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• Polynomial Matrix Description (PMD)
Dz = u, y = Nz Internal Description  (ss is a special case)

• Polynomial Fractional Matrix Description (PFMD)
y/u = G = ND-1        External Description
Linear Multivariable Systems, Springer-Verlag, 1974. 

• PMD brings closer together internal and external descriptions
• Fractional matrix description (FMD), extension of N,D to proper and 

stable-similar properties, excellent at preserving properness in feedback, 
not clear connection to internal description.

• Successes-parameterization of all stabilizing controllers using dual 
factorizations, connection to Diophantine and optimal control.

• Will derive the feedback fundamental result presented below using PMD

Festschrift – Bill Wolovich
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• I have been fascinated by the concept of feedback since I was a student
-feedback rules!

• It seems that feedback is as old as life itself!
-feedback is associated with sensors-a single cell organism attracted to light 
adjusts direction.
-feedback is ubiquitous, it is everywhere, around us and inside us, it is ever- 
present.

• Feedback is not easy to study because considerations may lead to circular 
arguments

Feedback-Setting the Stage
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• Many powerful methodologies have been introduced in the past half 
century to design controllers that stabilize the systems and achieve desired 
performance in a robust way, being tolerant to plant parameter variations 
and external disturbances.  

• Significantly less effort has been spent in the past half century on 
understanding exactly how and why feedback works so well not only in the 
control of engineered systems but in biological, social, economic and 
physical systems as well. 

Feedback-Setting the Stage
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• Is there a property that transcends models and is omnipresent the moment 
the loop is closed? 
-A property that does not depend on the choice of feedback gains.
-That is, what is the most fundamental property of feedback, if one exists?

• A property that is present whenever there is feedback, in Discrete Event 
Systems and Hybrid Systems, with Supervisory Control and Intelligent 
Control, in systems with Human Interaction (Man-Machine Interaction), in 
Economic and Social Systems, and in Biological and Physical systems.  

Feedback-Setting the Stage
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• A controls researcher or practitioner would perhaps state that uncertainty reduction 
is the main feedback property since feedback is necessary for stabilization under 
uncertainty. And it is needed for reduction of sensitivity to parameter variations, 
and also for reduction of the effects of external disturbances on performance. 

• But whether a feedback controller will stabilize or destabilize, decrease or increase 
the effects of parameter variations or of disturbances depends on the particular 
choices for the gains.

• For example, any positive gain (in an error feedback configuration) can stabilize 1/s 
-and it is very robust. But if gain negative, the system is unstable. 

• Similar results with sensitivity, where sensitivity my decrease or increase 
depending on the gain.

• So what is the property we are looking for?  Does it even exist?

Feedback-Setting the Stage
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• What are the fundamental principles, the fundamental mechanisms, which 
make feedback control so powerfully effective? 

• These fundamental mechanisms should be independent of the particular 
type of mathematical models used, that is the system may be described by 
differential equations, by automata, by logic expressions, or by natural 
language, since we do know that feedback is ubiquitous and works! 

• What are these fundamental properties that are present everywhere? 

• For the LTI case, analysis best done via polynomial matrix descriptions!

Feedback Fundamental Property: 
Re-stating the Problem
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• It is well known that feedback control can be seen as a mechanism that 
approximately inverts the plant dynamics, producing an “approximate” inverse of 
the plant at its control input. 

• If  then 

• That is at the control input  U of the plant, the external input R acts through an 
inverse of the plant  so to cancel all plant dynamics and produce an output Y, which 
is approximately equal to the reference input R. 

Feedback High Gains
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• Y(s)/U(s) =

Open Loop (Feed-forward) Control
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• When a > 0 for K > -1 the closed loop system is stable
• When a < 0 for K < -1 the closed loop system is stable

Closed Loop (Feedback) Control
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G(s)=n/d Gc (s)=nc /dc
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Feedback Control-A More General Case (1)
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u = D[Xr + Ldy + Lη + (I + LN )D−1du ]

y = N[Xr + Ldy + Lη + ( I + LN )D−1du ]

Feedback Control-A More General Case (2)
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y = G(I −CyG)−1[Crr +Cydy +Cyη + du ]

u = (I −CyG)−1[Crr +Cydy +Cyη + du ]

y = Tr + (So − I )dy +GQη + GSidu

u=Mr+Qdy+Qη+Sidu
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  G = ND−1

yo = y + dy = Tr + Sody + GQη + GSidu.
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• Given y/u = G = ND-1 the stable rational function matrices  (T, M) in y = Tr and u = 
Mr are realizable with internal stability by means of a two degrees of freedom 
control configuration if and only if there exists stable rational function matrix X so 
that

• D appears always in M, that is u = Mr = DXr

• Because of uncertainty, feedback must be used to realize T and M and D 
cancels at the input of the plant – poles of the plant (in D) always cancel 
with zeros of the map generated between the input to the plant u and the 
external input r (in D), same as in the simpler cases discussed before

Related Result-Realizing Stable Transfer 
Functions with Internal Stability
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• G(s) = 1/s

• Closed loop transfer function Stability when

• which is more restrictive than before ( k >0). As  T becomes larger, the range for k becomes smaller.

• Notice that U(z), as it acts on the plant H(z), cancels the plant dynamics by the pole/zero cancellation of z-1.  
This cancellation happens independently of the sampling period T.  

Feedback Control-Sampled Data
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• The feedback mechanism always generates a signal  u the behavior of 
which is modified by D, the inverse of the map D-1 which is the transfer 
function between  z and  u    in the plant    Dz=u. y=Nz.

z= D-1 u

• D appears in the numerator of the transfer function between u and r 
u = M r = DX r

and it has the effect that for such u the behavior of the plant state 
z= D-1 u = D-1DX r = X r 

is completely freed from behavior determined by the plant modes.

• So feedback does not really invert the plant  y = G u.

• It inverts the map between  z and u, always! Namely it inverts the map z= 
D-1 u to generate u = D(.)r = DX r.

Feedback Fundamental Mechanism-1
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• Arbitrary feedback will result, almost always, to a closed loop system 
with dynamics (poles) different from the open loop dynamics (poles).  
Examples: Root-Locus; A-BK; A-BHC; D (s)Dc (s) + N(s)Nc (s).
Comments: K that preserves open loop locations; Assumption of 
controllability and observability;

• Sampled data; nonlinear systems; 

• Human-in-the loop. Example car and driver.

• For almost any feedback gains  the dynamics are completely reassigned, 
that is the plant behavior drastically changes.  

• In feedback control, gains are chosen to assign the new dynamics and not 
to cancel the old ones. 

Feedback Fundamental Mechanism-2
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• Complete change of plant dynamics takes place:
a. almost always in closed loop feedback control.
b. almost never in open loop feed-forward control.

• Complete assignment of desirable dynamics to the compensated system is:
a. straigtforward in the open loop feed-forward control case.
b. harder in the closed loop feedback case, although  typically there is a large 
range of controller choices that satisfy the requirements for desirable dynamics 
(control specifications) as one must consider the trade-offs.

• In the open loop control after the current plant dynamics have been cancelled out 
(which is the difficult part) one can simply choose the compensated system 
dynamics by assigning them to the controller.  So the open loop controller should 
contain all the desirable dynamics. 

• In the closed loop control the choice of the appropriate controller is a non trivial 
matter and the field of Control Theory has been studying this problem intensively 
for at least the past 50 years.  Certainly a topic that requires deep understanding.  
About 25 years ago all stabilizing controllers were conveniently parameterized a 
result that also showed the large number of choices one has. 

Open vs Closed Loop
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• At the output the connection enforces

Y = (-GGcY)  or (1+GGc)Y = 0

or Y = (-GGcY) +GW+(no /ddc yo )   
Y = (1+GGc) -1 GW+ (1+GGc)-1 (no /ddc yo ) 

• For the Return Difference equality to be satisfied D needs to cancel 
out.

• Cancellation of D is due to the creation of the “Return Difference” or 
to “Forcing the Interconnection” or “Closing the Loop”

Connection to Return Difference (1+GGc)
R E

Gc

U Y
G

.
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• Closing the loop with arbitrary feedback gains will result almost always to a closed loop system with 
dynamics (poles) different from the open loop dynamics (poles). In feedback all plant poles cancel out 
automatically. Fundamental property.

• Open vs Closed Loop.     The two steps control action: Canceling old dynamics and inserting new.

• We saw the connection to return difference
• There are also connections to internal models
• There are connections to recursive relations
• There are connections to internal feedback-FIR and IIR

• Best seen as pole/zero cancellation via D and PMD.
The control input generates the exact inverse of input to state map   z = D-1u, always.

• Applicable to general feedback systems: While driving the sensor input and the subsequent driver 
action makes the car behave very differently in response to a side wind gust from the case where no 
sensor feedback is received and no action is taken. 

• It is conjectured that the reason for robustness in feedback systems is the fact that feedback cancels 
the plant dynamics always, independently of the fact they are not known exactly.  If feedback were to 
cancel all poles, zeros and gain of the pant then the resulting overall gain would be independent of the 
plant.  This is the case in fact when the loop gain is very large and the plant is (approximately) 
inverted.  In general the feedback control does not invert the whole plant but, as it was shown, it 
inverts part of the plant namely the input to state map. Only the denominator of the plant cancels, 
but not the numerator, and the effect of the parameter uncertainty is reduced, but not eliminated. 

CONCLUDING REMARKS
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