 shows a sample report page for the
NOM project.

Currently, most scientific data is distributed across a
multitude of databases and sites. Scientists have very lim-
ited support to access and manage their data. They are
forced to manually relate between experimental data and
analysis facilities without an infrastructure support. A data
warehouse provides the opportunity to store experimental
data and data produced by running simulations. The data
will eventually be explored to search for patterns by data
mining so that scientists can obtain a greater understand-
ing of their research.

Therefore, in our design, a data warehouse is included
in the database tier. The purpose of data warehousing in-
cludes:

� To store both experimental and simulation produced
data.

Oracle9iAS
Instances

Oracle9iAS
Cluster

client

Load
Balancer

Oracle
HTTP

Server

Figure 3. The Oracle9iAS Cluster

� To provide mechanisms for fast reports by creating star
schemas.

� To function as a data mining server such that data min-
ing can be applied across simulations.

3.1. Scalability

Our infrastructure is designed to be highly scalable at all
tiers. Scalability of the Web server tier and database server
tier is be implemented using Oracle technologies: Oracle9i
Application Server clustering and Real Application Clus-
ters [8].

� Web Server Tier: A application server cluster is a col-
lection of application servers which can be config-
ured to be a single group. New application servers
can be added during the operation of the cluster with-
out downtime. Client interacts with the cluster as if
they are interacting with one single application server.
Client requests are routed to instances of the cluster
through a load balancer, as shown in Figure 3.

� Execution Server Tier: The execution server tier can be
scaled linearly by installing new execution servers run-
ning identical simulations. The execution servers are
included into our new load balancing algorithm which
will be discussed in later sections.

� Database Server Tier: Oracle Real Application Cluster
(RAC) can be used in this tier. In RAC environment,
all active nodes can concurrently execute transactions
against a shared database, as shown in Figure 4.

3.2. Availability

Availability is achieved through some level of redun-
dancy.

Node 1 Node 2

Cross Over

Network
Storage

Figure 4. The Oracle9i Real Application Clus-
ter

� Web Server Tier: An Oracle9i RAC eliminates the sin-
gle point of failure by redundancy and failover in the
system. A failure of any single instance does not bring
down the whole system. Client session state is repli-
cated throughout the cluster, thereby protecting against
the loss of session state in case of process failure.

� Execution Server Tier: Availability of the execution
server tier is handled by our new simulation check-
point and resuming features, which will be discussed
in later sections.

� Database Server Tier: Each instance node is isolated
from each other so that a failure on one node does not
affect the whole database system.

From the above, we see that our infrastructure can
achieve high scalability by load balancing and high avail-
ability by redundancy. In the next section, we will focus on
the self manageability of our infrastructure.

4. Self Managemement of our Infrastructure

A self manageable infrastructure has four compo-
nents: self-configuring, self-healing, self-protecting and
self-optimizing. To achieve these capabilities, a pro-
gram called Simulation Manager (Simman) plays an im-
portant role, as shown in Figure 1.

4.1. Self-configuring

When a new simulation is developed, it can be deployed
to the Web automatically. This includes configuring the Web
server tier, execution server tier and the database server tier.
To automatically deploy Web-based simulations, we need to
make use of the simulation metadata. Simulation metadata
describes the simulation, including input metadata, output
metadata, and other necessary metadata for the purpose of
simulation checkpointing, which will be discussed in the

<?xml version="1.0"?>
<simulation name="NOM">
<input>
<env>
<name>microbe density</name>
<name>fungal density</name>
<name>ph value</name>
<name>temperature</name>
<name>oxygen density</name>
<name>light density</name>
<name>molecule density</name>
<name>adsorption rate</name>
<name>desorption rate</name>
</env>
</input>
<output>
<name>molecule position</name>
</output>
</simulation>

Figure 5. The Simulation Metadata

subsection Self-healing. Simulation metadata is of the for-
mat in XML (eXtensible Markup Language). An example
of simulation metadata of the NOM project is shown in Fig-
ure 5.

4.1.1. Self-configuring Web Server Tier Java Server
Pages (JSP) can be generated automatically from the sim-
ulation metadata by the simulation manager (Simman).
JDBC code can be embedded into the JSP files. Af-
ter these JSP files are generated, they can be assem-
bled into EAR (Enterprise ARchive) files and deployed
to the Web server automatically by the simulation man-
ager using the following commands which are embedded
into shell scripts:

simman$ java -jar admin.jar
ormi://tobit.cse.nd.edu:23791
admin manager -deploy
-deploymentName nom -file nom.ear
simman$ java -jar admin.jar
ormi://tobit.cse.nd.edu:23791
admin manager -bindWebApp
nom nom http-web-site /nom

4.1.2. Self-configuring Execution Server Tier Simula-
tion programs and dependent libraries need to be installed
on the execution servers, which can be distributed by the
simulation manager to the execution servers. In the NOM
project, both the simulation manager and the execution
servers are clients of a NFS server. Once the simulation pro-
gram is installed on the simulation manager, it can be exe-
cuted on all of the execution servers. Meanwhile, in order to
load the data generated by the simulations to the database
server tier, a shell script is automatically generated which
can be triggered to run after each simulation completes.
This shell script calls the SQL*Loader utility to load data
into the database (once the database schema objects have
been created). The following lines of code shows a snap-
shot of the shell script:

#!/bin/sh

sqlldr username/password@db_name \

Figure 6. The NOM data model

control=nom.ctl

A new execution server is detected by the simulation
manager through an intelligent agent running on the new
execution server. The intelligent agent reports the existence
of the new execution server by inserting a new record of the
execution server into the database, and the simulation man-
ager checks the database and add the execution server into
the cluster of execution servers. We’ll discuss more about
the intelligent agent in later sections.

4.1.3. Self-configuring Database Server Tier SQL
scripts are generated by the simulation manager auto-
matically from the simulation metadata to create database
schema objects used by both the simulation and the Web ap-
plication. Figure 6 shows the data model generated by the
simulation manager for the NOM project. Figure 7 shows a
star schema for the NOM project generated by the simula-
tion manager for the data warehouse.

4.2. Self-healing

Some level of redundancy is required to enable self-
healing. We use Oracle9i Application Server Cluster in
the Web server tier and Oracle9i Real Application Clus-
ters in the database tier. Both of them can achieve high
availability as discussed before. In the database tier, mul-
tiple active nodes concurrently execute transactions against
a shared database. It is possible that the database may ex-
perience media failure, therefore, routine backup of the
database is mandatory. We designed our own backup scripts
to backup the database every week, which is invoked by
UNIX cron. In the case of database failure, database admin-
istrator must be involved to replace the bad media and re-
cover the database, and bring it back online.

Figure 7. A star schema in the data ware-
house

Simulation
Running

on Backend
Oracle
RDBMS

Execution
Server

Tier

Database
Server

Tier

Checkpointing

Resuming

Figure 8. Simulation checkpointing and re-
suming

Simulations are running on the execution servers which
are transparent to the users. What if a simulation dies pre-
maturely? Some mechanism must be provided against sim-
ulation failure. In the NOM project, we designed and im-
plemented the simulation checkpointing and simulation re-
suming features. Simulation checkpointing is the solution
for long-running simulations. Figure 8 shows the processes
of checkpointing and resuming.

The complete state of a simulation needs to be saved into
an RDBMS, such that when a failure occurs, the simulation
state can be restored and the simulation can be resumed. It
is better to store simulation state into an RDBMS than to
store it on the load disk. If the checkpointing data is on a
local host, it is costly to transfer it to another node when a
simulation is to be migrated. Simulation checkpointing can
be useful for the purpose of resuming crashed simulations.
It can also be used for the purpose of load balancing.

An intelligent agent is running on each execution server.
An intelligent agent monitors the status of all simulations
running on its host. It also reports the status of the simula-
tions to the simulation manager. When a running simulation

dies prematurely, the intelligent agent detects this event and
reports it to the simulation manager. The simulation man-
ager will dispatch the crashed simulation to an appropri-
ate execution server. The assigned execution server loads
the checkpointed simulation state from the RDBMS and re-
sumes the simulation.

The simulation manager keeps sending a KEEPALIVE
message to each intelligent agent and each intelligent agent
sends back an ACKnowledgement message to the simula-
tion manager. If the ACK message times out, then the sim-
ulation manager marks the corresponding execution server
as DOWN. In this case, all simulations currently running on
this execution server will be marked as CRASHED by the
simulation manager and they will be dispatched by the sim-
ulation manager to appropriate execution servers.

The following lines of code shows the implementation of
an intelligent agent. It is a shell script and running as a dae-
mon on the execution server. This shell script calls other
shell scripts which have database access code to check sim-
ulation status and reports to simulation manager.

#!/bin/sh

while [true]
do
/export/daemon/loadavg.sh $1
/export/daemon/checkjob.sh $1

done

For example, the shell script loadavg.sh is implemented
as follows.

#!/bin/sh

if [$# -ne 1]; then
echo "usage: loadavg <appserver>"
exit

fi

upload loadavg every 5 seconds
LOADAVG=‘cat /proc/loadavg \
|(read u v w x y;echo $u)‘
echo Loadavg:$LOADAVG
sqlplus username/password@sm \
>/dev/null <<EOF
update appserver set loadavg=$LOADAVG,
NOW=sysdate, down=’N’ where id=$1;
commit;
exit;
EOF

4.3. Self-protecting

The system resource cannot be accessed by unauthorized
users. For example, a malicious user may submit many sim-
ulations simultaneously and thus consume a lot of resources
and prevent normal user from running simulations. This is
a sort of DoS (Deny of Service) attack. Therefore, it is crit-
ical to protect the infrastructure by taking the following ac-
tions.

� As shown in Figure 1, the whole system is behind a
firewall and only certain ports are open to the public.

� The Web server is configured to support Secure Socket
Layer (SSL).

� Only authorized users can access the simulation web
pages and to invoke simulations.

� Network monitoring software is installed for monitor-
ing network traffic around the infrastructure.

� The simulation manager pings all the tiers to ensure
that they are working properly.

4.4. Self-optimizing

The Web server tier and database server tier have
been configured to be scalable. Oracle9i Application
Server Cluster and Oracle9i Real Application Clus-
ter make use of the round-robin load balancing mechanism
to ensure all the nodes are load balanced. We can cer-
tainly use the round-robin policy on the execution server
tier. But it turns out round-robin is not the best load balanc-
ing algorithm to be applied to the execution server tier when
the execution server tier consists of heterogeneous comput-
ers. In the next few paragraphs, we present our load balanc-
ing algorithm in the execution server tier and self-tuning
features in the database server tier.

4.4.1. Load Balancing the Execution Server Tier The
goal of load balancing is to distribute simulations evenly
among the execution servers. There have been many load
balancing schemes in the literature. Simulations need to
be migrated from congested nodes to lightly loaded nodes
such that they can be completed faster. These load balanc-
ing schemes can be divided into two groups: sender ini-
tiated and receiver initiated. In sender initiated schemes,
congested nodes attempt to migrate simulations to lightly
loaded nodes. In receiver initiated schemes, lightly loaded
nodes attempt to find congested nodes from which simula-
tions may be migrated. In this paper, we propose a load bal-
ancing algorithm based on simulation checkpointing. We
call it checkpointing-initiated. The checkpointing-initiated
scheme is similar to the sender-initiated scheme, but it is

Time

Node 1 Node 2

RDBMS

Checkpoint

Migrate

Figure 9. Checkpointing-initiated load bal-
ancing

controled by the centralized simulation manager. The sim-
ulation manager decides the node to which the simula-
tion should be migrated. Figure 9 shows the checkpointing-
initiated load balancing algorithm.

When a checkpointing takes place, checkpointing data
is inserted into the Oracle RDBMS. The simulation man-
ager tries to find the most suitable node such that it can mi-
grate the simulation on that node and resume the simula-
tion. In our current system, the node with the smallest load-
avg is chosen as the best node for migrating a simulation to
it. Load average can be used to measure the load of a node, it
can be obtained by running the ”uptime” command. The in-
telligent agent on the execution server tier reports the load
average of the local host to the simulation manager peri-
odically. When a new simulation is submitted or an exist-
ing simulation is to be migrated, the simulation manager al-
ways choose the node with the smallest load average as the
target to run the simulation.

In practice, the checkpointing intiated load balancing
policy outperforms the round robin policy.

4.4.2. Self Tuning the Database Server Tier The dy-
namic memory features of Oracle9i makes it possible to
create a self-tuning database. We have design and imple-
mented scripts which are invoked by an Oracle package
DBMS JOB periodically. These scripts can adjust the Or-
acle System Global Area to the most appropriate configu-
ration based on the usage trends of the database. The usage
trends of the database can be obtained by collecting his-
toric system data from the database using the DBMS STAT
package.

From the simulation metadata, various reports pages
will be generated by the simulation manager. These reports
pages connects to the RDBMS through JDBC. The query

statements inside JDBC need to be tuned such that they can
execute fast. Scripts have been designed and can be invoked
by the UNIX cron to identify the most resource consuming
SQL statements. Once these SQL statements are retrieved,
the scripts can tune them by creating necessary indexes or
even rewrite the SQL statements.

In the data warehouse, star schemas are composed of fact
tables and dimension tables. The primary key of a fact ta-
ble is the combination of the foreign keys which reference
the primary keys of the dimension table. Bitmap indexes
are created automatically for these foreign keys such that a
query on the fact table can be accomplished fast.

5. Conclusions and Future Work

Computer systems have been getting more and more
complex. Self manageable systems can leviate the cost of
professional IT staff. In this paper, we described the design
and implementation of a multi-tier infrastructure for sup-
porting Web-based simulations. The infrastructure demon-
strated not only a successful integration of web servers, exe-
cution servers, database servers, data warehousing and data
mining, but also the ability to achieve self-manageability.

In the future, more automonic features and advanced
load balancing algorithms will be developed for our infras-
tructure. To name a few:

� A Web-based simulation deployment tool will be de-
veloped.

� A Web-based simulation manager will be developed.
� New load balancing algorithms based on load average,

virtual memory statistics and I/O statistics.

6. Acknowledgements

This research was partially supported by a NSF ITR
Grant No. 0112820 and by the Center for Environmental
Science & Technology at the University of Notre Dame.
We acknowledge the contributions of Patricia Maurice and
Leilani Arthurs of the Department of Civil Engineering &
Geological Science at the University of Notre Dame for
their respective discussions on the Web interface, input, and
testing of the infrastructure.

References

[1] L. Belfore and S. Chitithoti. Multiuser extensions to the in-
teractive land use vrml application (iluva). In Proceedings
34th Annual Simulation Symposium, pages 151–166, 2001.

[2] S. Cabaniss, G. Madey, P. Maurice, L. Leff, Y. Huang, and
X. Xiang. Stochastic synthesis model for the evolution of
natural organic matter. In 225th American Chemical Soci-
ety National Meeting, 2003.

[3] J. Femandez, J. Carretero, F. Garcia, J. Perez, and
A. Calderon. Enhancing multimedia caching algorithm per-
formance through new interval definition strategies. In Pro-
ceedings 36th Annual Simulation Symposium, pages 175–
182, 2003.

[4] V. Holmes, W. Johnson, and D. Miller. Integrating web
service and grid enabling technologies to provide desktop
access to high-performance cluster-based components for
large-scale data services. In Proceedings 36th Annual Simu-
lation Symposium, pages 167–174, 2003.

[5] V. Holmes, J. Linebarger, D. Miller, R. Vandewart, and
C. Crowley. Evolving the web-based distributed si/pdo archi-
tecture for high-performance visualization. In Proceedings
34th Annual Simulation Symposium, pages 151–158, 2001.

[6] X. Huang and J. Miller. Building a web-based federated sim-
ulation system with jini and xml. In Proceedings 34th An-
nual Simulation Symposium, pages 143–150, 2001.

[7] IBM. Autonomic Computing.
http://www.ibm.com/autonomic, 2003.

[8] Oracle. Oracle9i. http://www.oracle.com, 2003.
[9] N. Sarhan and C. Das. A simulation-based analysis of

scheduling policies for multimedia servers. In Proceedings
36th Annual Simulation Symposium, pages 183–190, 2003.

[10] X. Xiang, Y. Huang, and G. Madey. A web-based collab-
oratory for supporting environmental science research. In
WI/IAT 2003 Workshop on Applications, Products and Ser-
vices of Web-based Support Systems, pages 29–36, 2003.

