A POWER-CONTROL THEORY OF GENDER AND RELIGIOSITY*

Jessica L. Collett and Omar Lizardo

University of Notre Dame

Last revised: August 12, 2008

Words: 9,772

* Authors names are in alphabetical order to reflect equal contributions to this article. Data and codebooks from the NORC General Social Survey (GSS) were obtained from the Inter-University Consortium for Political and Social Research (ICPSR) online database at http://www.icpsr.umich.edu. The authors bear sole responsibility for tabulations, analyses, and interpretations of these data. We would like to thank Mark Chaves for helpful comments on a previous draft of this paper. Direct correspondence to Omar Lizardo, Department of Sociology 810 Flanner Hall Notre Dame, IN 46556. Phone: (574) 631-1855, Fax: (574) 631-9238, Email: olizardo@nd.edu.
A power-control theory of gender and religiosity

Abstract

The fact that women are more religious than men is one of the most consistent findings in the sociology of religion. Miller and Stark (2002) propose that a gender difference in risk-preference of physiological origin might explain this phenomenon. While acknowledging the utility of their risk-preference mechanism, we believe that their assumption regarding the genesis of this difference is a premature concession to biology. Returning to Miller’s original paper on gender, risk, and religiosity (Miller and Hoffmann 1995), we draw on power-control theory (PCT), developed in the work of John Hagan and colleagues, to introduce a plausible socialization account for these differences. PCT attributes the origins of gender differences in risk-preference to class-based differences in the socialization of children, with women raised in more patriarchal families—as indexed by the mother’s class position—more likely to be risk-averse than men raised in the same type of households and women raised in more egalitarian households. If religiosity and risk-aversion are related, then the gender difference in religiosity should be strongest among those raised by women of low socioeconomic status. We evaluate these claims using data from the General Social Survey. The results are consistent with a socialization explanation: women raised by high-SES mothers are less religious than women raised by low education mothers, but mother’s socioeconomic status has little effect on men’s chances of being irreligious and father’s socioeconomic status has a negligible effect on the gender difference in religiosity.
INTRODUCTION

The fact that women display higher patterns of religiosity than men is one of the most consistent findings in the sociology of religion (see Sullins 2006 for exceptions). While various explanations have been offered to account for this phenomenon (e.g. structural location [Cornwall 1989; de Vaus 1984; de Vaus and McAllister 1987], gender orientation [Thompson 1991], gender role socialization [Levitt 1995], and personality differences [Walter 1990; see Kay and Francis 1996 and Walter and Davie 1998 for recent reviews), the most compelling and comprehensive account, in our view, is Alan Miller and Rodney Stark’s (Miller and Hoffmann 1995; Miller and Stark 2002; Stark 2002) risk-aversion theory. In the original paper, Miller and Hoffmann (1995) theorize that because being irreligious entails risking the potential loss of supernatural rewards, and because men are consistently found to be more likely than women to engage in various forms of high-risk behaviors (Hagan 1989; Gottfredson and Hirschi 1990), men are more likely to take this particular risk – being irreligious – than women. They use suggestive empirical material to lend support to this theory, demonstrating that risk preference is related to religiosity, and that controlling for these preferences significantly lessens gender’s effect on religiosity.

We consider the risk-aversion hypothesis a plausible intervening mechanism that sheds light on a puzzling, but apparently highly general, phenomenon (Miller and Stark 2002; Walter and Davie 1998). However, we are dissatisfied with recent explanations of the source of these gender differences (Miller and Stark 2002; Stark 2002). In a widely cited paper, Miller and Stark (2002: 1401) test a socialization account for the gender differences in taste for risk. Finding nothing, they “reluctantly conclude that physiological differences related to risk preference appear to offer the only viable explanation of gender differences in religiousness.” However, we believe that Miller and Stark’s (2002) conclusion regarding the physiological origin of the difference in taste for risk (and by implication religiosity) is a premature concession to biology. Further, we believe that it was their one-dimensional conceptualization of socialization – a battery of gender-related attitudinal items – that led to too hasty a dismissal of a socialization explanation for gender difference in risk preferences.

1 Although others (e.g. Freese 2004; Freese and Montgomery 2007; Roth and Kroll 2005) question the riskiness of being irreligious, we do not address the debate in this paper.

2 It is important to note that although in this paper we focus on constructing and testing a socialization account of gender differences in religiosity, we do not endorse an “either or” framework with regard to socialization and physiology. Unlike Sullins (2006), we do not see biological and social influences at opposite ends of a continuum and believe it is possible those psychological traits may be caused by a combination of genes and environment, and that those traits can depend on environmental conditions. These nuanced, interactive effects, while being pursued by others (e.g. Bradshaw and Ellison 2005), are outside the scope of this paper.
To more appropriately test the influence of socialization on risk-aversion and religion, we return to Alan Miller’s original paper (Miller and Hoffmann 1995). While Miller and Hoffmann (1995) only tested the relationship between risk preferences, gender, and religiosity, and not the mechanisms driving the link between gender and taste for risk, they suggested that power-control theory (PCT), initially developed by John Hagan and his collaborators (Hagan, Gillis and Simpson 1985, 1990; Hagan, Simpson, and Gillis 1979, 1987, 1988) to address the gender differences in the propensity to commit crimes, might be a promising line of inquiry to further explore these results. To this end, in this paper we use the power-control formulation of the socialization-based, and ultimately class-related, origins of risk preference to explore a more sociological explanation for gender difference in religiosity than that set forth by Miller and Stark (2002; Stark 2002).

According to PCT, differences in household types along the patriarchal/egalitarian continuum translate into different patterns of gender socialization and parental social control of daughters. The higher propensity of mothers (and possibly fathers) to attempt to control their daughter’s behavior in patriarchal households results in those women being raised to be more risk averse than in egalitarian households. Translating this proposition into the realm of religiosity, assuming that risk-averse individuals are more likely to be religious, we should expect the gender difference in religiosity to be stronger for individuals who grew up in these patriarchal or “traditional” households and weaker for children from households with more gender-egalitarian socialization practices. We test this expectation using pooled General Social Survey (GSS) data from the latest GSS cumulative data file (Davis, Smith, and Marsden 2004).

Consistent with our integrative model, the gender difference in religiosity is strongest for respondents raised in households more likely to be patriarchal, as measured by the mother’s socioeconomic status. In households more likely to be egalitarian, once again measured by mother’s socioeconomic status, the gender difference is substantially weaker. Most importantly, this decrease is primarily due to the fact that women raised by high SES mothers are more likely to be irreligious. The empirical payoff of our approach illustrates the advantages of theoretical integration across divergent subfields in the explanation of puzzling and persistent phenomena in the social sciences.

The contributions of this paper are twofold. First, we show that Miller and Stark’s (2002; Stark 2002) emphasis on the biological basis of the risk-preferences and thus the higher religiosity of

3 While PCT originally addressed propensity to commit crimes, it was more recently extended to the explanation of gender-based risk preferences in general (Grasmick, Blackwell, and Bursik 1993; Grasmick, Hagan, Blackwell, and Arneklev 1996).
women is misplaced. We demonstrate that power-control theory's class-based socialization mechanism, originally suggested by Miller (Miller and Hoffmann 1995) himself, accounts for some of the difference in religiosity. Second, we generalize and extend the basic core of power-control theory by moving it toward a non-obvious empirical realm, religious behavior and belief. Its applicability there encourages future research to extend the theory to other areas of inquiry where consistent, and heretofore unexplained, gender differences in high-risk behavior (broadly understood) are found.

GENDER, RISK AND RELIGIOSITY

While the fact that, on average, women tend to be more religious than men has been widely noted, there has been little research directly addressing why this is the case (Miller and Stark 2002; Walter and Davie 1998). However, most studies examining the relationship between gender and religiosity assert that it is not gender per se (i.e. being male or female) that increases religiosity, but a feminine gender orientation. It is this orientation, defined as a durable socio-emotional trait, and which may be present or absent in varying degrees regardless of an individual's biological sex, that is connected to higher patterns of religiosity (Francis 1997; Francis and Wilcox 1998; Kay and Francis 1996; Sherkat 2002; Thompson 1991; Thompson and Remmes 2002).

While linking gender orientation and religiosity is a positive development because it points to a factor that is as likely to vary within as between men and women (this allowing for the explanation of variations in religious behavior while holding phenotypic gender constant [as in Sherkat 2002]), presuming to have explained the association between religiosity and gender by pointing to the gender orientation construct simply begs the questions: what is it about “feminine orientation” that increases religiosity?

Miller and Hoffmann (1995) propose a powerful answer to this puzzle. They change the focus of inquiry from what makes women more religious than men to the question of what makes men less religious than women. They point to the long-standing association between risk-taking behavior and gender, with men much more likely to engage in high-risk behavior, especially crime, than women (Gottfredson and Hirschi 1990). Drawing on the general rational-action based model of religious behavior formulated by Stark (Finke and Stark 1992; Stark and Bainbridge 1985; Stark and Finke 2000), they reason that if lack of religiosity entails a risk of loss of supernatural rewards, then men, due to their general propensity to engage in risky behavior, will be more likely to be irreligious than women. This model of religious behavior possesses all of the desirable virtues a theoretical model should have: it is simple, powerful, and potentially falsifiable (Jasso 1988; Kanazawa 1998).
Miller and Stark (2002) note however that the original risk-aversion hypothesis (Miller and Hoffmann 1995) did not test why males are more likely to take risks than women, and suggest that, as a result, they were forced to fall on a default socialization explanation without good reason. However, as Miller and Hoffmann (1995) assert, such an explanation, linking socialization practices and different preferences of sons and daughters for risk, has been the core of power-control theory since its earliest formulations (Grasmick et al. 1993; Hagan et al. 1987, 1988, 1990). Grasmick, Hagan and colleagues (1996) find that the risk preference of adult women raised in less patriarchal families (measured according to the class balance between husband and wife in the household) is greater than those raised in more patriarchal households and is closer to the risk preference of men. This outcome from childhood socialization appears to persist into adulthood.

Although Miller and Stark (2002) did not directly investigate the degree to which the physiology determines risk preference, they conclude that general measures of differential socialization are unrelated to religiosity and that the genesis of such difference in risk-taking must be physiological. However, this argument is based on Miller and Stark’s conflation of the general construct of “socialization” with their operationalization of socialization, a battery of gender-related attitudinal items. Finding no connection between adult gender attitudes and gender differences in religiosity should not lead to the conclusion that socialization conceived in a more general – and arguably, more accurate way as reflecting the conditions of the childhood environment and not adult attitudes – does not lead to sustained gender differences in preferences for risk. Further, because they do not consider variation in the strength of those gender differences across populations or groups, they wrongly assume that if a socialization factor were to exist and be operative, it would have to exercise a uniform influence upon all individuals.

In this paper, we reject the conceptualization of socialization as operationalizable via the attitudes that the respondent currently holds. We think that this is simply too loose and imprecise of an indicator, given the fact that the social attitudes that an adult holds may have come from sources outside the original familial environment. In fact, in modern industrialized societies, adult attitudes, tastes, and beliefs are much more likely to originate from post-adolescent social networks (Erikson 1988; Mark 1998; McPherson 2004) and exposure to the formal educational system (DiMaggio 1982, 1987) than the original family environment and primary groups, as was the case in earlier and less complex social systems (McPherson and Rotolo 1991).

Further, we do not think of the taste for risk as an entirely inborn trait (but we admit that it must have some physiological aspects, and we have no problem admitting the existence of a certain predisposition for risk taking may be under partial genetic control which may be
differentially distributed across individuals). We think that the plasticity of the human cognitive-emotional architecture (Barbalet 2004; Summers-Effler 2004) still allows for important variation to develop in what, following the anthropologist Joseph Henrich (forthcoming), we will refer to as the *environment of ontogenetic adaptiveness* (EOA) or the social and physical setting within which the first 16-20 years of life are spent. Conceptualized in this way, socialization and risk-aversion are complementary rather than competing theories. However, because Miller and Stark (2002) think of socialization in such a narrow manner, they failed to take seriously the possibility that risk-aversion itself may be socialized and that different family backgrounds would thus be associated with varying distances between men and women in the risk preference propensities.

Consequently, a plausible formulation of the alternative socialization hypothesis, one in which the taste for risk-preference itself is socially derived, might be: for individuals that come from certain types of family backgrounds, the difference between men and women in their taste for risk will be great; for individuals that come from other types of familial environments, the difference between men and women in their preference for risk will be smaller. If the connection between risk preference and religiosity holds, *there should be important variation in the strength of the gender difference in religiosity across different groups of individuals*. Further, this difference should be linked to systematic and specifiable variation in characteristics of the individual’s family of origin. Power-control-theory can be used to shed light and derive expectations as to the nature of those variations. We turn to it next.

POWER-CONTROL THEORY

Power-control theory was initially developed in criminology in order to explain gender-differences in involvement in common forms of delinquency (Hagan, McCarthy and Foster 2002:41). The core of the theory is an assumption about the link between socially structured power relations outside of the household and variations in the social control of sons and daughters within the household. This control is assumed to take an *instrument-object* form,

4 This is a play on the idea of the “Environment of Evolutionary Adaptiveness” (EEA), or “ancestral environment” (AE) of the Pleistocene period, the mise-en-scène where most of the adaptationist stories that evolutionary psychologists like to tell are usually set (i.e. Kanazawa 2001).

5 Miller and Stark rejected the socialization explanation because it would imply some sort of “uniform” process of gender-differential indoctrination. However, this begs the question as to whether the gender difference in religiosity is uniform across theoretically defined groups in the first place. Miller and Stark believe that it is (but suggestively their own correlational data suggests that this is not the case, see Sullins 2006), and therefore it is precisely their physiological hypothesis, because is stated in such a strong manner (as opposed to formulating it in terms of predispositions that may be under partial environmental control), that implies uniformity. Consequently, any type of group heterogeneity in the gender difference counts as evidence against the physiological view by default.
with sons and daughters being the object of control by socially designated primary socializers who serve as the instrument of this control (Hagan et al. 1987). Variations in the extent to which this control is directed at male and female children are subsequently connected to differences in preferences for risk of those children. These varied preferences then result in the observed variation across genders in the propensity to engage in high-risk activities. Crime, the original focus of the theory, is one of the most common examples of high-risk activity (Grasmick et al. 1996).

Power-control theory connects the position that men and women occupy outside of the household with the relative power that they will have within the household (and it is in this sense equivalent to certain exchange formulations of power [Molm and Cook 1995]). Thus, households can be classified according to their degree of power imbalance, which has traditionally been tilted in favor of men. This type of modal household, where men have the majority of power, is referred to as patriarchal. “...Husbands in patriarchal families translate the authority they gain in the workplace into the domination of their households, while mothers are assigned primary socialization roles as instrumental agents of social control” (Grasmick et al. 1996: 182). The power gained by having access to more favorable ownership and authority positions outside the home allows fathers to reproduce similar arrangements within the household, “enabling them to enlist mothers in reproducing the engendered schemas of patriarchal family life” (Hagan et al. 2002:42).

One of these primary schemas consists of the notion that girls, more than boys, should be the subject of stringent and detailed procedures of social and physical control (Martin 1998). Consequently, in a patriarchal context, sons are likely encouraged (either proactively by being socio-emotionally rewarded, or move passively through lack of sanctions) “to develop stronger preferences for a variety of risky behaviors” (Grasmick et al. 1996: 182). Daughters in patriarchal families, on the other hand, will be “more constrained and restricted in their orientations toward risk taking.” However, in more egalitarian households, that is those in which the occupational authority of mothers and fathers is more similar (or in which the mother's exceeds the father's), this divergence in risk preferences of sons and daughters is less likely.

In the original statement of the theory, Hagan and colleagues (Hagan et al. 1987, 1988, 1990) assumed that the reason why the risk taking propensities of sons and daughters in egalitarian households would be more similar is because mothers in these households were more likely to “treat daughters more like sons and thereby foster more gender balanced risk preferences” (Grasmick et al. 1996: 182). Also, in egalitarian households, “as mothers gain power relative to husbands, daughters gain freedom, relative to sons” (Hagan et al. 1987: 792). These early formulations imply that daughters in non-patriarchal households were more likely to develop
more pronounced taste for risk than daughters who were raised in patriarchal family environments. However, recent restatements of the theory that focus on the mother's “agency” (McCarthy, Hagan, and Woodward 1999) assert that high-authority mothers may also be likely to exert more social control efforts on their sons than mothers embedded in a patriarchal context, thereby lowering their son’s preference for risk and placing them closer to females.

Power-control theory translates these assumptions regarding the origins of differential risk preferences of sons and daughters into expectations regarding gender differences in engagement in high-risk activity. In terms of gender differences in delinquency, the theory has received extensive empirical support (Grasmick et al. 1993; Hagan et al. 1985, 1987, 1990). The gender differences between sons and daughters in crime and other high-risk, non-normative activities are shown to be much larger among individuals raised in patriarchal households than those raised in more egalitarian contexts. A general extension of the theory (Grasmick et al. 1996) used a longitudinal design and directly measured the extent to which characteristics of the family of origin and the differential amounts of social control directed at boys and girls were linked to the development of generalized attitudes toward risk-taking in adulthood. The results suggest that “the central hypothesis of power-control theory – that gender differences in risk preference are produced in children in patriarchal families but not in less patriarchal families – is supported and extended with new evidence that this gender difference persists into adulthood.[even when] controlling for life cycle and cohort effects” (Grasmick et al. 1996:194).

The basic power-control model postulates that differences in the relative class position of husband and wife lead to what we refer to as a “patriarchal family environment,” that is, one in which traditional gender socialization practices are more likely to be implemented by the primary socializing agent (usually the mother). Traditionally, power-control theory operationalizes a patriarchal household as either one in which the mother does not work outside the home, or one where she occupies a less dominant class position in the labor force than her husband if both are employed. Patriarchy in the household results in differential socialization of sons and daughters. As a result, daughters develop a lower taste for risk than sons in patriarchal households, which then translates into a lower likelihood of engagement in high-risk activity by women who were raised in those types of households.

6 Either of these two possibilities is compatible with the results presented below; further research should focus on disentangling the relative weight of these two processes in producing gender-based variations in risk-taking.
Most tests of the theory have relied on a “Dahrendorfian” (Hagan et al. 1990) conception of class which divides individuals into command and obey classes according to workplace supervisory authority. Patriarchal households are those in which the mother occupies an “obey” position in the workplace (or does not work outside the house) and in which the husband does not. Households in which neither the husband nor the wife are in a position of authority in the workplace are not considered patriarchal. Unfortunately the data set that we use in this study (the General Social Survey) does not include measures of mother and father authority position in the workplace. In lieu of this “authority rank” measure of parental class standing, we turn to measures of parental socioeconomic status (Hauser and Warren 1997) to gauge parental class position, an index that has a relatively high correlation with authority rank in the workplace \((\text{gamma}=0.31, \ p<0.01\) for the association between a categorical index of SEI—divided into terciles—and an index of supervisory position in the workplace constructed from the GSS variables WKSUP and WKSUPS.\(^7\)

Mother’s SES should also correlate highly with the relative economic dependence of the wife on the husband in the individual’s family of origin, a factor that has been shown to be associated with various traditional forms of parental socialization practices and traditional gender arrangements in the household (Brines 1994; Kalmijn 1994; Shelton and John 1996). These parental background characteristics have in their turn be shown to have indelible impacts on adult behavior and attitudes (Kiecolt and Acock 1988; Trent and South 1992).

Hypotheses

Gender Differences in Religiosity by Family Background

As discussed in the last section, we draw on PCT because it offers a general framework with which to link socialization practices and gender differences in risk preference. Translating the central proposition of power-control theory into the realm of religiosity, and making use of Miller and Hoffmann’s (1995; Miller and Stark 2002; Stark 2002) risk preference based theory of religious behavior, we can develop a general model that links (1) differences in the likelihood of having been exposed to patriarchal child-rearing practices by the relevant socializing agents to (2) systematic differences in the strength of the gender gap in the preference for risk (as an unobserved intervening variable) to (3) group-based variation in the gender difference in

\(^7\) Other proxies for control over others—such as education—in the workplace have already been proposed in the PCT literature (Grasmick et al. 1993). College educated women are increasingly more likely to occupy positions of authority previously reserved for men in managerial, professional and technical occupations. Women in such positions “experience less supervision and develop a taste for risk” which they pass on to their daughters through socialization (Gramsick et al. 1993, p. 683).
religiosity. This formulation shows that in contrast to Miller and Stark (2002), yet in line with Miller and Hoffmann (1995), a cogent account of the social genesis of gender differences in the taste for risk is plausible and has already received empirical support. The power-control model not only leads us to predict a narrowing of the gender difference with increasing educational attainment of the mother (Grasmick et al. 1993), but also allows us to specify the change through which this reduction is realized.

Unfortunately, the data at hand do not allow us to directly address all of the links of the model proposed above. In particular, and most importantly, we have no direct measures of taste for risk, which means that we cannot directly ascertain whether there is a direct connection between mother’s class standing and socialization practices associated with gender differences in risk preferences and whether these gender differences in risk preferences are connected to the gender gap in religiosity (although these linkages have of course been explored separately in previous research; i.e. Grasmick et al 1996; Miller and Hoffman 1995). It is important to note that Miller and Stark’s (2002) article however, also relied on an indirect test of the risk-preference hypothesis.

However, we can indirectly test some of the implications of the theory, by examining whether the pattern of variation (if it exists) of the gender difference in religiosity across levels of maternal class standing is consistent to that which would be expected by the theory. If our integration of PCT with the risk-preference theory of religiosity is correct, then mother’s socioeconomic status reduces the gender difference in religiosity by increasing the likelihood of women being irreligious in comparison to women raised by low SES mothers. Because girls raised by high-SES mothers are exposed to more gender-egalitarian behaviors and socialization practices, the gap in risk preference between them and boys in raised in the same type of households narrows:

\[H_1: \text{As mothers’ socioeconomic status increases, women’s likelihood of being irreligious increases more than men’s likelihood of being irreligious does.} \]

Since the mother continues to be the primary socialization agent in most industrial Western societies, and given PCT’s connection between the mother’s class position and the probability of exposure to non-patriarchal socialization, we should expect the mother’s socioeconomic status to have a more pronounced impact on risk preference than father’s socioeconomic status:

\[H_2: \text{Father’s socioeconomic status has less of an effect on the gender difference in religiosity than mother’s socioeconomic status.} \]

DATA AND VARIABLES
THE GENERAL SOCIAL SURVEY

In order to test the above hypotheses, we use pooled data from the 1972-2002 General Social Surveys (Davis, Smith and Marsden 2002). The GSS is administered annually (biannually since 1994) by the National Opinion Research Center (NORC) to a nationally representative sample of non-institutionalized, English-speaking, American adults. The GSS represents an ideal data source to empirically test the power-control model of gender differences in religiosity proposed here. Not only does the GSS field an annual battery of measures of religious behavior and belief, but it also includes the most detailed measures of parental occupational background of all current social science surveys. This allows us to match objective characteristics of the parent’s occupation (such as socioeconomic status) to the GSS parental occupational codes in order to come up with fairly valid measures of each parent’s class standing. Because we use only cases that have valid information for all three of the religiosity indicators that we use below—in more recent years some religiosity items (such as frequency of prayer) are asked of only a subsample of respondents—and that have complete data on the socio-economic status and education of both parents, that leaves us with a sample size of 3,169.

RELIGIOSITY SCALE

We consider religiosity to be a multidimensional concept (Stark and Glock 1968) and therefore make use of most of the measures of individual religiosity available from the GSS for all waves of data at hand. We follow Barkan (2006: 411) and use both measures of religious affiliation and religious practice in order to construct an overall religiosity scale. The items that go in the scale are the following: church attendance, an ordinal indicator ranging from zero (never) to 8 (more than once a week), strength of affiliation an ordinal variable ranging from one (very strong to somewhat strong affiliation as Protestant, Catholic, Jew, etc.) to 4 (no religion), with those who answered “not very strong” as the second category, followed by those who responded somewhat strong as the third8, and frequency of prayer, a six-category ordinal variable that ranges from one (prays more than once a day) to six (never prays). Treating the items as indicators of an overall religiosity construct appears to be justified in these data since, as shown in table 1, the items are relatively highly correlated with another (Cronbach’s alpha is a respectable 0.64, under the assumption that the items are interval measures and that they form a unilinear scale).

8 This question also contained an interviewer-coded fourth category, “Somewhat strong”, which was volunteered by the respondents. Because this category has an ambiguous meaning, we recoded this variable after scaling it using a Goodman RC2 model, with frequency of attendance as the column variable, a procedure recommended in Clogg (1982). We found that these respondents were closer to “very strong” than to any of the other categories.
However, because the items are ordinal categorical variables, it is inappropriate to treat them directly as interval variables (by taking an average of their standardized transformations for instance). We therefore used the polychoric correlation matrix of the variables shown in table 1, and subjected it to a principal components factor analysis. Polychoric correlations are calculated under the assumption that the original categorical ordinal variables at hand are observed realizations of a latent continuous—and normally distributed—variable truncated at the various ordinal categories (Joreskog 1994). We used the predicted regression scores on the first overall factor (percentage of variance explained: 75%) as our measure of religiosity. We recoded all of the variables so that higher values indicated less religious behavior. Therefore our predicted factor scores are high for the least religious individuals and low for the most religious persons.

Gender and Parental Socioeconomic Status

For models using GSS data, mother’s and father’s socioeconomic status is measured using the Hauser-Warren (1997) revised occupational status scores matched to the GSS occupational codes based on the 1980 census. Using the Hauser-Warren occupational status scores as a measure of parental class standing has the disadvantage of loss of information due to constraint imposed by the assumption of a unidimensional ordering of occupations around a single continuum (Weeden and Grusky 2005). However they have the advantage of providing us with a measure of parental class standing that is both succinct and parsimonious and has impressive dosages of construct and criterion validity (Hauser and Warren 1997). It is beyond the scope of this paper to address the debate between dimensional and categorical (disaggregated) conceptions of class. For our purposes, the main thing that matters is that high SEI occupations are certainly those that provide the incumbent with the most economic, cultural and organizational (in terms of job autonomy [Hout 1984; Kohn 1977] and authority) resources. Thus, women employed in high SEI occupations should be expected to behave in ways that accord with the power-control formulation of non-patriarchal households, while women who are employed in low SEI occupations should be more vulnerable in the marriage exchange relationship to the power of their husband.

Control Variables

For all of the models shown in the results section we include standard control variables: religious tradition, religious switching (a dummy variable that equals one if the respondent is in a different religious tradition at the moment of the survey than he or she belonged to at the age of 16) race, age, region, education, marital status, presence of children, and an the interaction between these last two, along with survey year (coded zero for 1994 through 10 for 2004). In previous work, we used parental education as a proxy for class standing (Lizardo and Collett 2005), under the argument that education should be highly correlated with economic
resources and organizational authority for each parent. However, it is of interest to measure the effect of *parental class* (as measured by objective occupational standing) net of any confounding effects of *parental educational attainment*, since these two variables may have different effects on parental socialization practices. Therefore we also include controls for father’s and mother’s education, measured as an five-category ordinal variable that ranges from zero (less than high school) to 4 (post-graduate degree).

RESULTS

ANALYTIC STRATEGY

Hypotheses 1 and 2 boil down to a test of the *constancy* of the gender gap in religiosity across levels of mother’s occupational standing. If the Miller-Stark view of a biological origin of gender differences in risk preferences is correct, then we should expect the gender gap to be the same across difference socialization regimes (as indexed by mother’s SES). The power-control model proposed here on the other hand, predicts that the gender gap in religiosity is *not* constant across levels of mother’s SES (hypothesis 1), and that it is constant across levels of father’s SES (hypothesis 2), or at the very least that it varies more across the former factor in comparison to the latter.

We test our main power-control hypothesis by specifying the model:

\[
E(Y) = a + b_1 \text{GENDER} + b_2 \text{MASEI} + b_3 (\text{GENDER})(\text{MASEI}) + b_4 \text{FASEI} \\
+ b_5 (\text{GENDER})(\text{FASEI}) + \sum_{k=1}^{K} c_k Z_k + \varepsilon
\]

(1)

Where \(Y\) is our religiosity scale (higher values indicate less religiosity), GENDER is a dummy variable that equals one if the respondent is woman and zero for men, MASEI and FASEI are our measures of mother’s and father’s occupational status respectively, \(Z_k\) is a matrix of control variables and \(c_k\) is the associated vector of coefficient estimates.

If the power-control hypothesis is on the right track, then we should expect that for equation (1) \(b_2=0\), that is, increasing maternal SES has no effect on men’s religious behavior, and that \(b_2>0\) or that daughters of high SES mothers should be more irreligious than daughters of low SES mothers; alternatively, if \(b_2\neq0\) then we should expect that \(b_2>b_3\). Notice that such a pattern of results would imply a *decreasing religiosity gap* for sons and daughters of high SES mothers (holding father’s SES constant), as daughters raised by high SES mothers “catch up” to men in
terms of religious behavior (or lack thereof). This narrowing gap would constitute prima-facie evidence of an effect of parental background—and at the very least an intervening effect of the conditions under which the child is socialized—on the gender difference in religiosity as mediated by parental socialization practices that affect the relative gender difference in taste for risk.\(^9\)

If hypothesis 2 is correct, and the gender gap in religiosity is constant across levels of father's class, then we should expect \(b_5\) to be equal to zero in equation (1). This would imply an asymmetrical effect of mother's class position on the religiosity of women in comparison to men but a constant effect of father's class position across gender lines. This is consistent with the power-control prediction that it is the mother's class position that is the key variable in determining patterns of gender socialization (and thus taste for risk) in the household. This asymmetrical effect of mother's class position for men and women in relation to father's class position is also an indirect test that it is a socialization mechanism that accounts for the hypothesized non-constant gender gap across levels of mother's SES and not some other orthogonal feature of high SES households not associated with socialization (since mothers continue to be the primary socialization agent).

One result that would certainly count against our power-control formulation (hypothesis 2), would be a finding of \(b_5>0\); alternatively, if \(b_4\neq 0\), then we should not expect to find that \(b_5>b_4\), since this would imply a narrowing gender gap driven by father's and not mother's class position.

Multivariate Analysis

Baseline model

Table 2 shows the unstandardized coefficient estimates of a series of regression models predicting the religiosity factor scores (higher scores imply less religiosity) for respondents without missing values in any of the variables included in the model for the pooled 1994-2004 General Social Survey samples (consisting of six biennial waves).\(^{10}\) We begin with the baseline model shown in the first column. As shown by the negative coefficient corresponding to the

\(^9\) As a reviewer pointed out, this model does not rule out all biology-related factors, since it is possible that high SES mothers are systematically different from low SES mothers in terms of unmeasured genetic propensities and transmit those to their daughters.

\(^{10}\) 1994 is our earliest sample since it was the first wave in which the GSS began to systematically collect information on the mother's occupation. Previous GSS waves gathered information regarding father's occupation only.
gender dummy in model 1, and consistent with previous research, women are more religious than men even after holding constant the full battery of control variables.\footnote{Since we centered age, parental education and the number of children in the household to their sample means and we introduced a number of dummy variables as controls, the gender coefficient does not express the unconditional gender difference in religiosity. Instead the gender coefficient can be interpreted as the difference in religiosity between men and women for non-black, non-affiliated, non-southern, unmarried, individuals who have been unaffiliated since the age of sixteen of average age, parental educational background and family composition in the year 1994. Different specification and omitted-category choices would result in different estimates of the conditional gender difference, but the point is that they would all show a negative estimate favoring women over men in terms of religiosity.}

The effects of the control variables are all intuitive and consistent with previous theory and research: blacks tend to be more religious than whites (Ellison and Sherkat 1995), respondents of all affiliations are more religious than the non-affiliated (Hout and Fisher 2002), but among the affiliated, conservative protestants are the most religious (Sherkat and Ellison 1999). Those of middle age tend to be less religious than the very young and the very old (the non-linear effect of age is an inverted U-shaped curve) and Southerners tend to be less religious than non-Southerners (Hunt and Hunt 2001). Switchers also tend to be more religious than those who do not switch. This last effect is due mainly to the fact that those who switch tend to go from “lax” to “strict” churches—that put more emphasis on overt religious practices—and not the other way around (Sherkat 2001). Finally, those who come from parental backgrounds with higher levels of cultural capital (Bourdieu 1984) tend to be more religiously active.

\textbf{The Effect of Mother’s Socioeconomic Status on the Gender Gap in Religiosity}

In model 2 we test our power-control hypothesis, by specifying a model consistent with equation (1). In support of the power-control theory of gender differences in religiosity, we find that the gender gap is not constant across levels of mother’s occupational standing. Instead, as predicted by the theory, daughters of high SES mothers tend to be more irreligious than daughters of low SES mothers ($b_3>0$, $F=9.12$, $p<0.01$, for the test of the hypothesis that the b_3 is equal to zero). Mother’s SES in contrast has no impact on the religiosity of men relative to that of women ($b_2=0$, $F=0.19$, $p=0.67$). This implies, consistent with hypothesis 1, a narrowing gender gap in religiosity for men and women contingent on the mother’s class position.

Model 2 also shows the interaction between father’s SES and gender. As noted above, the inclusion of this effect in the model is meant to test the hypothesis that father’s class position does not modulate the gender difference in religiosity in the same way as mother’s class position does, and thus that there is an asymmetric effect of mother’s class position in relation to father’s class position on the religiosity gender gap. Consistent with expectations, we find
that the gender difference in religiosity is constant across levels of father’s SES ($b_5=0; F=0.01, p=0.91$ for the test of the null hypothesis that the gender difference does not vary across levels of father’s SES). Although both sons and daughters of high SES fathers tend to be less religious to an equal extent ($b_4>0, F=16.82, p<0.01$).

Figure 1 shows the predicted religiosity for both men and women across the full range of observed scores of mother’s socioeconomic status while holding all of the variables shown in model 2 of table 2 at their means (thus this is the adjusted mean difference between men and women net of all other extraneous factors for the “average” person with the sociodemographic characteristics noted above). We can see that as we move across the range of mother’s occupational status scores women move about a half standard deviation in religiosity from relatively religious at the low end to relatively irreligious at the high end (in comparison to the sample mean). Since the religiosity of men does not covary much according to mother’s occupational standing, this implies that sons and daughters of high SES women are about equally likely to be relatively irreligious. Sons and daughters of low SES women on the other hand, display the traditionally observed gap in religiosity, with daughters of low SES women displaying relatively high levels of religiosity in comparison to men of the same family background. This is consistent with the power-control explanation that in households in which the mother’s class position is low boys and girls will tend to be differentially socialized, which results in women displaying higher levels of risk aversion in adulthood.

These patterns of results means that the results reported above regarding the mediating effect of mother’s class position on the difference in religiosity between men and women cannot be attributed to some general feature of high SES households. Since there is no interaction between gender and father’s SES, it is not the case that daughters and sons of a high SES father with a stay at home wife will tend to be more alike in their relative levels of religiosity than a low SES father with a wife who does not work outside the home. Thus, the declining gender gap in religiosity across levels of mother’s SES cannot be a spurious by-product of other things that are correlated with mother’s SES (such as father’s SES). Instead it appears to be something directly linked to the mother’s class position, consistent with the power-control explanation proposed here.

However, because sons and daughters of high SES fathers tend to be relatively more irreligious than those born to low SES fathers, it follows that the least religious women should be those raised by a high SES couple, while the least religious men (everything else held constant) should be those raised by high SES fathers regardless of mother’s SES. The most religious women should therefore be those raised by a low SES couple, followed by those raised by a high SES father and a low SES mother. The gender gap in religiosity should be largest for those individuals raised by low SES mothers and low SES fathers (households more likely to
practice differential socialization based on traditional gender beliefs and gender-asymmetric social control practices) while it should be null for those raised by high SES mothers regardless of father’s SES, even reverting to religiosity advantage for those men raised by a mother of high SES and a low SES father.

Alternative Measures of Occupational Standing

In these analyses, we have relied on a “composite” measure of occupational standing that combines both occupational earnings and occupational education (weighted by their effects on a criterion measure of occupational prestige; for details see Hauser and Warren 1997). When using this measure Miech et al (2003: 444-445; see also Hauser 1998) warn that “[r]ecent cross-sectional analyses focusing on occupational education and occupational earnings lead to very different conclusions about gender stratification in the workplace, suggesting that these two components of the SEI measure should be analyzed separately.”

Separating the effects of occupational status into effects due to position on a scale of occupational earnings and position on a scale of occupational education, allow us to not only check the robustness of the results, but also test an indirect implication of the power-control hypothesis. According to power-control theory, the class position of women, when measured in terms of access to material resources and to positions of power in the workplace should be a more valid indicator of their actual levels of power and autonomy in the household than when the measured with an indicator of class standing whether toward “status” and symbolic standing (as are most occupations which require high levels of education). If this is correct, then we should find that the effects shown in model 2 of table 2 should be stronger for mother’s occupational earnings than for mother’s occupational education.

Models 3 and 4 in table 2, show the same specification as equation (1), but with mother’s and father’s occupational education and mother’s and father’s occupational earnings used as a measure of parental class position instead of the overall SEI score. The results for both models are substantively equivalent to model 2, with both indicators implying a decreasing gender gap in religiosity with increasing occupational education and increasing occupational earnings of the mother. If father’s occupational education and occupational earnings once again have the

12 The only difference between model 2 and models 3 and 4 are the following: 1) in model 3, \(b_3>0\), implying that high occupational education mothers tend to raise more irreligious sons than average. However, while irreligiosity increases for both boys and girls raised by high occupational education mothers, the gap narrows with increasing mother’s SES, as \(b_3>b_4\) in model 2. 2) In model 4, \(b_2<0\) and \(b_3>0\), which implies an even stronger result than a simple narrowing of the religiosity gender-gap: for high occupational earnings mothers, men raised by high occupational earnings mothers tend to be more religious than women raised in the same type of households;
same effect for both men and women (increasing irreligiosity), suggesting a constant gender gap along those variables ($b_5=0$ for either father’s occupational education or father’s occupational earnings).

More importantly, and consistent with power-control expectations, the effect of increasing mother’s SES on the gender gap in religiosity is much stronger when mother’s SES is measured using occupational earnings than when using occupational education. The results show that high occupational earnings mothers tend to raise more irreligious daughters (as well as relatively more religious sons; $b_2<0$), than either low occupational earnings mothers or high occupational education mothers. Increasing mother’s SES however, whether measured using a composite measure, or using disaggregated occupational education and occupational earnings indicators imply a decreasing gender gap in religiosity.

Disaggregated Indicators of Religiosity

As a final check on the robustness of the results, in table 3, we present three logistic regression models with binary versions of the three indicators that went into constructing the religiosity factor score (binarized so that a value of one indicates less religious behavior and zero more religious behavior) as the dependent variable. We use logistic regression because it is a relatively simple method for analyzing categorical data. All three religiosity indicators are ordinal categorical variables, and thus treating them as interval variables would be inappropriate (Long 1997).

We thus estimate a logistic version of equation (1) for attendance, strength of affiliation, and frequency of prayer separately, using occupational earnings as our measure of parental SES and including all of the control variables show in table 2, except that we do not include an interaction between father’s occupational earnings (b_5) as this proved to be non-significant in all of the previous models. The results are once again substantively similar as those shown in table 2: the gender gap in religiosity narrows with increasing mother’s SES ($b_3>0$, $b_2<=0$), whether religiosity is measured in terms of frequency of prayer, attendance or likelihood of being affiliated with a religious tradition.

Discussion and Conclusion

Our results provide evidence that Miller and Stark’s (2002) purely physiological model of the gender difference in religiosity is not tenable, if interpreted as a blanket statement that socialization has no impact on gender differences in religiosity. Instead, we show that isolating implying a partial reversal of the gender gap. This may be explained by the fact that high-status mothers may tend to raise more risk averse sons (see McCarthy et al 1999).
a key factor associated with the probability of being exposed to gender-egalitarian socialization, mother’s socioeconomic status, allows us to predict and explain conditions under which this difference in religiosity will be small and when it will be large. This pattern is inconsistent with an account that exclusively ties the etiology of the gender difference to physiology. If the gender difference was solely biological, it would likely be constant. If its variation were under genetic control, it would not be possible to show that it varies across factors associated with the childhood environment.

Returning to the source of the risk-preference discussion in the sociology of religion, Miller and Hoffmann (1995), we draw broadly on the power-control theory of Hagan and associates, and integrate its account of the social generation of gender-differential propensities to take risks, the micromechanism believed to produce individual variation in religiosity. Although, like Miller and Stark, we are unable to measure risk preferences directly, what results is a unified account of gender differences in religiosity that provides support for a socialization explanation which may serve as a corrective to an overly hasty dismissal of such mechanisms.

Consistent with Hagan and colleagues’ power-control account of gender differences in criminality, we show that the religiosity gap among individuals more likely to be exposed to gender-egalitarian values and socialization practices while growing up is smaller than that which exists among those more likely to have been raised according to more traditional gender scripts. Further, we demonstrate that the effect of having been exposed to gender-egalitarian values narrows the gender gap by rendering women exposed to these values less religious than other women and closer to men in their religious behavior and beliefs.

Our approach highlights the advantage of integrating models and theoretical fragments across different areas in the social sciences (in this case criminology, the sociology of gender, and the sociology of religion) in an attempt to garner a better hold on certain persistent empirical patterns, while showing that behaviors and social processes that initially may be thought to belong to different phenomenal domains, can in fact be explained by the same recursive social mechanisms (Stinchcombe 1991; Tilly 2002). Miller and Hoffmann (1995) opened the way by offering a comprehensive account of religious behavior, and we have merely followed their footsteps with the hope of establishing a sociological model of the process. Future research should take this further, with direct measures of risk preference to include in analyses.

We have also followed Grasmick et al.’s (1996:180-181) call to extend Power-Control Theory beyond the realm of criminality. They worried that the theory would only be applied “piecemeal” to narrowly defined research topics in criminology, without any testing of its more “global” and general implications. In this research, we have taken PCT seriously as not only a theory about gender-differences in criminality but also a “...theory of the gender patterning of risk preferences more generally, which could potentially lead to a wide variety of risk-taking
behaviors.” Using Miller and Stark’s (2002; Miller and Hoffmann 1995) insightful reconceptualization of irreligiosity as risk, we have shown how PCT can be extended to a non-obvious empirical domain.

It is important to note in closing however, that this paper does rely—due mainly to data limitations—on strong assumptions about the unobserved processes that are postulated as being responsible for the results. In this respect, while the results reported here are consistent with the power-control expectations and with the unobserved process that we see as having generated our data, it is possible that alternative theoretical frameworks may also shed light on our findings or may proposes alternative mechanisms other than those highlighted in power-control theory as capable of accounting for the results reported here. We hope that the current effort serves to spur further research on this important topic, in particular in terms of unlocking the “black box” that we believe connects class differences in gender socialization practices, the taste for risky behavior and religiosity.
REFERENCES

Figure 1. Variation in the gender gap in religiosity across levels of mother's occupational status, 1994-2004 General Social Survey.
Table 1. Polychoric correlations among ordinal religiosity items, 1994-2004, General Social Survey.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Church attendance</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of Prayer</td>
<td>-0.59*</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Strength of Affiliation</td>
<td>-0.60*</td>
<td>0.49*</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* p<0.05
Table 2. Unstandardized coefficient estimates of OLS models of the gender gap in religiosity, 1994-2004, General Social Survey.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Female=1) [b1]</td>
<td>-0.285**</td>
<td>-0.306**</td>
<td>-0.318**</td>
<td>-0.307**</td>
</tr>
<tr>
<td></td>
<td>(-5.27)</td>
<td>(-5.70)</td>
<td>(-5.92)</td>
<td>(-5.71)</td>
</tr>
<tr>
<td>Father’s Education</td>
<td>-0.025</td>
<td>-0.115**</td>
<td>-0.129**</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(-0.90)</td>
<td>(-3.67)</td>
<td>(-4.05)</td>
<td>(-1.51)</td>
</tr>
<tr>
<td>Mother’s Education</td>
<td>-0.152**</td>
<td>-0.220**</td>
<td>-0.250**</td>
<td>-0.138**</td>
</tr>
<tr>
<td></td>
<td>(-4.94)</td>
<td>(-6.22)</td>
<td>(-7.14)</td>
<td>(-4.00)</td>
</tr>
<tr>
<td>Age/10 (centered)</td>
<td>-0.059**</td>
<td>-0.066**</td>
<td>-0.073**</td>
<td>-0.058**</td>
</tr>
<tr>
<td></td>
<td>(-2.63)</td>
<td>(-2.95)</td>
<td>(-3.23)</td>
<td>(-2.59)</td>
</tr>
<tr>
<td>Age^2/10 (centered)</td>
<td>-0.066**</td>
<td>-0.060**</td>
<td>-0.059**</td>
<td>-0.063**</td>
</tr>
<tr>
<td></td>
<td>(-6.24)</td>
<td>(-5.70)</td>
<td>(-5.55)</td>
<td>(-5.90)</td>
</tr>
<tr>
<td>Protestant (Conservative)</td>
<td>-2.252**</td>
<td>-2.273**</td>
<td>-2.289**</td>
<td>-2.271**</td>
</tr>
<tr>
<td></td>
<td>(-21.28)</td>
<td>(-21.60)</td>
<td>(-21.80)</td>
<td>(-21.58)</td>
</tr>
<tr>
<td>Protestant (Liberal/Moderate)</td>
<td>-1.354**</td>
<td>-1.415**</td>
<td>-1.444**</td>
<td>-1.383**</td>
</tr>
<tr>
<td></td>
<td>(-13.60)</td>
<td>(-14.27)</td>
<td>(-14.55)</td>
<td>(-13.98)</td>
</tr>
<tr>
<td>Jewish</td>
<td>-0.606**</td>
<td>-0.716**</td>
<td>-0.747**</td>
<td>-0.663**</td>
</tr>
<tr>
<td></td>
<td>(-3.11)</td>
<td>(-3.66)</td>
<td>(-3.82)</td>
<td>(-3.4)</td>
</tr>
<tr>
<td>None</td>
<td>-1.648**</td>
<td>-1.707**</td>
<td>-1.737**</td>
<td>-1.680**</td>
</tr>
<tr>
<td></td>
<td>(-16.57)</td>
<td>(-17.24)</td>
<td>(-17.56)</td>
<td>(-17.00)</td>
</tr>
<tr>
<td>Other Religion</td>
<td>-1.428**</td>
<td>-1.513**</td>
<td>-1.537**</td>
<td>-1.548**</td>
</tr>
<tr>
<td></td>
<td>(-10.33)</td>
<td>(-10.98)</td>
<td>(-11.18)</td>
<td>(-11.16)</td>
</tr>
<tr>
<td>Religious Switching (Yes=1)</td>
<td>-0.202*</td>
<td>-0.173*</td>
<td>-0.166*</td>
<td>-0.147*</td>
</tr>
<tr>
<td></td>
<td>(-2.58)</td>
<td>(-2.23)</td>
<td>(-2.14)</td>
<td>(-1.88)</td>
</tr>
<tr>
<td>Race (Black=1)</td>
<td>-0.631**</td>
<td>-0.586**</td>
<td>-0.568**</td>
<td>-0.612**</td>
</tr>
<tr>
<td></td>
<td>(-6.79)</td>
<td>(-6.34)</td>
<td>(-6.16)</td>
<td>(-6.62)</td>
</tr>
<tr>
<td>Married</td>
<td>-0.321**</td>
<td>-0.330**</td>
<td>-0.330**</td>
<td>-0.342**</td>
</tr>
<tr>
<td></td>
<td>(-5.01)</td>
<td>(-5.16)</td>
<td>(-5.18)</td>
<td>(-5.35)</td>
</tr>
<tr>
<td>Number of Children (centered)</td>
<td>-0.048</td>
<td>-0.037</td>
<td>-0.035</td>
<td>-0.044</td>
</tr>
<tr>
<td></td>
<td>(-1.49)</td>
<td>(-1.17)</td>
<td>(-1.09)</td>
<td>(-1.38)</td>
</tr>
<tr>
<td>Married x Number of Children</td>
<td>-0.126**</td>
<td>-0.127**</td>
<td>-0.123**</td>
<td>-0.131**</td>
</tr>
<tr>
<td></td>
<td>(-3.28)</td>
<td>(-3.31)</td>
<td>(-3.23)</td>
<td>(-3.42)</td>
</tr>
<tr>
<td>Region (South=1)</td>
<td>-0.118*</td>
<td>-0.137*</td>
<td>-0.131*</td>
<td>-0.144*</td>
</tr>
<tr>
<td></td>
<td>(-1.99)</td>
<td>(-2.31)</td>
<td>(-2.23)</td>
<td>(-2.43)</td>
</tr>
<tr>
<td>Survey Year (0/10)</td>
<td>-0.047**</td>
<td>-0.045**</td>
<td>-0.044**</td>
<td>-0.042**</td>
</tr>
<tr>
<td></td>
<td>(-6.59)</td>
<td>(-6.35)</td>
<td>(-6.24)</td>
<td>(-6.00)</td>
</tr>
<tr>
<td>Mother’s SEI (centered)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>[b2]</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Mother’s Occ. Education/10 (centered) [b2]</td>
<td>0.699*</td>
<td>0.699*</td>
<td>0.699*</td>
<td>0.699*</td>
</tr>
<tr>
<td></td>
<td>(2.13)</td>
<td>(2.13)</td>
<td>(2.13)</td>
<td>(2.13)</td>
</tr>
<tr>
<td>Mother’s Occ. Earnings/10 (centered) [b2]</td>
<td>-1.973**</td>
<td>-1.973**</td>
<td>-1.973**</td>
<td>-1.973**</td>
</tr>
<tr>
<td></td>
<td>(-4.84)</td>
<td>(-4.84)</td>
<td>(-4.84)</td>
<td>(-4.84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Mother's SEI x Gender [b3]</td>
<td>0.127**</td>
<td>(3.30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother's Occ. Education x Gender [b3]</td>
<td>0.857*</td>
<td>(2.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother's Occ. Earnings x Gender [b3]</td>
<td>3.143**</td>
<td>(6.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's SEI (centered) [b4]</td>
<td>0.163**</td>
<td>(4.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's Occ. Education/10 (centered) [b4]</td>
<td>1.814**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's Occ. Earnings/10 (centered) [b4]</td>
<td>(5.20)</td>
<td>0.812+</td>
<td>(1.72)</td>
<td></td>
</tr>
<tr>
<td>Father's SEI x Gender [b5]</td>
<td>-0.057</td>
<td>(-1.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's Occ. Education x Gender [b5]</td>
<td>-0.697</td>
<td>(-1.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's Occ. Earnings x Gender [b5]</td>
<td>0.272</td>
<td>(0.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.954**</td>
<td>6.050**</td>
<td>6.081**</td>
<td>5.986**</td>
</tr>
<tr>
<td></td>
<td>(50.46)</td>
<td>(51.28)</td>
<td>(51.59)</td>
<td>(50.88)</td>
</tr>
<tr>
<td>R²</td>
<td>0.27</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>F</td>
<td>70.13</td>
<td>60.41</td>
<td>61.60</td>
<td>60.03</td>
</tr>
<tr>
<td>N</td>
<td>3169</td>
<td>3169</td>
<td>3169</td>
<td>3169</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01 (t-statistics in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Attendance (Less than once a year=1)</th>
<th>Strength of Affiliation (No Affiliation=1)</th>
<th>Frequency of Prayer (Less than once a Week=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Female=1) [b1]</td>
<td>-0.363**</td>
<td>-0.617**</td>
<td>-1.026**</td>
</tr>
<tr>
<td></td>
<td>(-6.37)</td>
<td>(-6.88)</td>
<td>(-10.94)</td>
</tr>
<tr>
<td>Mother’s Occ. Earnings/10 (centered) [b2]</td>
<td>-0.460</td>
<td>-0.531</td>
<td>-1.459*</td>
</tr>
<tr>
<td></td>
<td>(-1.08)</td>
<td>(-0.87)</td>
<td>(-2.26)</td>
</tr>
<tr>
<td>Mother’s Occ. Earnings x Gender [b3]</td>
<td>1.303*</td>
<td>1.645*</td>
<td>2.403**</td>
</tr>
<tr>
<td></td>
<td>(2.39)</td>
<td>(1.97)</td>
<td>(2.71)</td>
</tr>
<tr>
<td>Pseudo-(R^2)</td>
<td>0.16</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Model (\chi^2)</td>
<td>1379.07</td>
<td>1672.11</td>
<td>721.89</td>
</tr>
<tr>
<td>N</td>
<td>6664</td>
<td>6585</td>
<td>3301</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01 (t-statistics in parentheses)

Note: Models include controls for father’s occupational earnings and all of the sociodemographic variables listed in table 2.