ANTSAKLIS GROUP - SUMMARY OF RESEARCH ACTIVITIES

My research group’s research addresses problems of control and automation and examines ways to design engineering systems that will exhibit high degree of autonomy in performing useful tasks. Application areas include manufacturing, transportation and power systems as well as computer and communication networks. Research work includes analysis of behavior and design of control strategies for complex autonomous, intelligent, learning and reconfigurable systems.

Recent research focuses on Cyber-Physical Systems (CPS) (that consist of a large number of heterogeneous, cyber, physical networked embedded subsystems with sometimes a human operator in the loop) and addresses problems in the interdisciplinary research area of control, computing and communication networks, and on hybrid and discrete event dynamical systems.

RESEARCH HIGHLIGHTS

Being responsive to future application needs is very important, as in my opinion this is where a University should be conducting its research, keeping an eye down the road, and focusing primarily on defining and articulating new methods and solving new problems in novel ways, without excluding of course working with industry practitioners on near term research needs. The concern for addressing effectively future research needs in applications has led me to move onto novel research areas with my group and play leading roles in those areas.

In the late 80s my group helped establish Autonomous Intelligent Control in the mainstream control research community; in the early 90s, we introduced Supervisory Control of Discrete Event Systems (DES) using Petri nets; in the mid-90s we helped establish Hybrid Control Systems and influenced its research directions; we have been involved in Networked Control Systems, in the Distributed Control of Multi-agent Systems, and more recently in Cyber Physical Systems (CPS) which combine almost all of the research areas mentioned previously.

In fact my group was one of a handful of research groups that were early active supporters of CPS and helped establish CPS as a highly relevant and important research area in the US and abroad. I was very involved with the 2007 PCAST report on research priorities in networking and information technology in the US, which contributed in a substantial way to recognizing CPS as highly important research area.

My research work began in the late 70s and continued through the 80s, when My early research focused on the feedback control of multi input, multi-output linear time-invariant systems (MIMO LTI) using polynomial matrix descriptions (mid to late 70s and 80s). There I contributed to understanding and solving several feedback problems including decoupling and regulation with internal stability, design of response using two-degrees of freedom controllers, control reconfiguration, polynomial matrix interpolation. Especially noteworthy are the contributions to characterizing all stabilizing controllers using dual prime polynomial matrix descriptions and polynomial matrix transfer function factorizations.

There is a strong common thread that permeates all these research areas and led me to the study of these research topics. I have been pursuing a Quest for Autonomy in complex systems, wanting to build Intelligent, High Autonomy control systems. In systems with high degree of autonomy, the higher levels of control hierarchy are typically described by discrete event system models, such as automata or Petri nets, which led me to conducting research in the supervisory control of DES via Petri nets. Lower in the control hierarchy, DES systems interact with continuous control systems described via differential equations and this led me to the study of Hybrid Systems and to close interactions with computer scientists. Advances in technology make it now possible to embed significant computing intelligence and communication capabilities at low cost in distributed fashion close to the application where sensing, processing and control is needed, thus reducing the need for centralized control. This has led us to the study of Networked Embedded Sensing and Control Systems, and to Cyber Physical Systems.
Systems, and to the study of other problems in Distributed Systems, using methodologies that lie at the intersection of systems and control, communication networks and computing. Our Quest for Autonomy is continuing!

Below some of my group’s research areas and contributions are briefly described. The research topics are arranged from the more recent to the earliest. The best way to get into the details is of course via our publications.

Our publications have been cited over 13,000 times. More than 60 of the publications have been cited from 50 to 700 times each-33 publications have more than 100 citations each. So our work has been recognized and used by researchers.

CYBER PHYSICAL SYSTEMS

Cyber-physical systems (CPS) are physical, biological and engineered systems whose operations are monitored, coordinated, controlled and integrated by a computing and communication core. As computers become ever-smaller, faster and more efficient, and communication networks become better and ever-cheaper, computing and communication capabilities are being embedded in all types of objects and structures in the physical environment. This intimate coupling between the cyber and physical is being manifested from the nano-world to large-scale wide-area systems of systems; and at multiple time-scales. There are several technological and economic drivers for this trend: the decreasing cost of computation, networking, and sensing, a variety of social and economic forces which will require us to use national infrastructures more efficiently, and environmental pressures which mandate the rapid introduction of technologies to improve energy efficiency and reduce pollution; also, as the national population ages, we will need to make more efficient use of our health care systems, ranging from facilities to medical data and information. Applications with enormous societal impact and economic benefit will be created. According to NSF, research advances in cyber-physical systems promise to transform our world with systems that respond more quickly (e.g., autonomous collision avoidance), are more precise (e.g., robotic surgery and nano-tolerance manufacturing), work in dangerous or inaccessible environments (e.g., autonomous systems for search and rescue, firefighting, and exploration), provide large-scale, distributed coordination (e.g., automated traffic control), are highly efficient (e.g., zero-net energy buildings), augment human capabilities, and enhance societal well being (e.g., assistive technologies and ubiquitous healthcare monitoring and delivery).

Cyber-physical systems will transform how we interact with the physical world just like the Internet transformed how we interact with one another.

Notre Dame has had significant presence in this research area since its inception. In fact, Panos Antsaklis was a member of a 2007 committee of the President’s Council of Advisors in Science and Technology (PCAST) that recognized the importance of CPS to society and made it number one national priority in networking and information technology federal research funding. Recent activities include:

• Organizer of the Control of Cyber-Physical Systems Workshop at the University of Notre Dame London Centre October 20-21, 2012. (http://controls.ame.nd.edu/mediawiki/index.php/London_CPS_Workshop)

Some CPS Issues
There is tight interaction between the digital processors and the physical world and this raises a number of issues that relate to the real-time requirements on system performance, to the hybrid nature and inherent uncertainty of the interaction with the physical world, and to the requirement for high autonomy. There is increasing emphasis on better understanding the interactions between the engineered, digital computing systems and the physical, analog world which is typically complex and uncertain. CPS systems may be embedded, and so the user and system may not directly interact. This means that the system must possess a significant degree of autonomy with regard
to the monitoring and maintenance of its own health. The system interacts with the physical world and this interaction introduces hybrid dynamics and injects significant uncertainty into the system. Assumptions that are valid at compile-time may not be valid at run-time. Components degrade over time. The physical world is not static and may even be malicious. Finally, the real world marches to real-time and this means that our embedded processors must satisfy hard and soft real-time deadlines.

Our CPS research has been focusing on ways to build systems from components in ways that guarantee certain properties. We have been using the energy concepts of passivity and dissipativity of continuous and discrete-time systems, of networks and of hybrid dynamical systems. We have been focusing on interconnected networked systems using passivity indices, QSR-dissipativity, and wave transformations in networks and we have made important contributions to preserving passivity in approximate models after for example quantization, linearization, order reduction, etc; we have studied event-driven feedback systems, systems in cascade and stability and synchronization in distributed control systems. In addition we have been extending these passivity and dissipativity concepts to switched systems, and also to hybrid and discrete-event systems. We have also worked on experimentally determining passivity indices, which brings in the issue of mathematical modeling versus actual implementation and to what extent properties are preserved.

The approaches used by the research team that looks into a new science of integration for CPS under a CPS Large project including passivity is outlined in:

For a list of selected publications in CPS, see end of this document.

We have also been exploring the importance of approximate symmetries in large networked heterogeneous systems such as CPS; see publications in Networked Control Systems below.

NETWORKED EMBEDDED CONTROL SYSTEMS

Networked sensing and control systems are becoming increasingly important in many application domains including transportation, manufacturing, defense, and health related areas. It is now possible to place low cost devices with significant computing and communication capabilities in distributed fashion and connect them via wired and wireless networks, so to cooperate working together towards common goals. This area uses methodologies from control systems, communication networks and computing. The networked nature of the system raises a number of issues that relate to traditional issues encountered by all distributed systems with the addition of the complications introduced by shared digital networks where the information is sent in data packets. Note also that future networks of embedded processors may include several hundred to several thousand computing nodes distributed perhaps over wide areas and realized via inexpensive sensors and actuators.

The network will exhibit a high degree of concurrency. The impact of this concurrency is to generate a state-space explosion problem that can limit our ability to analyze such systems. This means that any analysis approach must demonstrate a high degree of scalability. The networked system is decentralized and this means that we cannot expect any single process to know the global state at a given instant in time. As a result, control and supervision methods will need to rely on local partial state information. The networked system is often composed of units from a wide variety of vendors. This means that these systems will be open and we need to ensure that the protocols and software we develop are portable across different hardware and software platforms. Finally, since processor failures will occur we need fault-tolerant methods for re-inserting, for example a reset processor into the network. This requirement for dependability also brings up security issues. How do we identify and isolate malicious processors in the network? In dealing with a network of embedded systems, these distributed computing issues...
and the embedded control system issues must be addressed. All of the preceding issues are present in the
design and analysis of Embedded and Cyber-Physical Systems. See the Special Issues on Networked Control
Systems in the IEEE Transactions on Automatic Control, September 2004, and in the Proceedings of the IEEE,
January 2007 with P.J. Antsaklis and J. Baillieul as Guest Editors:

• P.J. Antsaklis and J. Baillieul, Eds, 'Guest Editorial, Special Issue on 'Networked Control Systems,' IEEE
Transactions on Automatic Control, Vol.49, No.9, pp. 1421-1423, September 2004 (172).
• Panos J. Antsaklis and J. Baillieul, "Scanning the Issue: Special Issue on Technology of Networked Control
• John Baillieul and Panos J. Antsaklis, "Control and Communication Challenges in Networked Real-Time
Systems," in the Special Issue on "Technology of Networked Control Systems," Proceedings of the IEEE,

In our group, we have studied sensor networks, networked control systems and distributed systems. We have
introduced a very promising novel Model Based approach to networked control that is application realistic and
transparent and we have extended it to include Intermittent Feedback control. Using this Model-Based approach
we have studied the effects of dropped packets and limited bandwidth on stability and performance issues and we
have studied the effects of quantization and event-triggered feedback. The approach is practical and efficient,
stability conditions are if and only if (for LTI systems) and the method has been extended and used in
applications.

The approach of Model-Based Control is described at length in an upcoming book titled Model-Based Control of
Networked Systems by Eloy Garcia, Panos Antsaklis, Luis Montestruque (Birkhauser).

For a list of selected publications in Networked Control Systems, see end of this document.

We have used the concepts of Symmetry and Approximate Symmetry to study and design large networked
systems

We have also studied Distributed Control systems and we have made contributions to the Consensus problem.
We have used the energy like concepts of passivity and dissipativity to study systems consisting of
heterogeneous interconnected components; see publications in CPS above.

--

HYBRID AND SWITCHED DYNAMICAL SYSTEMS

A hybrid dynamical system is a system where the behavior of interest is determined by interacting continuous and
discrete dynamics. In a manufacturing process for example, parts may be processed in a particular machine but
only the arrival of a part triggers the process; that is, the manufacturing process is composed of the discrete,
event-driven dynamics of the parts moving among different machines and the continuous, time-driven dynamics of
the processes within particular machines. The need for advanced computer control of continuous processes in
areas such as manufacturing, communication networks and industrial processes provides strong motivation for
the study of modeling, design, verification and control of hybrid dynamical systems that include both continuous
and discrete dynamics that interact with each other. Many times the continuous and discrete parts of the
processes of interest may be studied independently, but when there are strong interactions among these
continuous and discrete components or tight design specifications to be met, the hybrid nature of the processes
must be taken explicitly into account. Only then problems such as optimization of the whole manufacturing
process may be addressed in a more meaningful manner.

We have made contributions which helped define the field. We developed problem formulations, established
some of the key concepts and introduced control synthesis methodologies. In our approach we have identified
and studied fundamental concepts that arise at the interface of the continuous and discrete dynamics, such as
non-determinism in the DES models derived using discrete abstractions. We have derived conditions for the stabilizability of uncertain switched systems, if and only if conditions, and we have made contributions in the optimal control of switched systems. Throughout our work we have emphasized synthesis methodologies and have derived controllers for hybrid systems. Our trademark approach is our supervisory hybrid control approach that is based on discrete abstractions of the continuous dynamics.

Our work is described in several books I edited: See the Springer-Verlag books Hybrid Systems II, Hybrid Systems IV, and Hybrid Systems V; and in Special Issues: in the Proceedings of the IEEE, July 2000, in the Journal on Discrete Event Dynamic Systems, June 1998 and in the IEEE Transactions on Automatic Control, April 1998. The Special Issue on Hybrid Systems: Theory and Applications of the Proceedings of the IEEE (July 2000) consists of fourteen invited papers, and it has been used as a teaching supplement by several leading research groups around the world.

There is an upcoming book titled Hybrid Control Systems by Hai Lin and Panos Antsaklis (Springer).

For a list of selected publications in Switched and Hybrid Systems, see end of this document.

SUPERVISORY CONTROL OF DISCRETE EVENT DYNAMICAL SYSTEMS USING PETRI NETS

Discrete Event System (DES) models may be used to describe the dynamic behavior of manufacturing processes, chemical processes, computer and communication processes when there are event driven processes that need to be controlled. Motivated by the generality and relative simplicity of Petri net models of DES and inspired by chemical engineering applications of Petri net modeling, we introduced and developed a novel computationally efficient simple approach to control of DES. Our approach represents significant improvement in the control of DES area, which at that time had reached a stage of theoretical maturity but with methodologies that were not easy to use in large systems.

Based on algebraic representations of Petri nets we were able to derive a truly elegant approach to the supervisory control of DES. The controller is based on the idea of place invariants of the Petri net and it consists only of places and arcs. The controller is maximally permissive. This method is based on matrix manipulations and is transparent and computationally very efficient and can be used to avoid deadlock. The approach opened new venues for research in the supervisory control of DES. It was recently used by the U of Michigan group to identify potential faults in commercial code and is currently being used to develop a systematic method for concurrent programming.

The method can accommodate constraints written as Boolean logic formulas in the conjunctive normal form of algebraic inequalities that contain elements of the marking and/or the firing vectors. Our design approach enforces linear inequality constraints on the markings of the plant. Such inequality constraints can model a variety of important control specifications including forbidden state and general mutual exclusion constraints, finite resource management and allocation constraints, liveness and deadlock avoidance constraints. This approach is very attractive as the resulting controller is a Petri net that consists only of places and arcs and its size is proportional to the number of constraints. The controller is described by an auxiliary Petri net connected to the plant's transitions, providing a unified Petri net model of the closed loop system. Standard tools for Petri nets can then be used to further analyze and study the supervised plant. This design approach is also most attractive because it is transparent, modular, computationally efficient and well suited for on-line reconfigurable control. Several extensions to decentralized control and generalizations have been derived.

The DES contributions are described in two books the more recent being Supervisory Control of Concurrent Systems: A Petri Net Structural Approach (Birkhauser 2005) (86). It describes a novel, powerful and practical method with emphasis on deadlock avoidance and decentralized supervision. See also the book Supervisory Control of Discrete Event Systems using Petri Nets (by Moody & Antsaklis, Kluwer 1998) (275).
For a list of selected publications in Discrete-Event Systems, see end of this document.

**

INTELLIGENT CONTROL FOR HIGH AUTONOMY SYSTEMS

A hierarchical functional architecture was adopted and it was clearly shown that for controlling different functions of a system and introducing higher degrees of autonomy, one needed to bring in methods beyond traditional control methods, methods that involved, planning, learning, failure diagnosis and isolation etc. So higher autonomy is the goal and for high autonomy one may need methods that are referred to as intelligent and so the term Intelligent Control. This way of thinking led me to studying Discrete Event Systems, Hybrid Systems and Networked Control as they are important in accomplishing higher degrees of autonomy. For an update see P.J. Antsaklis, The Quest for Autonomy Revisited, ISIS Technical Report ISIS-2011-004, September 2011 and the reference therein.

He was the Guest Editor of the 1990 and 1992 Special Issues on Neural Networks in Control Systems of the IEEE Control Systems magazine (CSM) and the Guest Editor of the 1995 Special Issue on Intelligence and Learning in the IEEE CSM.

For a list of selected publications in Autonomous Intelligent Control and Neural Networks, see end of this document.

**

FEEDBACK CONTROL OF LINEAR SYSTEMS

Parameterization of all Stabilizing Feedback Controllers. Among the first to establish the relation between Youla's parameterizations and the polynomial matrix Diophantine equation; this was accomplished using the polynomial matrix representation of systems. A particularly simple way to derive these parameterizations was based on the new concept of dual prime polynomial matrix factorizations as described in P. J. Antsaklis, "Some Relations Satisfied by Prime Polynomial Matrices and their Role in Linear Multivariable System Theory," IEEE Trans. Automatic Control, Vol. AC-24, No. 4, pp. 611-616, Aug. 1979 (See also T. Kailath, Linear Systems, pp.539-540, Prentice-Hall, 1980). This dual prime approach has been the standard approach to the subject. Explained relation between proper and stable factorizations of a system transfer function and its internal
descriptions. Many of these results are included in Chapter 7 of the *Linear Systems* book (with A.N. Michel; McGraw-Hill, 1997 and Birkhauser, 2005)

He made significant contributions to the Output Regulation with Internal Stability problem, the Decoupling problem, the Reconfigurable control problem.

Theory of Polynomial Matrix Interpolation. It not only extends the classical polynomial interpolation results but its applications to solving polynomial matrix equations have been proved to have excellent numerical properties. See for example P. J. Antsaklis and Z. Gao, "Polynomial and Rational Matrix Interpolation: Theory and Control Applications", *International Journal of Control*, vol 58, no. 2, 349-404, August 1993; also Matlab polynomial control design package by Sebek and Kwakernaak called The Polynomial Toolbox.

Several of these results may be found in the graduate textbooks *Linear Systems* (with A.N. Michel; McGraw-Hill, 1997 and Birkhauser, 2005) and *A Linear Systems Primer* (with A.N. Michel; Birkhauser, 2007)

For a list of selected publications in Feedback Control, see end of this document.

**
SELECTED PUBLICATIONS BY AREA

Note: Our publications have been cited over 13,000 times. More than 60 of the publications have been cited from 50 to 700 times each.

CYBER-PHYSICAL SYSTEMS (CPS)

• Michael J. McCourt and Panos J. Antsaklis, “Control of Networked Switched Systems using Passivity and Dissipativity,” submitted to Special Issue on CPS, in Automatisierungstechnik,

MORE CPS

NETWORKED CONTROL SYSTEMS (NCS)

Model-Based Control

- Eloy Garcia and Panos J. Antsaklis, “Model-Based Event-Triggered Control with Time-Varying Network Delays,”

Symmetry

Passivity (see also CPS)

MORE NCS

Model-Based Control

- Eloy Garcia and Panos J. Antsaklis, “Model-Based Event-Triggered Control with Time-Varying Network Delays,”
Proceedings of the 50th IEEE Conference on Decision and Control (CDC’11) and ECC’11, pp. 1650-1655, Orlando, Florida USA, December 12-15, 2011.

Symmetry

Passivity

SWITCHED AND HYBRID SYSTEMS

DISCRETE-EVENT SYSTEMS

More DES

• Marian Iordache, Po Wu, Feng Zhu, Panos Antsaklis, "Efficient Design of Petri Net Supervisors with Disjunctive
AUTONOMOUS INTELLIGENT CONTROL AND NEURAL NETWORKS

Autonomous Intelligent Control

Neural Networks

FEEDBACK CONTROL

