INTELLIGENT CONTROL

by

Panos J. Antsaklis

Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA
antsaklis.1@nd.edu
http://www.nd.edu/~pantsakl

P.J. Antsaklis, "Intelligent Control," Encyclopedia of Electricaland Electronics
Engineering Vol. 10, pp. 493-503, John Wiley & Sons, Inc., 1999.



Intelligent control describes the discipline where control methods are developattethmguit
to emulate important characteristics fwiman intelligence. These characteristics include
adaptation and learning, planning under large uncertainty and ospim@rge amounts of
data. Today, the area of intelligeobntrol tends to encompasyerything that is not
characterized as conventional control; it has, however, shifting boundarieghanis called
“intelligent control" todaywill probably becalled"control* tomorrow.The main difficulty
in specifyingexactly what is meant by the term Intelligenintrol stems fronthe fact that
there is no agreedpon definition of human intelligencand intelligent behaviorand the
centuries old debate afhat constitutesintelligence is still continuingnowadays among
educators, psychologists, computer scientists and engineers. Apparekgiyrnthetelligent
control was coined in thé0's by K.S. FuReference 1 is the masource ofthe several
descriptions of intelligent control and its attributes discussed in this article.

There are a number of areas related toatlkea of Intelligent control. Intelligent control is
interdisciplinary as it combines and extends theories and methods fromsactass
control, computer scien@nd operations research.usestheories frommathematics and
seeks inspiration andeas from biologicasystemslntelligent control methodologies are
being applied to robotics and automation, communications, manufacturing, traffic control, to
mention but afew applicationareas. Neural networks, fuzzpntrol, genetic algorithms,
planning systems, expert systems, hybrid systems are allvelneees related work is taking
place. The areas of computer science and in partiartiicial intelligence provide
knowledge representatioileas, methodologies and toolsuch assemantic networks,
frames, reasoning techniques and computer languages$h as prolog. Concepts and
algorithms developed in the areasadfaptivecontrol andmachine learning help intelligent
controllers to adapt and leaddvances insensorsactuators, computation technology and
communication networks help provide thecessary foimplementation Intelligent control
hardware.

In the following, fundamentaideas of Intelligent control are emphasized, rather than
particular methodologies such as fuzzy control; rioée several relatedreas are described

at length elsewhere in this encyclopedia. Fundamental ideas and characteristics of intelligent
systems are introduced in the section on Foundatiolmedtigent Control, and a historical
perspective idrought inthe section on Intelligent Learning Contnahere the role of
machine learning isliscussedThe quest formachines that exhibiigher autonomy has

been the driving force in thgevelopment otontrol systemsover thecenturies and this is
discussed inthe section on Intelligent Contrdbr High Autonomy Systems. Hybrid
Systems that contain both continuous digital components aralso briefly discussed, as

they are central in Intelligent control.

FOUNDATIONS OF INTELLIGENT CONTROL

The term "intelligentontrol" hascome tomean,particularly tothose outside¢he control
area,some form of controlising fuzzy and/or neural network methodologies. Intelligent
control, howevedoes notrestrict itself only to those methodologies. fatt, according to

some definitions ointelligent controlnot all neural/fuzzy controllers would be considered
intelligent. The fact is that there gmeoblems of controtoday, that cannot be formulated
and studied in theonventional differential/difference equationathematical framework
using "conventional (or traditional) control" methodologies; these methodologiese
developed in the past decades to control dynamical systems. To address these problems in a
systematicway, a number of methodshave been developed in recenkars that are
collectively known as "intelligent control" methodologies. There are significant differences
between conventionand intelligent controland some othem aredescribed below. It is
worth remembering at this point that intelligent control uses conventional control methods to
solve "lower level" control problems and that conventional control is included in the area of



intelligent control. In summary, intelligent control attempts to bupdn andenhance the
conventional control methodologies to solve new challenging control problems.

Conventional and Intelligent Control

The word control in "intelligent control" has different, more general meaning than the word
control in "conventional control”. First, the processes of interest are more general and may
be describedior example by either discretventsystem models odifferential/difference
equation models or both. Thimsled to the development dheories for hybridcontrol
systemswhich studythe control of continuous-state dynanpimocesses byliscrete-state
controllers. In addition to the more genguabcesses consideredimielligent control, the
control objectives can also be more general. For example, "replace part A in satellite” can be
the generatask forthe controller of a spacebot arm; this is then decomposed into a
number of subtasksseveral of which may includéor instance “follow a particular
trajectory”, which may be a problem that can be solved by conventional control
methodologies. To attain such control goals for compiestemsover aperiod oftime, the
controller has to copeith significant uncertainty that fixed feedbaabust controllers or
adaptive controllers cannotdeal with. Since thegoals are to be attainedinder large
uncertainty, faultdiagnosis and controfeconfiguration, adaptation and learning are
important considerations intelligentcontrollers. It is alsalear thattask planning is an
important area in intelligent contrdesign. Sahe control problem in intelligent control is

an enhanced version of the problem in conventional control. It is much more ambitious and
general. It is not surprising thehat these increased contad#@mands require methotsat

are not typicallyused inconventionalcontrol. The area of intelligent control is fact
interdisciplinary, and it attempts to combine and extend theories and methods from areas
such as control, computer science and operations research to attain demanding control goals
in complex systems.

Note that thetheories and methodologies frothe areas of operations research and
computer science cannot, in general be used directly to solve control problems,vearehey
developed taddresdifferent needs; they must first be enhanced rawl methodologies

need to be developed in combinatiaith conventionalcontrol methodologies, before
controllers forvery complex dynamicasystemscan bedesigned in systematic wayalso
traditional control conceptsuch asstability mayhave to beredefinedwhen, for example,

the process to be controlled is described by disenstatsystem models; and thissue is

being addressed ie literature Concepts such agachability and deadloakeveloped in
operations research and computer scienceuseéul inintelligent control, wherstudying
planning systems. Rigoroumathematical framework$jased forexample on predicate
calculus are beingised to study such questiortdowever, inorder to addressontrol

issues, these mathematical frameworks may not be convenient and they must be enhanced or
new ones must be developed to appropriately address these problems. This is not surprising
as the techniquekom computer science and operations researeh primarily analysis

tools developedor nonreal-timesystemswhile in control,synthesigechniques to design
real-time feedback control lawisr dynamicsystemsare mainly of interest. Imiew of this
discussion, it should belear that intelligent control research, which is maittiven by
applicationshas avery important and challengingheoretical component. Significant
theoretical strides must be made to address the open questioqsobleensare nontrivial,

but the pay-off is very high indeed.

As it was mentionedbove,the word control in intelligent contrdias amore general
meaning than in conventional control; in fact it is closer toathg the terncontrol isused
in every day language. Because intelligent corgtduiressemore general control problems
that also includethe problems addressed lmpnventional control, it is rather difficult to
come up withmeaningful bench mark examples. Intelligent control addresscontrol



problems that cannot be formulated in the language of conventiomiabl. Toillustrate, in

a rolling steel mill, for example, while conventional controllers may includspked (rpm)
regulators of the steel rollers, in thelligent control frameworkone may include in
addition, fault diagnosis and alarm systems; and perhaps the problem of deciding on the set
points of the regulators, that are basedhmnsequence airdersprocessed, selected based

on economic decisions, maintenance scheduales)ability of machines etc.All these

factors have to be considered as they play a role in controlling the whole proguotiess

which is really the overall goal.

Another difference between intelligent and conventional control is in the sepdieiiiceen
controller and thesystem to be controlled. leonventional control thesystem to be
controlled, called the plant, typically separate and distinct frorthe controller. The
controller is designed by the control designer, while the plant is in gegreealand cannot
be changed; note that recent attempts to coordsysiem design and contrbhve been
reported in areasuch asspace structures arghemicalprocesses, as many timesrtain
design changetead to systemsthat are much easier twontrol. In intelligent control
problems, which aranost often complex andhallenging, there mayot be aclear
separation of the plant and the controller; the control laws may be imbadddze part of
the system to be controlled. Thigensnew opportunities and challenges as it may be
possible to affect the design of processes in a more systematic way.

Areas relevant to intelligent control, imddition to conventional control includeybrid
systems, planning and knowledge based systems, mdeamang,search algorithmdault
diagnosis and contrakconfiguration, predicatiegic, automataPetri nets, neurahets and

fuzzy logic. In addition, in order to control complex systems, one has to deal effeaiitely

the computational complexitgsue; this habeen in the periphery of the interests of the
researchers in conventional control, but it is clear that computational complexity is a central
issue whenever one attempts to control complex systems.

Intelligence And Intelligent Control

It is appropriate at this point to briefgomment on the meaning of the word intelligent in
"intelligent control". Note that the precise definition of "intelligencéias been eluding
mankind for thousands of years. Moreecently, this issue hasbeen addressed by
disciplines such as psychology, philosophy, biology and of coursetibgial intelligence
(AD; note that Al is defined to be thstudy of mental facultiesthrough the use of
computational models. Noonsensus hammerged as yet oihat constitutesintelligence.
The controversyurroundingthe widelyused IQtests,also points tahe fact that we are
well awayfrom having understood thesessues. In thisarticle weintroduce anddiscuss
several characterizations of intelligeytstemghat appear to besefulwhen attempting to
address complex control problems.

Intelligent controllers can be seen as machwlesh emulatehumanmental facultiesuch

as adaptation andarning,planning undetarge uncertaintycopingwith large amounts of

data etc. in order to effectively control complex processes; and this is the justification for the
use of the term intelligent in intelligent control, since these mental faculties are considered to
be important attributes of human intelligence. alternative termthat isfurther discussed
below in this article, is"autonomoug(intelligent) control”; it emphasizes the fact that an
intelligent controller typically aims to attamgher degrees of autonomy in accomplishing
and even setting control goals, rather thatressingthe (intelligent) methodologyhat
achieves those goals. We should keep in rttiadl "intelligentcontrol” is only aname that
appears to be useful today. tlmee sameway the"modern control” ofthe 60's has now
become "conventional (or traditional) control”, as it has become part of the mainstiesm,

is called intelligentontrol today may bealledjust "control” inthe not so distant future.



What ismore important than the terminologgedare the concepts and the methodology,
and whether ornot the controlareaand intelligent controlwill be able to meet thever
increasing control needs of our technological society.

Defining Intelligent Control Systems

Intelligent systemscan be characterized in a number of ways and along a number of
dimensions. There are certain attributesntglligent systemsthat are of particular interest

in the control ofsystems; seeeference 1. We begiwith a general characterization of
intelligent systemsAn intelligent system has the ability to act appropriately in an uncertain
environment, where an appropriatetion is that whichincreasesthe probability of
success, and successhe achievement of behaviosiibgoalsthat supportthe system's
ultimate goal.In order for aman-made intelligensystem toact appropriately, it may
emulate functions of living creatures and ultimately human mental faculties.

An intelligent systemcan be characterized along a numberdmhensions.There are
degrees orlevels of intelligence thatan bemeasured alonghe various dimensions of
intelligence At a minimum, intelligenceequiresthe ability tosensethe environment, to
make decisions and to control action. Higher levels of intelligence may include the ability to
recognize objects and events, to represent knowledge in amadiel,and to reason about

and plan for the future. In advanced forms, intelligence provides the capaodicéive and
understand, to choose wisely, and to act successfully urldegevariety of circumstances

S0 as to survive and prosper in a complex and often hostile environment. Intelligence can be
observed to grow andvolve, both through growth ircomputational power anthrough
accumulation of knowledge of how to sense, decideaahdn acomplex and changing
world.

The above characterization of an intelligegstem is rather general. Accordingthis, a
great number ofystemscan be considered intelligent. fact, according to this definition
even athermostat may be considered to berdelligent system, although déw level of
intelligence. It is commohowever to call aystemintelligent when in fact ihas arather
high level of intelligence. There exist a number alternativebut related definitions of
intelligent systemswhich emphasizesystemswith high degrees ofintelligence. For
example, the following definition emphasizes the fact thasylséem in question processes
information, and itfocuses onman-madesystems andntelligent machines:Machine
intelligence is thgrocess of analyzing, organizing acdnverting data into knowledge;
where (machine) knowledge defined to be thestructured information acquired and
applied to remove ignorance or uncertainty aboutsgecific task pertaining to the
intelligent machine This definition relates tahe principle of increasing precisiomith
decreasing intelligence of Saridis.

Next, an intelligent system can be characterized by its ability to dynamically asbigoals

and control actions in an internal or autonomous fashion: Many adaptive or learning control
systemscan be thought of aslesigning a controlaw to meetwell-defined control
objectives. This activity represents the system's attempt to organize or order its "knowledge"
of its own dynamicalbehavior, so to meet aontrol objective. Theorganization of
knowledge can be seen as one important attribute of intelligence. If this organization is done
autonomously by the system, then intelligence becomes a property of the system, rather than
of the system's designer. Thimplies thatsystemswvhich autonomously (self)-organize
controllers with respect to an internally realized organizational princie intelligent

control systems

A procedural characterization of intelligent systemgiven next: Intelligence is goroperty
of the systemwhich emerges whethe procedures of focusingttention, combinatorial



search, and generalization aspplied to the inpuinformation in order to produce the
output Onecan easily deduce that oncetang of the aboveprocedures iglefined, the
other levels of resolution of the structure aitelligence are growing as esult of the
recursion. Having only one level structure leads to a rudimentary intelligence ithpticg
in the thermostat, or to a variable-structure sliding mode controller.

Control and Intelligent Systems

The concepts of intelligence and control are closely related and the term "Intelligent control”
has a unique and distinguishable meaning. An intelligent system must definseagdals.
Control is then required tonove the system to these goals and to defmech goals.
Consequentlyany intelligent systemwill be a control systemConversely, intelligence is
necessary tprovide desirable functioning afystems under changimgnditions, and it is
necessary t@chieve ahigh degree of autonomousehavior in a controbystem.Since
control is an essential part of arytelligent systemthe term "intelligent control systems™

is sometimes used in engineeriitgrature instead ofintelligent systems™ or'intelligent
machines”. The term "intelligent control system" singttgsseghe control aspect of the
intelligent system.

Below, one morealternative characterization of intellige(dontrol) systems isncluded.
According to thisview, acontrol systenmconsists ofdatastructures or objects (thgant
models and the contrgoals) and processing units or methdthge control laws):An
intelligent control system is designed so that it can autonomously achieve laveiggoal,
while its components, control goalglant models and control laws are nabmpletely
defined, either becaugbeywere not known ahe design time or becaugbey changed
unexpectedly

Characteristics or Dimensions of Intelligent Systems.

There are several essential properties present in different degrees in intgjigients. One
can perceive them as intelligesytstem characteristics or dimensions alach different
degrees orlevels of intelligence can beneasured.Below we discuss three such
characteristics that appear to be rather fundamental in intelligent control systems.

Adaptationand Learning The ability to adapt to changingpnditions is necessary in an
intelligent system. Although adaptatidoes not necessaritgquire the ability tdearn, for

systems to be able to adapt to a wide variety of unexpected changes learning is essential. So
the ability to learn is an important characteristic of (highly) intelligent systems.

Autonomy andntelligence: Autonomy in setting andchievinggoals is animportant
characteristic of intelligent contrabystems. When a system hése ability to act
appropriately in an uncertain environmdat extended periods dime without external
intervention it isconsidered to be highly autonomot$ere are degrees of autonomy; an
adaptivecontrol systentan be considered assgstem of higher autonomy than a control
system with fixed controllers, as it can copiéh greater uncertainty than a fixed feedback
controller. Althoughfor low autonomy ndntelligence(or "low" intelligence) is necessary,
for high degrees of autonomy, intelligence in siystem (or "high" degrees woftelligence)

is essential.

Structures and Hierarchiedn order to copevith complexity, an intelligensystem must
have an appropriate functional architecture or strudtarrefficient analysis andavaluation
of control strategies. This structushould provide a mechanism to builtevels of
abstraction (resolution, granularity) or at least some forrpaatial ordering so to reduce
complexity. An approach tstudy intelligent machinesinvolving entropy (of Saridis)



emphasizesuchefficient computationastructures. Hierarchieghat may be approximate,
localized or combined in heterarchies) that are abll&pt, may serve gsimary vehicles

for such structures toopewith complexity. The ternthierarchies” refers tdunctional
hierarchies, or hierarchies of range and resolution along spatial or temporal dimensions, and
it does not necessarilynply hierarchical hardwareSome of these structuresay be
hardwired in part. To copeith changing circumstances the ability to learn is essential so
these structures can adapt to significant, unanticipated changes.

In view of the above, aworking characterization of intelligerdystems (or of (highly)
intelligent (control) systems omachines) thataptures the essential characteristics present
in any such system isAn intelligent system must béighly adaptable to significant
unanticipated changesand so learning is essential. It musekhibit high degree of
autonomy in dealing with changes. It must be able to deal with significant complexity, and
this leads to certain types of functional architectures such as hierarchies.

Some Examples

Man-made systemthat solve complexproblems and incorporate some thle above
essential characteristics of intelligent contsylstems doexist today. Hereare some
examples from reference 1: Werarchically intelligent controBystemwas designed and

built at the NASA CIRSSE/RPI (Renssellear Polytechnic Institute) laboratories,ttasso
construction remotely in deep space for the NASA space station "Freedom". This Intelligent
control system had a functional hierardhgt consisted of thre&evels: the lowest was the
Execution level, the highest was the Organization level and the middle was the Coordination
level (seeFigure 1 andhe section on Intelligent Autonomous Contiaier inthis article).

The innovation of the project was thatsgstemwas directing the flow of data at the
execution level located at the site, while only commands were communicated to and from the
coordinationlevel onEarth. The following are examples of intelligent consgstems in
NIST's (National Institute for Standards and Technology) RCS (Real-time Control System)
implementations: Robot vision-basedobject pursuit; robot deburring; composites
fabrication; automated manufacturing research facility; robot machine loading/unloading for
a milling workstation; multipleautonomous undersegehicles; NASA space station
telerobotics; army field materidlandling robot; DARPA submarine automatiaoal mine
automation; and army unmanned lanehicles. Other examples of existingtelligent

control systemsnclude mobilerobotsthat exhibitsome autonomy at OdRidge National
Laboratory, and at the Massachusetts and Georgia Institutes of Technology.

For additional information and insight into thiundations ofintelligent control, the
interested reader may refer to references 1-8.

INTELLIGENT LEARNING CONTROL

The term Intelligent control was coined in th@'s. Earlier termsusedincluded Learning
Control and Self-organizing Control. A brief description of some of the daxglopments
in the area that is known today as Intelligent control is given.

As discussedpreviously, learning is an importadimension or attribute of Intelligent
control. Highly autonomoubehavior is a verglesirable characteristic aflvanced control
systems, so they performell under changing conditions the plant and thenvironment
(even in thecontrol goals), without external intervention; note that intelligartbnomous
control isdiscussed akength below inthis article. This requiresthe ability to adapt to
changesaffecting, in a significanmanner, theoperating region of theystem.Adaptive



behavior ofthis typetypically is notoffered byconventional controbystems.Additional
decision making abilitieshould beadded tameet theincreased control requirements. The
controller's capacity to learrfrom past experience is an integral part safch highly
autonomous controllers. The goal of introducing learning methods in control is to broaden
the region of operability ofonventional controbystems.Therefore the ability to learn is

one of the fundamental attributes of autonomous intelligent behavior; see references 1, 2.

The ability of man-madeystems tdearn from experiencand, based orthat experience,
improve theirperformance is théocus ofmachine learningLearning can beeen as the
processwhereby asystemcan alterits actions to perform a task moeffectively due to
increases in knowledge related to the task. The actions that a system may take depend on the
nature of the system. For example, a control system may change the type of caisedller

or vary theparameters of the controller, after learning that the current contdalés not
perform satisfactorily within a changing environment. Similarly, a robot may need to change
its visual representation of theurroundingsafter learning of new obstacles in the
environment. The type of action taken by the machine is depemgenthe nature of the
system andhe type of learningystemimplemented. The ability to learn entagssich
issues aknowledge acquisition, knowledge representation, smahe level of inference
capability. Learningconsidered fundamental totelligent behaviorand in particular the
computer modeling of learningrocesses hdseen the subject of research in the field of
machine learningince the 1960's; see references 9,10.

Learning Control

The problem of learning in automatic contreystems haseen studied in theast,
especially in the late 60's, anchiisbeen the topic ohumerous papers and books; see for
example reference$l-15. Referencesdll, 13, 15 providesurveys on the early learning
techniques. All of these approaches involve a process of classification, in which all or part of
the prior information required is unknown or incompletely known. The elements or patterns
that are presented to the control system are collected into groups that correspond to different
pattern classes or regions; see referdricel huslearning wasviewed asthe estimation or
successive approximation of the unknown quantities of a function; see reféfenthe
approacheslevelopedfor suchlearning problemgan be separated intwo categories:
deterministic and stochastid/herecan learning beised inthe control ofsystems? As it

was already mentioned, learnipdays an essential role ithe autonomous control of
systems. There are many areas in control where learning can be adedritageand these
needs can be briefly classified as follows: 1. Learning about the fhlahis learning how

to incorporate changes and then howdésive new plantnodels. 2. Learning about the
environment this can bedone using methods ranging frgpassive observation tactive
experimentation. 3. Learning about the controlfer, example,learning how to adjust
certain controller parameter to enhance performance. 4. Leamaimglesign goals and
constraints. What is the relation betweelaptive control and learning contfdLearning is
achieved, in acertain sense, when adaptive control algorithm isused toadapt the
controller parameters so thimr example stability is maintained. bhis casethe system
learns and the knowledge acquired isribes valuedor the parameters\ote however, that

if later the samehanges occur again and tegstem is described bgxactly the same
parameters identifieéarlier, the adaptiveontrol algorithm stillneeds torecalculate the
controller and perhaphe plant parameters since nothing was kept in meraryin that
sensethe system has ndearned. Ithascertainly learnedvhat to do when certaitype of
changes take place. In particular, it has been told exabty to do, that is it was given the
adaptive algorithmand this is knowledge by rote learnifidhe knowledge represented by

the new values of the controller and the plant parameters and the circumstancegichder
these values are appropriate, are not retained. So a useful rule of thumb is that a controller to



be a learning controller, memory is requirgderepast knowledge istored in such a way
so it can be used to benefit when a similar situation arises.

Some Historical Notes

Regarding terminology it is perhaps beneficial at this point to bring in a bit of history: In the
60's, adaptive control and learning received a lot of attention in the control literature. It was
not always clear however what it was meant by those terms. The comméisiggkin, in
reference 14 describes quite clearly the atmosphere of the period: "It is difficult to find more
fashionable and attractive terms in the modern theory of automatic control than the terms of
adaptation and learning. At the same time, it is not simple to find any other combigpts

are less complex and more vagueAdaptation, learningself-organizing systems and
control were competing terms for similar research areas, and KsayBaharacteristically

in reference 11: "Theise ofthe word ‘adaptive’'has been intentionally avoidedtiere...
adaptiveand learning are behavior-descriptieems, but feedback and self-organizing are
structure, orsystem configuration-descriptive terms. Neverthethesterminologywar is

still going on...It is certainly not the purpose of this papegetinvolved withsuch awar."

The term pattern recognition watso appearing togethwith adaptive learning and self-
organizingsystems inthe control literature of that era. It is obvious that there was no
agreement as to the meaning of these terms and their relation. Pattern recognition is today a
research discipline in its own right, developing and using an array of methods ranging from
conventional algorithms taartificial intelligence methods implemented via symbolic
processing. The term self-organizing system is not being used as much ttitaygaontrol
literature. Adaptive control has gained renewed popularity in theast decadesnainly
emphasizing studies ithe convergence of adaptiadgorithms and in the stability of
adaptive systems; the systems considered are primarily systems described by differential (or
difference) equationsvhere the coefficients are (partiallynknown. In anattempt to
enhance the applicability afdaptivecontrol methods, learning contrbasbeen recently
reintroduced in the control literaturege forexample reference fr learning methods in
control with emphasis on neural networks.

INTELLIGENT CONTROL FOR HIGH AUTONOMY SYSTEMS

From a control systems point of view the use of Intelligent control methods is a natural next
step inthe quest for building systemwith higher degrees of autonomy. These ideas are
discussed below.

In the design of controllers focomplex dynamicakystemsthere areneeds todaythat
cannot be successfully addressed with the existing conventional control theoryndihlyy
pertain to the area of uncertainty. Heuristic methods may be needed to tune the parameters
of an adaptive control law. New control laws to perform novel control functiomeéd new
objectivesshould bedesigned,while the system is in operation. Learning from past
experience and planning control actions may neressary. Failuredetection and
identification is neededSuch functionshave been performed in thgast by human
operators. To increaghe speed of response, telievethe operators from mundarasks,

to protect them from hazards, high degree of autonomy is desired. To achieve theydhigh
decision making techniquder reasoning undeuncertainty and taking actions must be
utilized. These techniques, ulsed byhumans, may be attributed itatelligent behavior.
Hence, one way to achieve high degree of autonomy is to utiihdevel decision making
techniques, intelligent methods, in thatonomous controlleAutonomy isthe objective,
and intelligent controllers are one way to achieve it.

Evolution of Control Systems and the Quest for Higher Autonomy



The first feedback device on record waswagerclock invented by th&reek Ktesibios in
Alexandria Egyptaroundthe 3rd centuryB.C.. Thiswas certainly ssuccessfuldevice as
water clocks of similardesignwere still being made inBaghdadwhen the Mongols
captured that city in 1258 A.D.. The first mathematical model to describelhalaavior for
control purposes is attributed to J.C. Maxwell, of the Maxwell equations' fame, W868n
useddifferential equations to explain instability problems encountenidd James Watt's
flyball governor; the governor was introduced in 1769 to regulate the spstehif engine
vehicles. When J.C.Maxwell used mathematicalmodeling and methods to explain
instability problems encounteregith James Watt'$lyball governor, it demonstrated the
importance and usefulness of mathematical models and methods in understanghlex
phenomena and signaled the beginningnathematicakystem and control theory. It also
signaled the end of the era iofuitive invention.Control theorymade significanstrides in

the past 120 years, with the use of frequency domain methods and Laplace transforms in the
1930s and 1940s and tdevelopment of optimatontrol methods and state space analysis
in the 1950s and960s.0Optimal control in theLl950sand 1960s, followed bprogress in
stochastic, robust, adaptive and nonlinear control methods I98@s totoday, have made

it possible to controinore accurately significantly more complex dynamggtemsthan

the original flyball governor.

Conventional contrasystemsare designed todayising mathematicaimodels of physical
systems. Amathematical model, whichaptures the dynamicddehavior of interest, is
chosen and then control design technicaresapplied, aided b AD packages, tdesign
the mathematical model of appropriate controller. The controller is then realized via
hardware or software and it is used to control the physysdém.The procedure matake
several iterations. The mathematical model of the system must be "simple enotlt"itso
can be analyzedith available mathematicéchniques, and "accurat@ough” to describe
the important aspects of tihelevant dynamical behavior. dpproximates the behavior of a
plant in the neighborhood of an operating point.

The control methods and the underlyimgathematicatheory were developed to meet the
ever increasing control needs of our technology. The neachtevethe demanding control
specificationdor increasingly complex dynamicalystems hadeenaddressed by using
more complexmathematicalmodels such asonlinear and stochastic ones, and by
developing more sophisticated design algorithms for, say, optimal control. The use of highly
complex mathematicahodelshowever,canseriouslyinhibit our ability to develop control
algorithms. Fortunately, simpler plant models, for example linear models, assedan the
control design; this is possible becauseheffeedbackused incontrol which carntolerate
significant model uncertaintiegVhenthe fixed feedback controllers are raatequate, then
adaptivecontrollers araused. Controllersan then bealesigned tameet thespecifications
around an operatingoint, where the linear model Malid and thenvia a scheduler a
controller emerges which can accomplish the control objectives the wholeoperating
range. Thigs, for example, thanethod typicallyused foraircraft flight control and it is a
method to design fixed controllers for certain classes of nonlinear systems. Adaptive control
in conventional controtheory has apecific and rather narrow meaning. In particular it
typically refers to adapting toariations in the constant coefficients in the equations
describing the linear plant; these new coefficient values are identified and thedinesxg,

or indirectly, toreassigrthe values of theonstant coefficients in the equations describing
the linear controllerAdaptivecontrollers provide for wider operating ranges théixed
controllers and so conventional adaptive control systems can be considered to have higher
degrees of autonomy than control systems employing fixed feedback controllers

Intelligent Control for High Autonomy Systems
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There are cases where weed to significantly increagbe operating range othe system.
We must be able tdeal effectively withsignificant uncertainties in models of increasingly
complex dynamicakystems inaddition to increasing thealidity range ofour control
methods. We need to copéth significant unmodelled and unanticipated changes in the
plant, in the environment and in the control objectives. This will involvesieeofintelligent
decision makingprocesses tgenerate control actions so that certain performéeve is
maintained even though there are drastic changes in the opexaitigons. Ihavefound
useful to keep in mind aexample thahelps set goals fathe future andalso teaches
humility, as itshowshow difficult, demandingand complexautonomous systentan be:
Currently, if there is a problem on the space shuttle, the probleddiessed bthe large
number of engineers working in Houston Control, the ground station. Wagsroblem is
solved the specific detailadstructions abouhow to deal with thgroblem aresent to the
shuttle. Imagine the time when wadll need theiools and expertise @il HoustonControl
engineers aboard the space shuttle, or an other space vehicle for extended\sgadat
needs to be achieved to accomplish this goal is certainly highly challenging!

In view of the above it is quite clear that in tbentrol of systemsthere are requirements
today that cannot be successfully addressed with the extstinvgntional controtheory. It

should be pointed out that several functions proposed in later sections, to be part of the high
autonomy control systenhavebeen performed in thgast by separate systenexamples

include fault trees in chemical process control for failure diagnosis and hazard analysis, and
control system design via expert systems.

An Intelligent Control Architecture For High Autonomy Systems

To illustrate the concepts and ideagolved and toprovide a more concrete framework to
discussthe issues, a hierarchical functional architecture ointetligent controller that is
used toattainhigh degrees of autonomy in future spaedicles isbriefly outlined; full
details can bdound in referencel6. This hierarchical architecturdas three levels, the
ExecutionLevel, the CoordinatioriLevel, and the Management or Organizatioevel. The
architecture exhibits certain characteristieghich havebeen shown irthe literature to be
necessary and desirable in autonomous systems. Based arcltitiscture we identify the
important fundamentaksuesand conceptghat are needefor an autonomousontrol
theory.

Architecture Overview: Structurend Characteristics: The overalfunctional architecture
for an autonomous controller is given by the architectural schematic Bfginee 1,below.
This is a functional architecture rather than a hardware processing one; therelwes, riot
specify the arrangement and duties of the hardweaed toimplement thefunctions
described. Not¢hat theprocessingarchitecturealso depends ote characteristics of the
current processing technologgentralized or distributeghrocessingmay be chosen for
function implementation depending on available computer technology.

The architecture in Figure 1 has three levels. At the lowest level, the Execution Level, there is
the interface to the vehicle and its environment (the process in the figure) via the sensors and
actuators. At the highest level, the Management or OrganiZagiga, there is the interface

to the pilot andcrew, ground station, oronboard systemsThe middlelevel, called the
CoordinationLevel, provides the link between the Executibevel and the Management

Level. Note that we follow the somewhat standard viewpoint that there are thredewvelfor

in the hierarchy.
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Other Systems or Human Operator

by

Management Level

by

Coordination Level

by

Execution Level

R

Process

Figure 1. Intelligent Autonomous Controller Function@ichitecture. The threkevels of a
hierarchical Intelligent control architecture are the Execuievel, the CoordinatiorLevel,
and the Management or Organization Level.

It must be stressethat the system mayhave more or fewer than thredevels which
however can be conceptually combined into three leSelsie characteristics of tlsgstem

which dictate the actual number of levels are the extent to which the operator can intervene in
the system'soperations, the degree of autonomy level of intelligence in the various
subsystems, the dexterity of the subsystems, and the hierarchical characteristics of the plant.
Note that the thredevels shown here in Figure &re applicable tanost architectures of
intelligent autonomouscontrollers, bygrouping together sublevels of the architecture if
necessaryThe lowestExecutionLevel involves conventionatontrol algorithmswhile the
highest, Management and Organization Level involves only highel intelligent, decision

making methods. The Coordination Level is igel which provides the interfadeetween

the actions of the othéwo levelsand ituses acombination of conventionand intelligent
decision making methods.

The sensorsand actuators arenplemented mainly withhardware. Software angerhaps
hardware are used to implement the Executievel. Mainly software isused for both the
Coordination and Management Levels. Therenauttiple copiesof the controlfunctions at
eachlevel, more at the loweand fewer at thehigher levels. Note that the autonomous
controller is only one of the autonomous systemghenspace/ehicle. It isresponsible for
all the functions related to the control of the physical systemabms for continuous on-
line development of the autonomous controller and to provide for valases of mission
operations.The tier structure of the architecture allows us to build on existidganced
control theory Developmentprogressesgreating eachime higher level adaptation and a
new systemwhich can be operateahd tested independently. Thatonomous controller
performsmany of thefunctions currently performed ke pilot,crew, or ground station.
The pilot andcrew arethusrelievedfrom mundandasks and some dhe ground station
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functions are brought aboard the vehicle. In Wy thedegree of autonomy of theshicle
is increased.

Functional Operation: In Figure 1, commandsreissued by highetevels to lowerlevels

and responseata flowsfrom lower levelsupwards. Parameters slibsystemsan be
altered bysystems ondevel above them in théiierarchy. There is a delegation and
distribution of tasks from higher tower levelsand a layered distribution of decision
making authority. At eaclkevel, some preprocessing occurs before information is sent to
higher levels. If requested, data can be passed from the lowest subsystem to theslgghest,
for display.All subsystemgrovide status andhealth information to highdevels.Human
intervention is allowedeven atthe control implementatiorsupervisor level, with the
commands however passed down from the upper levels of the hierarchy.

Here is a simplellustrative example to clarify theverall operation of theautonomous
controller. Supposethat the pilotdesires to repair satellite. After dialoguewith the
Management.evel viathe interface, théask is refined to "repaisatellite using robot A"
This is a decisiommade using the capability assessing, performanagaonitoring, and
planning functions of the Management Level. The Management Level decides if the repair is
possible undethe current performandevel of the system, and iview of near term other
planned functionsUsing its planningcapabilities, it thersends asequence ofubtasks to
the CoordinatiorLevel sufficient to achievethe repair.This sequence could be to order
robot A to: "go to satellite atcoordinates xyz","open repairhatch”, "repair". The
CoordinationLevel, using its planner, dividessay the first subtask,"go to satellite at
coordinates xyz", into smallsubtasks: "go fronstart to xy1z1", then "maneuvearound

obstacle", "move toyyozo",..., "arrive at the repair si@ndwait". The othersubtasks are

divided in a similarmanner. This information igpassed to aontrol implementation
supervisor at the Coordinatidrevel, which recognizes théask, and uses storeatontrol
laws to accomplish thebjective. Thesubtask "go fronstart to xy41z1", canfor example,

be implementedising storectontrol algorithms to first, proceed forward @ters, to the

right 15 degrees, etc. These control algorithms are executed in the controller at the
ExecutionLevel utilizing sensorinformation; the control actions are implementaal the
actuators.

Characteristics of Hierarchical Intelligent Controllers
for High Autonomy Systems

Based onthe architecture describe@dbove, important fundamental concepts and
characteristics that are needémt an autonomousntelligent control theory are now
identified. The fundamentassueswhich must be addressed forgaantitativetheory of
autonomous intelligent control are discussed.

There is asuccessive delegation of dutiesm the higher tdower levels;consequently the
number of distinct taskacreases as we go down the hierarchy. Higher levels are concerned
with slower aspects of the system's behavior and with its larger portions, or broader aspects.
There is then amaller contextualhorizon at lowerlevels,i.e. the controldecisions are

made byconsidering lesnformation. Also notice thahigher levels areconcernedwith

longer time horizonghanlower levels.Due tothe fact that there is the nefd high level
decision making abilities at the higHewels in the hierarchy, theroposition haseen put

forth that there isncreasingintelligenceas onemovesfrom the lower to thehigherlevels.

This isreflected in theuse offewer conventional numeric-algorithmioethods at higher

levels as well as the use of more symbolic-decision making methods. Ties"@inciple

of increasing intelligence with decreasing precision” of Saridis; see also reference 5 and the
references therein. The decreasing precision is reflected by a decraase snale density,
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decrease ibandwidthor system rateand a decrease in tidecision (control action) rate
(These properties have been studied for a class of hierarchical systems in reference 17.) All
these characteristics lead to a decreagganularity of modelsised, orequivalently, to an
increase in model abstractneddodel granularity also depends time dexterity of the
autonomous controller.

It is important at this point tdiscussbriefly the dexterity of the controller. The Execution
Level of ahighly dexterous controller igery sophisticated and it can accomplish complex
control tasks. The Coordination Level daaue commands tine controllersuch as'move

15 centimeters to the right”, afigrip standard, fixed dimension cylinder”, indexterous
controller, or it can completely dictate each mode of each (jpird manipulator)'move
joint 1, 15 degrees”, theftmove joint 5, 3degrees”, etc. in #&ss dexterous one. The
simplicity, and level of abstractness of macro commands inaatonomous controller
depends on its dexterity. The more sophisticated the Exedigiahis, thesimpler are the
commandghat the control implementatiosupervisor needs to issudotice that avery
dexterous roboarm may itselfhave anumber of autonomous functions. tilo such
dexterous armsvere used tocomplete atask which required the coordination dheir
actions then thearms would be considered to beo dexterous actuators and a new
supervisory autonomous controllerould be placed on topor the supervision and
coordination task. Ingeneral, this can happenrecursively, adding more intelligent
autonomous controllers dke lowerlevel tasks, accomplished by autonomous systems,
need to be supervised.

There is an ongoingvolutionof the intelligent functions of an autonomous controller. It is
interesting to observe the following: Although there are characteristics which separate
intelligent from non-intelligent systems, amtelligent systems evolve, the distinction
becomedess clear. Systemswhich wereoriginally consideredntelligent evolve to gain

more character ofvhat areconsidered to b@on-intelligent, numeric-algorithmisystems.

An example is a route planner. Although there are Al route planning systems, as problems
like route planning become better understood, moomventional numeric-algorithmic
solutionsare developed. The Ahethodswhich areused inintelligent systems, help us to
understandcomplex problems so wean organize and synthesizew approaches to
problem solving, in addition to being problem solving techniques themselves. Al techniques
can beviewed asresearchvehiclesfor solving very complex problems. Ashe problem
solution develops,purely algorithmic approachesyhich have desirable implementation
characteristicssubstitute Al techniques and play a greater role in gblaition of the
problem. It is for this reason that we concentrate on achieving autonomy andwia¢tbar

the underlying system can be considered "intelligent".

Models for Intelligent Controllers

In highly autonomous control systenmbe plant is normally so complex that it is either
impossible or inappropriate to describenith conventional mathematicalystem models

such as differential or difference equatioBgenthough itmight bepossible toaccurately
describe some systemith highly complex nonlinear differential equations, it may be
inappropriate if this description makes subsequent analysis difficult or too
computationally complex to be useful. The complexity of the plant model needkessign
depends on both th@mplexity of the physicadystem and ohow demanding thdesign
specifications are. There is a traddaétween model complexignd ourability to perform
analysis on the system via the model. However, if the control performance specifications are
not too demanding, a mowstract,higher level, model can bautilized, whichwill make
subsequent analysis simpler. Thisodel intentionallyignores some ofthe system
characteristics, specificallthosethat neednot be considered iattempting to meet the
particular performance specifications; see also the discussion on hybrid systems later in this
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article. For example, a simple temperature controller could ignore almost all dynamics of the
house or the office and consider only a temperature threshold model of the systgtohto
the furnace off or on.

Discrete Event System (DES)models usindfinite automataPetri nets,queuing network
models, Markov chains, etc. are quite uséduimodeling the highelevel decision making
processes ithe intelligentautonomous controllerThe choice of whether tase such
modelswill, of course, depend owhat properties of theautonomous system need to be
studied.

The guantitative, systematic technique®r modeling, analysisand design of control
systemsare of central and utmogtractical importance in conventional conttbleory.
Similar techniques for intelligent autonomous controllers do not exist. This is mainly due to
the hybrid structure (nonuniformnpon homogeneousature) of the dynamicatystems
under consideration; theynclude both continuous-state and discrete-statgstems
Modeling techniquedor intelligent autonomous systems must lbble to support a
macroscopic view of the dynamical system, hencenersessary to represent bailimeric

and symbolic information. The non uniform components of the intelligent contatillieke

part in the generation of the low level control inputs to the dynamical system, therefore they
all must be considered in @mpleteanalysis. Research could begin bging different
models for different components of the intelligent autonomous controller since much can be
attained byusingthe bestavailablemodels forthe various components of tlaechitecture

and joining them via some appropriate interconnecting strudtoranstance systemshat

are modeledvith a logicaldiscreteeventsystem (DES)model at the highelevelsand a
difference or differential equation at the lowevel should beexamined; see th&iscussion

on hybrid systemfater in this article. In any case,good understaanding diierarchical
models is necessary for the analysis and synthesis of intelligent autonomous controllers.

Research directions

One can roughlgategorize research in the area of intelligmitbnomous control into two
areas: conventional control theoretic reseamdigressingthe control functions at the
Execution and Coordinatidevels,and themodeling, analysisand design of higheevel
decision making systems found in the Management and Coordination levels.

It is important to note that iarder to obtain a high degree of autonomy it is necessary to
adapt or learn Neural networks offer methodologies to perform learning functions in the
intelligent autonomous controller. Igeneral, there are potential applications of neural
networks all levels of hierarchical intelligentontrollersthat providehigher degrees of
autonomy to systems. Neural netwosgks useful atthe lowest Executiofevel - where the
conventional control algorithms are implement&dhardware and softwarethrough the
Coordination level, to the highest Managemewtl, wheredecisionsare being madbased

on possiblyuncertain and/or incomplete informatio@ne may point outthat at the
Execution level - conventional contrelel - neural network propertiesuchthe ability for
function approximation and the potentfar parallel implementation appear to kery
important. In contrast, at hightavels abilitiessuch agattern classification and ttadility

to store information in asay, associative memory appear to be of significant interest.
Machine learning is of course important at all levels.

We stresghat in controlsystemswith high degrees of autonomy we seek to significantly
widen the operatingange of thesystem sothat significantfailures andenvironmental
changes can occur and performande still be maintainedAll of the conventional control
techniques are useful in the development of autonomous controllers and thelg\aamat to
the study of autonomous control. It ke casenowever,that certain techniques are more
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suitablefor interfacing to theautonomous controller anfdr compensatingor significant
system failures.For instance the area dfrestructurable” or "reconfigurable" control
systems studies techniques to reconfigure controllers when significant failures occur.

Conventional modeling, analysend design methods should bsed, whenevethey are
applicable, for the components of the intelligent autonomous control system as well as fuzzy
controllers. For instance, theyould be used #he ExecutiorLevel of many autonomous
controllers. The symbolic/numeric interface isvary important issue; consequently it
should beincluded in any analysis. There is a nded systematically generatintgss
detailed,more abstract models from differential/difference equation models tosédx in

higher levels of the autonomous controller; dessussiorbelow onhybrid systems. Tools

for the implementation of thisformation extractioralso need to be developed.this way
conventionalanalysiscan beused inconjunctionwith the developednalysis methods to
obtain anoverall quantitativesystematic analysis paradigfor intelligent autonomous
control systems. Inshort, we propose to use hybrignodeling, analysisand design
techniques for non uniform systems. This approach is not unlike the approaches used in the
study of any complex phenomena by the scientific and engineering communities.

HYBRID SYSTEMS

Hybrid control systemscontaintwo distinct types of systemsystemswith continuous
dynamics and systenvgith discrete dynamics, that interagith eachother. Theirstudy is
central indesigningintelligent controlsystemswith high degree of autonomy and it is
essential in designing discredgentsupervisory controllers for continuous systems; see
references 1, 18-23.

Hybrid control systemstypically arise whencontinuous processdsteract with, or are
supervisedy, sequential machines. Examples of hybrid congy@dtemsare common in
practiceand arefound in suchapplications as flexible manufacturing, chemipabcess
control, electric powerdistribution and computer communication networks. A simple
example of aybrid control system ithe heating and coolingystem of aypical home.
The furnace and air conditioner, along with the heat flow characteristics lbriresform a
continuous-time system which is to be controlled. The thermostat is a simple diserdgte
systemwhich basicallyhandles thesymbols {oo hot, too colf and {normak. The
temperature of theoom is translated into these representationthénthermostat and the
thermostat's responsetranslated back telectricalcurrentswhich control the furnace, air
conditioner, blower, etc.

Since thecontinuous and discrete dynamics coexist amdract with eachother it is
important to developnodelsthat accuratelglescribe the dynamisehavior ofsuch hybrid
systems. In thisvay it is possible todevelop control strategies that fully take into
consideration the relation and interaction of the continuous and discrete pidsydtem.
In the pastmodels forthe continuous and discretevent subsystemswvere developed
separately; the contrédw was then derived in @ther empirical fashion, except in special
cases such abe case of digital controllefsr linear time-invariansystems.The study of
hybrid systemgprovides the backborfer the formulation andmplementation of learning
control policies. In such policies, the control acquires knowledge (discrete daigyrdoe
the behavior of thgystem as ievolves in timeHybrid systems habecome a distinctive
area of study due to opportunities tonprove on traditionalcontrol and estimation
technologies by providing computationadiifective methodologiedor the implementation
of digital programsthat design or modifythe controllaw in response to sensaletected
events, or as aesult of adaptation and learning. The interested resleuld consult
references 20-23.
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Certain important issues in hybrid systems are now briefly discussed using a paradigm of a
continuous systems supervised by a discrete event system (DES) controller from references
18, 19. The hybrid control system of interest h@resists of a continuous-state system to

be controlled, also called thmant, and a discrete-state controller connected to the plant via

an interface; see Figure 2.

DES Controller

, l T zh

Interface

(0 l T ()

Plant

Figure 2. Hybrid Supervisory ControArchitecture. The interface receivesntinuous
measurements z(t) anssues asequence of symbols {z(i)jvhich the DES controller
processes to issue a sequencecarftrol symbols {r(i)}. Thsesare translated by the
interface to (piecewise) continuous input commands r(t).

The plant containall continuous-state subsystemsthé hybrid controlsystem,such as
any conventional continuous-state controllers that haagbeendeveloped, &lock if time
and synchronous operatioage to be modeled, etc.. The controller is ement driven,
asynchronougliscreteeventsystem (DES), described byfiaite state automaton or an
ordinary Petri netThe hybrid control system also contains @terface that provides the
meansfor communication between tle®ntinuous-state plant and tB¥S controller. The
interface receives information from the plant in tbien of a measurement of a continuous
variable z(t),such aghe continuousstate,andissues asequence of symbols {z(i)} to the
DES controller. It alsaeceives asequence of contradymbols {r(i)} from the controller
and issues (piecewise) continuous input commands r(t) to the plant.

The interfaceplays a key role in determinirthe dynamics and theehavior of thehybrid
control system. Understanding how the interface affects the propertiesiofbtik system
is one of the fundamental issuestiie theory othybrid controlsystems.The interface can
be chosen to be simply a patrtitioning the state space; see refered& If memory is
necessary tderive an effective control, it iscluded in theDES controller and not in the
interface. Also the piecewise continuous command signal issued by the interface is simply a
staircase signahot unlike the output of a zero-ordaold in adigital control system.
Including an appropriate continuous system at (the igbuthe plant,signals such as
ramps,sinusoidsetc.,can be generated desired. Sdhe simple interface isisedwithout
loss of generality. It allowsanalysis ofthe hybrid control systemwith development of
properties such asontrollability, stabilityand determinism, in addition to contralesign
methodologies; see referendss 19. In general thedesign ofthe interfacedepends not
only on the plant to be controlled, but also on the control policies availaimellas on the
control goals. Depending ahe control goals, one may or may nwed,for example,
detailed state informationthis corresponds temall or largeregions inthe partition of the
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measured signal space (or greater of lower granularity). This is, of courseirmesing as

it is ratherwell known that to stabilize a systerfgr example, requires lessdetailed
information about theystem'sdynamic behavior than to deay tracking. The fewer the
distinct regions in the partitioned sigrggdace, thesimpler (fewer states) the resulting DES
plant model and the simpler tiEES controller design. Sinctihe systems to beontrolled
via hybrid controllers are typically complex, it is important to mekeryeffort to use only
the necessary information to attain the control goalshiadeads to simpler interfacésat
issue only the necessary number of distinct symbols, and to sidip&plant models and
controllers. The question of systematically determining the minimum amount of information
needed from the plant in orderdchievespecific control goalsia anumber of specialized
control policies is an important question.

INTELLIGENT CONTROL AS A DISTINCT RESEARCH AREA

There may be the temptation ¢tassify the area of intelligenautonomous systems as
simply a collection of methods and ideas alreadgresse@lsewhere, theeed only being

some kind ofintelligentassembly and integration of known techniques. This is of course
not true. The theory of contradystems is notcovered bysay the area of applied
mathematics, because control has different needs and therefore asks different questions. For
example, while in applied mathematics the different solutions of differential equations under
differentinitial conditions and forcing functiorare of interest, in contrane typically is
interested in finding the forcing functions that generate solutions, tgisiemtrajectories,

that satisfy certain conditions. This is a different problem, related to the first, but its solution
requiresthe development of quitdifferent methods. In a rather analogous fashion the
problems of interest inintelligent systemsrequire development of novel concepts,
approaches and methods. In particwiduile computer science typically dealgth static
systems and noeal-time requirements, contrglystemstypically are dynamic and all
control laws, intelligent or notmust beable to control theystem inreal time. So irmost

cases one cannogally just directly apply computer science methods to these problems.
Modifications and extensions are typically necessary for example mutitativemodels

used to study such systemsd althoughsay Petri netsmay be adequate to model and
study the autonomoushehavior at certain levels of the hierarctinese models may not be
appropriate to addresgrtainquestions ofmportance to contradystems such astability,

without further development and modifications. In addition, thergm@alems inintelligent
autonomous control systems that are novel and so they have not studied before at any depth.
Such isthe case ohybrid systems foexample that combinsystems of continuous and
discrete state. The marriage of all these fields can only be beneficial to all. Computer science
and operation research methods are increasumggyl incontrol problemswhile control

system concepts such feedbackand methodghat arebased on rigorousathematical
framework can provide the base for new theories and methods in those areas.
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