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Motivation

Consider the transfer function
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PO () — (s+1)(s-1) s-1
e R
B Sl s—1|

e The order of a minimal realization is ‘2’

 Assume that the plant P9(s) can be stabilized by a
compensator CO(s) of order g.



Now consider the plant P9(s) perturbed to

2 1+6 |
P (s) = P(s.5) = (s+1)(s-1) s-1
/(5) = P(s,0) : .
- oos=1 s—1
. The closed-loop system with C9(s) and P(s) is

unstable with a closed-loop pole near s=1

This is true for every CO(s) that stabilizes P9(s)



Parametrized Plants

Let
P(s,p) =P (s,p)+P7(s,p)

and let the McMillan degrees be

v (p) =v[P"(s.p)|=v*[P(s.p).
v (p)=v|P (s.p)|=V [P(s,p).
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P7(s)=PRi(s,a°) = P,(s,b”) = Py(s,c”) = P, (s,d")

Antistable McMillan degrees
v [PP(s)]= vy @) =v; (6°) =v3 (%) = v; (d°) =1

Under arbitrary but infinitesimal perturbations,
vi@=2 vdb)=2 v(c)=3 v (d)=4



 The McMillan degree v(p)=v[p(s.p)] as well as

vi(p)Is a discontinuous function of p and In
general its value drops on an algebraic variety.

e |If B denotes an arbitrarily small ball in R!
centered at the origin define

Vinax = 1NAX V(P + SP)
opeB

and the algebraic variety: o v ={p : v(p) % Vi)

Similarly, we write V" :={p : V7 (D) #V



Structurally Stable
Stabilization

Theorem 1 A plant with transfer function P(s,p°) can be stabilized by a linear time invariant feedback
controller in a structurally stable manner iff

V+(p0) _ V+

— Vmax

Ifvi(p’) < v then

max

o any stabilizing controller for P(s,p°) renders the closed loop is not structurally stable, that is, the
closed loop is destabilized by arbitrarily small perturbations. of the parameter p°.

+
mnax

e any controller that stabilizes P(s,p1) with v* (p1) = v;"__ fails to stabilize the plant P(s,p°).



Example 2 Consider the plant with transfer function parametrization:

where
i 2
P(s,8) = (S+1)1(s—1)
: s—1
With d = 0,
) 2
oy - POy | (s+HD(s—1)
P(s,0) =: P°(s) = 1
: s—1
We consider the stabilizing controller
u=—Ky+v

with




A minimal realization of P°(s) is
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and the closed loop system 1
§=(A-BKC)r+By

1 nternally stable with the controller (2) with characteristic polynomial
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Now consider a “small” perturbation of P (s) obtained by letting 8 be nonzero. A minimal realization of

(6) with 0 # 0 is:
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i=1 0 1 0lx+t|1 1+8]u (11)
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and the closed loop system with the previous controller 18
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The characteristic polynomial of (12) 1s
4+ (8438)s" + (3+28)s -5 — 12 (13)

and is seen to be unstable for “small” values of 6, and in this particular case for all values of 8. Moreover,
as 0 — 0, aroot to (13) tends to s = 1.



Concluding Remarks

This talk establishes the fact that structurally stable
stabilization requires that the nominal system have
maximal antistable order

Showed that discontinuity of this order at the given
nominal parameter makes structurally stable
stabilization incompatible with nominal stabilization

The discussion clarifies the importance of system
order, McMillan degree, and apriori knowledge of
internal structure of state space models

Emphasizes the fundamental differences between
state space modelling and transfer function
modelling
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