Some Notes on Realizations

S.P. Bhattacharyya

(Based on joint work with L.H.Keel)

In honor of Prof. W.A.Wolovich on his 70th Birthday

Wolovich Symposium

December 2008, Cancun, Mexico

Motivation

Consider the transfer function

$$P^{0}(s) = \begin{bmatrix} \frac{2}{(s+1)(s-1)} & \frac{1}{s-1} \\ \frac{1}{s-1} & \frac{1}{s-1} \end{bmatrix}$$

- The order of a minimal realization is '2'
- Assume that the plant P⁰(s) can be stabilized by a compensator C⁰(s) of order q.

Now consider the plant $P^{0}(s)$ perturbed to

•

$$P_1(s) = P(s,\delta) = \begin{bmatrix} \frac{2}{(s+1)(s-1)} & \frac{1+\delta}{s-1} \\ \frac{1}{s-1} & \frac{1}{s-1} \end{bmatrix}$$

The closed-loop system with $C^{0}(s)$ and $P_{1}(s)$ is unstable with a closed-loop pole near s=1

This is true for every $C^{0}(s)$ that stabilizes $P^{0}(s)$

Parametrized Plants

Let

$$P(s,\mathbf{p}) = P^{-}(s,\mathbf{p}) + P^{+}(s,\mathbf{p})$$

and let the McMillan degrees be

$$v^{+}(\mathbf{p}) \coloneqq v \Big[P^{+}(s,\mathbf{p}) \Big] = v^{+} \Big[P(s,\mathbf{p}) \Big]$$
$$v^{-}(\mathbf{p}) \coloneqq v \Big[P^{-}(s,\mathbf{p}) \Big] = v^{-} \Big[P(s,\mathbf{p}) \Big]$$

Example

$$P_{1}(s,\mathbf{a}) = \begin{bmatrix} \frac{2+a_{1}}{(s-1+a_{2})(s+1)} & \frac{1+a_{1}}{s-1+a_{2}} \\ \frac{1+a_{1}}{s-1+a_{2}} & \frac{1+a_{1}}{s-1+a_{2}} \end{bmatrix}, \mathbf{a} = \begin{bmatrix} a_{1} & a_{2} \end{bmatrix}, \mathbf{a}^{0} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$P_{2}(s,\mathbf{b}) = \begin{bmatrix} \frac{2+b_{1}}{(s-1+b_{5})(s+1)} & \frac{1+b_{2}}{s-1+b_{5}} \\ \frac{1+b_{3}}{s-1+b_{6}} & \frac{1+b_{4}}{s-1+b_{6}} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_{1} & b_{2} \\ \mathbf{b}^{0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \end{bmatrix}$$
$$\mathbf{b}^0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P_{3}(s,\mathbf{c}) = \begin{bmatrix} \frac{2+c_{1}}{(s-1+c_{5})(s+1)} & \frac{1+c_{2}}{s-1+c_{5}} \\ \frac{1+c_{3}}{s-1+c_{5}} & \frac{1+c_{4}}{s-1+c_{6}} \end{bmatrix},$$

$$P_4(s, \mathbf{d}) = \begin{bmatrix} \frac{2+d_1}{(s-1+d_5)(s+1)} & \frac{1+d_2}{s-1+d_6} \\ \frac{1+d_3}{s-1+d_7} & \frac{1+d_4}{s-1+d_8} \end{bmatrix},$$

$$\mathbf{c} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 \end{bmatrix}$$
$$\mathbf{c}^0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 & d_7 & d_8 \end{bmatrix}$$
$$\mathbf{d}^0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$P^{0}(s) = P_{1}(s, \mathbf{a}^{0}) = P_{2}(s, \mathbf{b}^{0}) = P_{3}(s, \mathbf{c}^{0}) = P_{4}(s, \mathbf{d}^{0})$$

Antistable McMillan degrees $v^{+}[P^{0}(s)] = v_{1}^{+}(\mathbf{a}^{0}) = v_{2}^{+}(\mathbf{b}^{0}) = v_{3}^{+}(\mathbf{c}^{0}) = v_{4}^{+}(\mathbf{d}^{0}) = 1$

Under arbitrary but infinitesimal perturbations, $v^+(\mathbf{a}) = 2$, $v^+(\mathbf{b}) = 2$, $v^+(\mathbf{c}) = 3$, $v^+(\mathbf{d}) = 4$

- The McMillan degree v(p) = v[P(s, p)] as well as v⁺(p) is a discontinuous function of p and in general its value drops on an algebraic variety.
- If *B* denotes an arbitrarily small ball in R^{I,} centered at the origin define

 $\mathbf{v}_{max} = \max_{\delta \mathbf{p} \in \mathcal{B}} \mathbf{v}(\mathbf{p} + \delta \mathbf{p})$

and the algebraic variety: $\mathcal{V} = \{\mathbf{p} : \mathbf{v}(\mathbf{p}) \neq \mathbf{v}_{max}\}$

Similarly, we write $\mathcal{V}^+ := \{\mathbf{p} : \mathbf{v}^+(\mathbf{p}) \neq \mathbf{v}^+_{max}\}$

Structurally Stable Stabilization

Theorem 1 A plant with transfer function $P(s, \mathbf{p}^0)$ can be stabilized by a linear time invariant feedback controller in a structurally stable manner iff

$$\mathbf{v}^+(\mathbf{p}^0) = \mathbf{v}_{max}^+.$$

If $v^+(\mathbf{p}^0) < v^+_{max}$ then

- any stabilizing controller for $P(s, \mathbf{p}^0)$ renders the closed loop is not structurally stable, that is, the closed loop is destabilized by arbitrarily small perturbations. of the parameter \mathbf{p}^0 .
- any controller that stabilizes $P(s, \mathbf{p_1})$ with $v^+(\mathbf{p_1}) = v^+_{max}$ fails to stabilize the plant $P(s, \mathbf{p^0})$.

Example 2 Consider the plant with transfer function parametrization:

$$y(s) = P(s,\delta)u(s)$$

where

$$P(s,\delta) = \begin{bmatrix} \frac{2}{(s+1)(s-1)} & \frac{1+\delta}{s-1} \\ \frac{1}{s-1} & \frac{1}{s-1} \end{bmatrix}.$$

With $\delta = 0$,

$$P(s,0) =: P^{0}(s) = \begin{bmatrix} \frac{2}{(s+1)(s-1)} & \frac{1}{s-1} \\ \frac{1}{s-1} & \frac{1}{s-1} \end{bmatrix}$$

We consider the stabilizing controller

$$u = -Ky + v$$

with

$$K = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

A minimal realization of $P^0(s)$ is

$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} x$$

(10)

and the closed loop system is

 $\dot{x} = (A - BKC)x + Bv$

is internally stable with the controller (2) with characteristic polynomial

 $s^2 + 9s + 12$.

Now consider a "small" perturbation of $P^0(s)$ obtained by letting δ be nonzero. A minimal realization of (6) with $\delta \neq 0$ is:

$$\dot{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 1 & 1 + \delta \\ 1 & 1 \end{bmatrix} u$$
(11)
$$y = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} x$$

and the closed loop system with the previous controller is

$$\dot{x} = \begin{bmatrix} 0 & -1 & -2 \\ 4+3\delta & -3-3\delta & -6-4\delta \\ 4 & -4 & -5 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 1 & 1+\delta \\ 1 & 1 \end{bmatrix} v.$$
(12)

The characteristic polynomial of (12) is

$$s^{3} + (8+3\delta)s^{2} + (3+2\delta)s - \delta - 12$$
(13)

and is seen to be unstable for "small" values of δ , and in this particular case for all values of δ . Moreover, as $\delta \rightarrow 0$, a root to (13) tends to s = 1.

Concluding Remarks

- This talk establishes the fact that structurally stable stabilization requires that the nominal system have maximal antistable order
- Showed that discontinuity of this order at the given nominal parameter makes structurally stable stabilization incompatible with nominal stabilization
- The discussion clarifies the importance of system order, McMillan degree, and apriori knowledge of internal structure of state space models
- Emphasizes the fundamental differences between state space modelling and transfer function modelling