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Abstract—We use a new definition of Neuro-Fuzzy Dynamical
Systems, using the concept of Fuzzy Dynamical Systems (FDS)
in conjunction with High Order Neural Network Functions (F-
HONNFs). The dynamical System is assumed nonlinear and
totally unknown. We first propose its approximation by a special
form of a fuzzy dynamical system (FDS) and in the sequel the
fuzzy rules are approximated by appropriate HONNF’s. Thus the
identification scheme leads to a Recurrent High Order Neural
Network, which however, takes into account the fuzzy output
partitions of the initial FDS. The proposed scheme does not
require a priori experts’ information on the number and type of
input variable membership functions, making it less vulnerable
to initial design assumptions.

After the identification process we adaptively control the
system indirectly. By doing so, we present weight updating laws
for the involved HONNs. With rigorous proofs we guarantee that
the errors converge to zero exponentially fast, or at least become
uniformly ultimately bounded. At the same time we guarantee
stability by proving that all signals in the closed loop remain
bounded.

During both the identification and control process we assume,
first that we know the centers and shapes of membership func-
tions, and we identify the HONN parameters in which case we
get a directional variation. Thus in order to guarantee existence
of the control law, we define a new method replacing the well
known projection, which is termed parameter hopping and thus
we rigorously prove existence of the control law, guaranteeing
stability properties.

Simulations illustrate the potency of the method and com-
parisons with conventional approaches are given. The simulation
tests are based on benchmark examples. Also, the applicability of
the method is tested on a DC Motor system where it is shown that
by following the proposed procedure one can obtain asymptotic
regulation.

Index Terms—Neural Networks, Fuzzy Systems, Adaptive
Control, Parameter Hopping.

I. INTRODUCTION

NONLINEAR time invariant dynamical systems can be
represented by general nonlinear dynamical equations of

the form

ẋ = f(x, u) (1)

The mathematical description of the system is required,
so that we are able to control it. Unfortunately, the exact
mathematical model of the plant, especially when this is highly
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nonlinear and complex, is rarely known and thus appropriate
identification schemes have to be applied which will provide
us with an approximate model of the plant.

It has been established that neural networks and fuzzy
inference systems are universal approximators [1], [2], [3],i.e.,
they can approximate any nonlinear function to any prescribed
accuracy provided that sufficient hidden neurons and training
data or fuzzy rules are available. Recently, the combination of
these two different technologies has given rise to fuzzy neural
or neuro fuzzy approaches, that are intended to capture the
advantages of both fuzzy logic and neural networks. Numerous
works have shown the viability of this approach for system
modeling [4] - [12].

The neural and fuzzy approaches are most of the time
equivalent, differing between each other mainly in the structure
of the approximator chosen. Indeed, in order to bridge the gap
between the neural and fuzzy approaches several researchers
introduce adaptive schemes using a class of parameterized
functions that include both neural networks and fuzzy systems
[6] - [12]. Regarding the approximator structure, linear in the
parameters approximators are used in [10], [13], and nonlinear
in [14], [15], [16].

Adaptive control theory has been an active area of research
over the past years [13]-[51]. In the neuro or neuro fuzzy
adaptive control two main approaches are followed. In the
indirect adaptive control schemes [13] - [19], first the dynam-
ics of the system are identified and then a control input is
generated according to the certainty equivalence principle. In
the direct adaptive control schemes [20] - [25] the controller
is directly estimated and the control input is generated to
guarantee stability without knowledge of the system dynamics.
Also, many researchers focus on robust adaptive control that
guarantees signal boundedness in the presence of modeling
errors and bounded disturbances [26]. In [27] both direct
and indirect approaches are presented, while in [28],[29] a
combined direct and indirect control scheme is used.

Recently [41], [42], high order neural network function
approximators (HONNFs) have been proposed for the identifi-
cation of nonlinear dynamical systems of the form (1), approx-
imated by a Fuzzy Dynamical System. This approximation
depends on the fact that fuzzy rules could be identified with
the help of HONNFs.

In this paper HONNFs are also used for the neuro fuzzy
indirect control of nonlinear dynamical systems, which com-
prises of two interrelated phases: first the identification of the
model and second the control of the plant.

The identification phase usually consists of two categories:
structure identification and parameter identification. Structure
identification involves finding the main input variables out of
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all possible, specifying the membership functions, the partition
of the input space and determining the number of fuzzy rules
which is often based on a substantial amount of heuristic
observation to express proper strategy’s knowledge. Most of
structure identification methods are based on data clustering,
such as fuzzy C-means clustering [9], mountain clustering
[11], and subtractive clustering [12]. These approaches require
that all input-output data are ready before we start to identify
the plant. So these structure identification approaches are off-
line.

In the proposed approach structure identification is also
made off-line based either on human expertise or on gathered
data. However, the required a-priori information obtained
by linguistic information or data is very limited. The only
required information is an estimate of the centers of the output
fuzzy membership functions. Information on the input variable
membership functions and on the underlying fuzzy rules is
not necessary because this is automatically estimated by the
HONNFs. This way the proposed method is less vulnerable
to initial design assumptions. The parameter identification is
then easily addressed by HONNFs, based on the linguistic
information regarding the structural identification of the output
part and from the numerical data obtained from the actual
system to be modeled.

We consider that the nonlinear system is affine in the
control and could be approximated by a dynamic model
using two independent adaptive fuzzy subsystems. Every fuzzy
subsystem is approximated by a family of HONNFs, each
one being related with a group of fuzzy rules, every group
associated with one center of an output fuzzy membership
function. This way, the identification scheme leads up to
a Recurrent High Order Neural Network, which however
takes into account the fuzzy output partitions of the initial
FDS. Weight updating laws are given and we prove that
when the structural identification is appropriate then the error
reaches zero very fast. Also, an appropriate state feedback
is constructed to achieve asymptotic regulation of the output,
while keeping bounded all signals in the closed loop. The
existence of the control signal is always assured by introducing
a novel method of parameter hopping, which is incorporated
in the weight updating law.

The paper is organized as follows. Section II presents
preliminaries related to the concept of adaptive fuzzy systems
(AFS) and the terminology used in the remaining paper, while
Section III reports on the ability of HONNFs to act as fuzzy
rule approximators. The indirect neuro fuzzy regulation of
affine in the control dynamical systems is presented in Section
IV, where the method of parameter hopping is explained and
the associated weight adaptation laws are given. Simulation
results on the identification of well known benchmark prob-
lems are given in Section V and the performance of the
proposed scheme is compared to other well known approaches
of the literature. Also, simulation results on the control of
a DC Motor system are given, showing that by following
the proposed procedure one can obtain asymptotic regulation.
Finally, Section VI concludes the work.

II. PRELIMINARIES

In this section we briefly present the notion of adaptive
fuzzy systems and their conventional representation. We are
also introducing the representation of fuzzy systems using
the fuzzy rule indicator functions, which is used for the
development of the proposed method.

A. Adaptive Fuzzy Systems

The performance, complexity, and adaptive law of an adap-
tive fuzzy system representation can be quite different depend-
ing upon the type of the fuzzy system (Mamdani or Takagi-
Sugeno). It also depends upon whether the representations
is linear or nonlinear in its adjustable parameters. Adaptive
fuzzy controllers depend also on the type of the adaptive fuzzy
subsystems they use. Suppose that the adaptive fuzzy system
is intended to approximate the nonlinear function f(x). In the
mamdani type, linear in the parameters form, the following
fuzzy logic representation is used [2],[3]:

f(x) =
M∑

l=1

θlξl(x) = θT ξ(x) (2)

where M is the number of fuzzy rules, θ = (θ1, ..., θM )T ,
ξ(x) = (ξ1(x), ..., ξM (x))T and ξl(x) is the fuzzy basis
function defined by

ξl(x) =

∏n
i=1 µF l

i
(xi)

∑M
l=1

∏n
i=1 µF l

i
(xi)

(3)

θl are adjustable parameters, and µF l
i

are given membership
functions of the input variables (can be Gaussian, triangular,
or any other type of membership functions).

In Tagaki-Sugeno formulation f(x) is given by

f(x) =
M∑

l=1

gl(x)ξl(x) (4)

where gl(x) = al,0+al,1x1+. . .+al,nxn, with xi, i = 1 . . . n
being the elements of vector x and ξl(x) being defined in
(3). According to [3], (4) can also be written in the linear to
the parameters form, where the adjustable parameters are all
al,i, l = 1 . . . M, i = 1 . . . n.

From the above definitions it is apparent in both, Mamdani
and Tagaki-Sugeno forms that the success of the adaptive
fuzzy system representations in approximating the nonlinear
function f(x) depends on the careful selection of the fuzzy
partitions of input and output variables. Also, the selected
type of the membership functions and the proper number of
fuzzy rules contribute to the success of the adaptive fuzzy
system. This way, any adaptive fuzzy or neuro-fuzzy approach,
following a linear in the adjustable parameters formulation
becomes vulnerable to initial design assumptions related to
the fuzzy partitions and the membership functions chosen.
In this paper this drawback is largely overcome by using
the concept of rule indicator functions, which are in the
sequel approximated by High order Neural Network function
approximators (HONNFs). This way there is not any need for
initial design assumptions related to the membership values
and the fuzzy partitions of the if part.
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B. Fuzzy system description using rule indicator functions

Let us consider the system with input space u ⊂ Rm and
state - space x ⊂ Rn , with its i/o relation being governed by
the following equation

zt = f(xt, ut) (5)

where f(·) is a continuous function and the superscript t de-
notes the temporal variable. In case the system is dynamic the
above equation could be replaced by the following difference
equation

xt+1 = f(xt, ut) (6)

where the superscript t denotes the temporal variable, t =
1, 2, ....

By setting y = [x, u] and omitting superscript t, Eq. (5) may
be rewritten as follows

z = f(y) (7)

In many practical situations, we are unable to measure
accurately the states and inputs of a system of the form in (5);
in most cases, we are provided with cheap sensors, expert’s
opinions, e.t.c which provide us with imprecise estimations
of the state and input vectors. Thus, instead of vectors x and
u we are provided with some linguistic variables x̃i and ũi,
respectively.

Let now ỹ := (x̃, ũ) and suppose that each linguistic
variable ỹi belongs to a finite set Li with cardinality ki, i.e. ỹi

takes one of ki variables. Let also ỹij denotes the ith element
of the set Li. Then we may define a function h̃i : R → Li

to be the output function of the system in Eq. (7) in the case
that

ỹi = h̃i(yi) (8)

Note that h̃i(·) maps the real axis into a set of linguistic
variables Li , and thus h̃i(·) is not defined in the usual way.
In order to overcome such a problem we define the function
h̃i : R → {1, 2, ..., ki} as follows

h̃i(yi) = ỹij ⇐⇒ hi(yi) = j (9)

Since hi(·) is very similar to h̃i(·) , we will call the
function hi(·) the ith output of the system in Eq. (7). Also,
h̃i(·) and consequently hi(·) is related with the structural
identification part mentioned in section I and arrive after using
an automatic procedure based on system operation data or
after consulting human experts advising on how to partition
the system variables.

Following the standard approach in fuzzy systems theory we
associate with each ỹij a membership function µ̃ij(yi) ∈ [0, 1]
which satisfies

µ̃ij(yi) = max
l

µ̃il(yi) ⇐⇒ hi(yi) = j (10)

From the definition of the functions h̃i(·) [or hi(·)] we have
that the space y = x×u is partitioned in the following way:
let yij be defined as follows

yij = {yi ∈ R : hi(yi) = j} (11)

i.e. yij denotes the set of all the variables yi that output the
same linguistic variable ỹij . Thus y is partitioned into disjoint
subsets yj1,j2,...,jn+m

defined as follows

yj1,j2,...,jn+m
:= y1j1

× · · · × y(n+m)jn+m
, ji ∈ {1, 2, ..., ki}

(12)
In a similar way we may define the sets xij , uij , zij and

the sets xj1,j2,...,jn
, uj1,j2,...,jn

and zj1,j2,...,jn
. Note now the

following fact: for two vectors (x(1), u(1)) ∈ yj1,j2,...,jn+m

and (x(2), u(2)) ∈ yj1,j2,...,jn+m
there maybe

hi(fi(x(1), u(1))) 6= hi(fi(x(2), u(2))) (13)

for some i ∈ {1, 2, ..., n} , i.e. two input vectors belonging
to the same subset yj1,j2,...,jn+m

may point - through the
vector - field f(·) , to different subsets zl1,l2,...,ln . Let
now Ωl1,l2,...,ln

j1,j2,...,jn+m
be defined as the subset of yj1,j2,...,jn+m

that points - through the vector - field f(·) , to the subsets
zl1,l2,...,ln , i.e

Ωl1,l2,...,ln
j1,j2,...,jn+m

:=

= {(x, u) ∈ yj1,j2,...,jn+m
: h1(z1) = l1, ..., hn(zn) = ln}

and define the transition possibilities πl1,...,ln
j1,...,jn+m

as follows

πl1,...,ln
j1,...,jn+m

:=

∫
(x,u)∈Ω

l1,...,ln
j1,...,jn+m

dXdU
∫
(x,u)∈yj1,...,jn+m

dXdU
(14)

where πl1,...,ln
j1,...,jn+m

is a number belonging to a set [0,1]
that represents the fraction of the vectors (x,u) in yj1,...,jn+m

that points - through the vector field f(·) to the set χl1,...,ln .
Obviously

∑

l1,...,ln

πl1,...,ln
j1,...,jn+m

= 1 (15)

In order to present the lemma of Section III, we define
the indicator function: Let I l1,l2,...,ln

j1,j2,...,jn+m
denote the indicator

function of the subset Ωl1,l2,...,ln
j1,j2,...,jn+m

, that is,

I l1,...,ln
j1,...,jn+m

(x, u) =
{

α if (x, u) ∈ Ωl1,...,ln
j1,...,jn+m

0 otherwise
(16)

where α denotes the firing strength of the rule.
Using the above definitions, we can see that the system in

Eq. (7) is described by fuzzy rules of the form

Rl1,...,ln
j1,...,jn+m

⇔





IF y1 is ỹ1j1 AND...
AND yn+m is ỹ(n+m)jn+m

THEN
z1 is z̃1l1 AND...AND zn is z̃nln

with possibility πl1,...,ln
j1,...,jn+m

(17)

where obviously ỹiji = h̃i(yt
i) and z̃ili = h̃i(zi) =

h̃i(fi(x, u)).
In the above notation, if j1 = l1, j2 = l2 and . . . and

jn = ln, then these points participate to the definition of
the same fuzzy rule. If j1 6= l1 or j2 6= l2 or or jn 6= ln,
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then these points define alternative fuzzy rules describing this
transition. Consider now the next definition.

Definition 1 (FS): A Fuzzy System - (FS) is a set of Fuzzy
Rules of the form (Rl1,l2,...,ln

j1,j2,...,jn+m
); the system in Eq. (5)

is called the Underlying System - (US) of the previously
defined FS. Alternatively, the system in Eq. (5) will be
called a Generator of the FS that is described by the rules
(Rl1,l2,...,ln

j1,j2,...,jn+m
).

Due to the linguistic description of the variables of the FS
it is not rare to have more than one systems of the form in
Eq. (7) to be generators for the FS that is described by the
rules (Rl1,l2,...,ln

j1,j2,...,jn+m
).

Define now the following system

z =
∑

z̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(χ, u) (18)

Where z̄l1,...,ln
j1,...,jn+m

∈ Rn be any vector satisfying
hi(z̄

l1,...,ln
j1,...,jn+m

(i)) = li where z̄l1,...,ln
j1,...,jn+m

(i) denotes the ith

entry of z̄l1,...,ln
j1,...,jn+m

Then, according to [41], [42] the system
in (18) is a generator for the FS (Rl1,l2,...,ln

j1,j2,...,jn+m
).

It is obvious that Eq. (18) can be also valid for dynamic
systems. In its dynamical form it becomes

χt+1 =
∑

x̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(χt, ut) (19)

Where x̄l1,...,ln
j1,...,jn+m

∈ Rn be any vector satisfying
hi(x̄

l1,...,ln
j1,...,jn+m

(i)) = li where x̄l1,...,ln
j1,...,jn+m

(i) denotes the ith

entry of x̄l1,...,ln
j1,...,jn+m

III. THE HONNF’S AS FUZZY RULE APPROXIMATORS

The main idea in presenting the main result of this section
lies on the fact that functions of high order neurons are
capable of approximating discontinuous functions; thus,
we use high order neural network functions in order to
approximate the indicator functions I l1,...,ln

j1,...,jn+m
. However, in

order the approximation problem to make sense the space
y := x × u must be compact. Thus, our first assumption is
the following:

(A.1) y := x× u is a compact set.

Notice that since y ⊂ <n+m the above assumption is
identical to the assumption that it is closed and bounded. Also,
it is noted that even if y is not compact we may assume that
there is a time instant T such that (xt, ut) remain in a compact
subset of y for all t < T ; i.e. if yT := {(xt, ut) ∈ y, t < T}
We may replace assumption (A.1) by the following assumption

(A.2) yT is a compact set.

It is worth noticing, that while assumption (A.1) requires
the system in Eq. (6) solutions to be bounded for all ut ∈ U
and x0 ∈ X , assumption (A.2) requires the system in Eq.
(6) solutions to be bounded for a finite time period; thus,
assumption (A.1) requires the system in Eq. (6) to be BIBS
stable while assumption (A.2) is valid for systems that are

not BIBS stable and, even more, for unstable systems and
systems with finite escape times.

We are now ready to show that high order neural network
functions are capable of approximating the indicator functions
I l1,...,ln
j1,...,jn+m

Let us define the following high order neural
network functions (HONNFs).

N(x, u; w, L) =
L∑

k=1

wk

∏

j∈Ik

Φdj(k)
j (20)

Where {I1, I2, ..., IL} is a collection of L not-ordered
subsets of {1, 2, ...,m + n}, dj(k) are non-negative integers,
Φj are sigmoid functions of the state or the input, which are
the elements of the following vector

Φ =




Φ1

.

.

.
Φn

Φn+1

.

.

.
Φm+n




=




S(x1)
.
.
.

S(xn)
S(u1)

.

.

.
S(um)




(21)

where

S(u) or S(x) = a
1

1 + e−βx
− γ (22)

and w := [w1 · · ·wL]T are the HONNF weights. Eq. (20) can
also be written

N(x, u; w, L) =
L∑

k=1

wksk(x, u) (23)

Where sk(x, u) are high order terms of sigmoid functions
of the state and/or input.

The next lemma [41] states that a HONNF of the form
in Eq. (23) can approximate the indicator function I l1,...,ln

j1,...,jn+m
.

Lemma 1: Consider the indicator function I l1,...,ln
j1,...,jn+m

and
the family of the HONNFs N(x, u; w, L). Then for any
ε > 0 there is a vector of weights wj1,...,jn+m;l1,...,ln and a
number of Lj1,...,jn+m;l1,...,ln high order connections such that

sup
(x,u)∈ȳ

{I l1,...,ln
j1,...,jn+m

(x, u)−

−N(x, u; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)} < ε

where ȳ ≡ y if assumption (A.1) is valid and ȳT ≡ y if
assumption (A.2) is valid.

Let us now keep Lj1,...,jn+m;l1,...,ln constant, i.e. let
us preselect the number of high order connections, and
let us define the optimal weights of the HONNF with
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Lj1,...,jn+m;l1,...,ln high order connections as follows

w̄j1,...,jn+m;l1,...,ln := arg min
w∈Rj1,...,jn+m;l1,...,ln

×



 sup

(x,u)∈ȳ

∣∣∣I l1,...,ln
j1,...,jn+m

(x, u)−N(x, u;w,Lj1,...,jn+m;l1,...,ln)
∣∣∣




and the modeling error as follows

νl1,...,ln
j1,...,jn+m

(x, u) = I l1,...,ln
j1,...,jn+m

(x, u)−

−N(x, u; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

It is worth noticing that from Lemma 1 we have that
sup

(x,u)∈ȳ

∣∣∣νl1,...,ln
j1,...,jn+m

(x, u)
∣∣∣ can be made arbitrarily small by

simply selecting appropriately the number of high order con-
nections.

Using the approximation Lemma 1 it is natural to
approximate system in Eq. (19) by the following dynamical
system

zt+1 =
∑

x̄l1,...,ln
j1,...,jn+m

(x, u)×

×N(zt, ut; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

Let now χt(χ0, ut) denote the solution in Eq. (19) given
that the initial state at t = 0 is equal to χ0 and the input is
ut. Similarly we define zt(z0, ut). Also let

ν(zt, ut) =
∑

(x̄l1,...,ln
j1,...,jn+m

(x, u)× νl1,...,ln
j1,...,jn+m

(zt, ut))
(24)

Then, it can be easily shown that

zt(z0, ut) = χt(z0, ut) + ν(zt, ut) (25)

Note now that from the approximation Lemma 1 and the
definition of ν(zt, ut) we have that modeling error can be
made arbitrarily small provided that (zt, ut) remain in a
compact set (e.g. ȳ).

Theorem 1: [41],[42] Consider the FDS (Rl1,...,ln
j1,...,jn+m

) and
suppose that system in Eq. (6) is its underlying system.
Assume that either assumptions (A.1) or (A.2) hold. Also
consider the RHONN in [42]. Then, for any ε > 0 there
exists a matrix Θ∗ and a number L∗ high order connections
and Θ = Θ∗ is a generator for the FDS described by the rules

Rl1,...,ln
j1,...,jn+m

⇔





IF y1 is ỹ1j1 AND...
AND yn+m is ỹ(n+m)jn+m

THEN
χ1 is ỹ1l1 AND...AND χn is ỹnln

with possibility
_
π

l1,...,ln
j1,...,jn+m

where

max
∣∣∣πl1,...,ln

j1,...,jn+m
− _

π
l1,...,ln
j1,...,jn+m

∣∣∣ < ε

IV. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL

A. Neuro fuzzy representation and identification

We consider affine in the control, nonlinear dynamical
systems of the form

ẋ = f(x) + G(x) · u (26)

where the state x ∈ Rn is assumed to be completely measured,
the control u is in Rn, f is an unknown smooth vector field
called the drift term and G is a matrix with columns the
unknown smooth controlled vector fields gi, i = 1, 2, ..., n
and G = [g1, g2, . . . , gn]. The above class of continuous-time
nonlinear systems are called affine, because in (26) the control
input appears linear with respect to G. The main reason for
considering this class of nonlinear systems is that most of the
systems encountered in engineering, are by nature or design,
affine. Furthermore, we note that non affine systems of the
form given in (1) can be converted into affine, by passing
the input through integrators, a procedure known as dynamic
extension.

In our approach, referred to as indirect adaptive fuzzy-
HONNF control, the plant parameters are estimated on-line
except of the state fuzzy partitions, which are used to
calculate the controller parameters. The basic structure of the
indirect adaptive fuzzy-RHONN controller is shown in Fig. (1).

Controller F-RHONN
Identifier

Plant Model

On line
Adaptation
of Weights

Off line
Calculation
of Partitions

u

-+
e

X

X

Fig. 1. Overall scheme of the proposed indirect adaptive neuro-fuzzy control
system.

The following mild assumptions are also imposed on (26),
to guarantee the existence and uniqueness of solution for any
finite initial condition and u ∈ U .

Proposition 1: Given a class U of admissible inputs, then
for any u ∈ U and any finite initial condition, the state
trajectories are uniformly bounded for any finite T > 0 .
Hence, |x(T )| < ∞.

Proposition 2: The vector fields f, gi, i = 1, 2, ..., n are
continuous with respect to their arguments and satisfy a local
Lipchitz condition so that the solution x(t) of (26) is unique
for any finite initial condition and u ∈ U .

We are using an affine in the control fuzzy dynamical
system, which approximates the system in (26) and uses two
fuzzy subsystem blocks for the description of f(x) and G(x)
as follows

f(χ) = Aχ +
∑

f̄ l1,...,ln
j1,...,jn

× I l1,...,ln
j1,...,jn

(χ) (27)
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gi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× I1
l1,...,ln
j1,...,jn

(χ) (28)

where the summation is carried out over the number of all
available fuzzy rules, I, I1 are appropriate fuzzy rule indicator
functions and the meaning of indices •l1,...,ln

j1,...,jn
has already been

described in Section II.
According to Lemma 1, every indicator function can be

approximated with the help of a suitable HONNF. Therefore,
every I, I1 can be replaced with a corresponding HONNF as
follows

f(χ) = Aχ +
∑

f̄ l1,...,ln
j1,...,jn

×N l1,...,ln
j1,...,jn

(χ) (29)

ḡi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

×N1
l1,...,ln
j1,...,jn

(χ) (30)

where N, N1 are appropriate HONNFs.
In order to simplify the model structure, since some rules

result to the same output partition, we could replace the NNs
associated to the rules having the same output with one NN
and therefore the summations in (29),(30) are carried out over
the number of the corresponding output partitions. Therefore,
the affine in the control fuzzy dynamical system in (27),
(28) is replaced by the following equivalent affine Recurrent
High Order Neural Network (RHONN), which depends on the
centers of the fuzzy output partitions f̄l and ḡi,l

˙̂χ = Aχ̂ +
Npf∑

l=1

f̄ ×Nl(χ) +
n∑

i=1

(
Npgi∑

l=1

(ḡi)l ×N1l(χ)

)
ui

(31)
Or in a more compact form

˙̂χ = Aχ̂ + XWS(χ) + X1W1S1(χ)u (32)

Where A is a n× n stable matrix which for simplicity can be
taken to be diagonal as A = diag[a1, a2, ..., an] , X, X1 are
matrices containing the centers of the partitions of every fuzzy
output variable of f(x) and g(x) respectively, S(χ), S1(χ)
are matrices containing high order combinations of sigmoid
functions of the state χ and W, W1 are matrices containing
respective neural weights according to (31) and (23). The
dimensions and the contents of all the above matrices are
chosen so that XWS(χ) is a n × 1 vector and X1W1S1(χ)
is a n× n matrix. Without compromising the generality of the
model we assume that the vector fields in (28) are such that the
matrix G is diagonal. For notational simplicity we assume that
all output fuzzy variables are partitioned to the same number,
m, of partitions. Under these specifications X is a n×n·m block
diagonal matrix of the form X = diag(X1, X2, . . . , Xn) with
each Xi being an m-dimensional raw vector of the form

Xi = [ f̄ i
1 f̄ i

2 · · · f̄ i
m ]

where f̄ i
p denotes the center of the p-th partition of fi. Also,

S(χ) = [ s1(χ) . . . sk(χ) ]T , where each si(χ) with i =
{1, 2, ..., k}, is a high order combination of sigmoid functions
of the state variables and W is a n ·m× k matrix with neural
weights. W assumes the form W = [ W 1 · · · Wn ]T ,
where each W i is a matrix

[
wi

j l

]
m×k

. X1 is a n × n · m

block diagonal matrix X1 = diag(1X1, 1X2, . . . , 1Xn) with
each 1Xi being an m-dimensional raw vector of the form

1Xi = [ ḡi,i
1 ḡi,i

2 · · · ḡi,i
m ],

where ḡi i
k denotes the center of the k-th partition of

gii. W1 is a m · n × n block diagonal matrix W1 =
diag(1W 1, 1W 2, . . . , 1Wn), where each 1W i is a column
vector

[
1wi

j l

]
m×1

of neural weights. Finally, S1(χ) is a n×n

diagonal matrix with each diagonal element si(χ) being a high
order combination of sigmoid functions of the state variables.

According to the above definitions the configuration of the
F-HONNF approximator is shown in Fig. (2). When the inputs
are given into the fuzzy-neural network shown in Fig. (2),
the output of layer IV gives indicator function outputs which
activate the corresponding rules and are calculated by Eq. (23).
At layer V, each node performs a fuzzy rule while layer VI
gives the function output.

The approximator of indicator functions, has four layers. At
layer I, the input nodes represent input and/re state measurable
variables. At layer II, the nodes represent the values of the
sigmoidal functions. At layer III, the nodes are the values of
high order sigmoidal combinations. The links between layer
III and layer IV are fully connected by the weighting factors
W = [W 1 · · · Wn ]T , the adjusted parameters. Finally, at
layer IV the output represents the values of indicator functions.

It has to be mentioned here that the proposed neuro-
fuzzy representation, finally given by (32), offers some ad-
vantages over other fuzzy or neural adaptive representations.
Considering the proposed approach from the adaptive fuzzy
system (AFS) point of view, the main advantage is that
the proposed approach is much less vulnerable in initial
AFS design assumptions because there is no need for a-
priori information related to the IF part of the rules (type
and centers of membership functions, number of rules). This
information is replaced by the existence of HONNFs. Con-
sidering the proposed approach from the NN point of view,
the final representation of the dynamic equations is actually
a combination of High Order Neural Networks, each one
being specialized in approximating a function related to a
corresponding center of output state membership function.
This way, instead of having one large HONNF trying to
approximate ”everything” we have many, probably smaller,
specialized HONNFs. Conceptually, this strategy is expected
to present better approximation results; this is also verified in
the simulations section. Moreover, as it will be seen in section
IV-C, due to the particular bond of each HONNF with one
center of an output state membership function, the existence
of the control law is assured by introducing a novel technique
of parameter ”hopping” in the corresponding weight updating
laws.

B. Parametric uncertainty

We assume the existence of only parameter uncertainty, so,
we can take into account that the actual system (26) can be
modeled by the following neural form

χ̇ = Aχ + XW ∗S(χ) + X1W
∗
1 S1(χ)u (33)
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Fig. 2. Overall scheme of the proposed indirect adaptive neuro-fuzzy control system.

Define now, the error between the identifier states and the
real states as

e = χ̂− χ (34)

Then from (32) and (34) we obtain the error equation

ė = Ae + XW̃S(χ) + X1W̃1S1(χ)u (35)

Where W̃ = W −W ∗ and W̃1 = W1 −W ∗
1 .

Our objective is to find suitable control and learning laws
to drive both e and χ to zero, while all other signals in the
closed loop remain bounded. Taking u to be equal to

u = − [X1W1S1(χ)]−1
XWS(χ) (36)

and substituting it into (32) we finally obtain

˙̂χ = Aχ̂ (37)

In the next theorem the weight updating laws are given,
which can serve both the identification and the control
objectives provided that the updating of the weights of matrix
W1 is performed so that the existence of [X1W1S1(χ)]−1 is
assured.

Theorem 2: Consider the identification scheme given by 35.
Provided that [X1W1S1(χ)]−1 exists the learning law

a) For the elements of W i

ẇi
j l = −f̄ i

jpieisl(χ) (38)

b) For the elements of 1W i

1ẇi
j 1 = −ḡi i

j pieiuisi(χ) (39)

or equivalently 1Ẇ i = −(1Xi)T pieiuisi(χ) with
i = 1, . . . , n, j = 1, . . . ,m, l = 1, . . . , k
guarantees the following properties.
• e, χ̂, W̃ , W̃1 ∈ L∞, e, χ̂ ∈ L2

• limt→∞ e(t) = 0, limt→∞ χ̂(t) = 0
• limt→∞

˙̃W (t) = 0, limt→∞
˙̃W 1(t) = 0

Proof: Consider the Lyapunov function candidate

V (e, χ̂, W̃ , W̃1) = 1
2eT Pe + 1

2 χ̂T Pχ̂ + 1
2 tr{W̃T W̃}

+ 1
2 tr{W̃T

1 W̃1}

Where P > 0 is chosen to satisfy the Lyapunov equation

PA + AT P = −I

Taking the derivative of the Lyapunov function candidate and
taking into account (37) we get

V̇ = 1
2eT

(
AT P + PA

)
e + 1

2 χ̂T
(
AT P + PA

)
χ̂+

+
(

1
2eT PXW̃S + 1

2eT PXW̃S
)

+

+
(

1
2eT PX1W̃1S1u + 1

2eT PX1W̃1S1u
)

+

+tr{ ˙̃W
T

W̃}+ tr{ ˙̃W
T

1 W̃1} ⇒
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⇒ V̇ = − 1
2eT e− 1

2 χ̂T χ̂ + eT PXW̃S + eT PX1W̃1S1u+

+tr{ ˙̃W
T

W̃}+ tr{ ˙̃W
T

1 W̃1} ⇒
⇒ V̇ = − 1

2eT e− 1
2 χ̂T χ̂ ≤ 0

when

tr{ ˙̃W
T

W̃} = −eT PXW̃S

tr{ ˙̃W
T

1 W̃1} = −eT PX1W̃1S1u

Then, taking into account the form of W and W1 the above
equations result in the element wise learning laws given in
(38),(39). These laws can also be written in the following
compact form

Ẇ = −XT PeST (40)

Ẇ1 = −XT
1 PEUST

1 (41)

Where E and U are diagonal matrices such that E =
diag(e1, . . . en) and U = diag(u1, . . . un).

Using the above Lyapunov function candidate V and prov-
ing that V̇ ≤ 0 all properties of the theorem are assured [31].

Remark 1: The control law (36) can be also extended to
the following form

u = − [X1W1S1(χ)]−1 [XWS(χ) + kx] (42)

where k is appropriate positive definite diagonal gain ma-
trix. It can be easily verified that with this control law the
negativeness of the derivative of the Lyapunov function is
further enhanced. Therefore, term kx is actually acting as a
robustifying term.

Proof: Indeed, by using the extended control law (42) the
state estimate dynamics become

˙̂χ = Aχ̂− kx. (43)

Then, using the weight updating laws given in theorem 2 the
derivative of the Lyapunov function becomes

V̇ = − 1
2eT e− 1

2 χ̂T χ̂− xKPχ̂

⇒ V̇ = − 1
2 ‖e‖2 − 1

2 ‖x̂‖2 − x̂T KPχ̂ + eT KPx̂

⇒ V̇ ≤ − 1
2 ‖e‖2− 1

2 ‖x̂‖2−λmin(KP ) ‖x̂‖2+‖e‖ ‖KP‖ ‖χ̂‖

= − [ ‖e‖ ‖χ̂‖ ]
[

1/2 −‖KP‖
0 1/2 + λmin(KP )

] [ ‖e‖
‖χ̂‖

]
< 0

C. Introduction to the parameter hopping

The weight updating laws presented previously in Section
IV-B are valid when the control law signal in (36) exists.
Therefore, the existence of [X1W1S1(χ)]−1 has to be assured.
Since S1(χ) is diagonal with its elements si(χ) 6= 0 and
X1, W1 are block diagonal the existence of the inverse is

assured when 1Xi · 1W i 6= 0, ∀i = 1, . . . n. Therefore, W1

has to be confined such that
∣∣1Xi · 1W i

∣∣ ≥ θi > 0, with
θi being a design parameter. In case the boundary defined
by the above confinement is nonlinear the updating W1 can
be modified by using a projection algorithm [31]. However,
in our case the boundary surface is linear and the direction
of updating is normal to it because ∇ [

1Xi · 1W i
]

= 1Xi.
Therefore, the projection of the updating vector on the
boundary surface is of no use. Instead, using concepts from
multidimensional vector geometry we modify the updating
law such that, when the weight vector approaches (within a
safe distance θi) the forbidden hyper-plane 1Xi ·1W i = 0 and
the direction of updating is toward the forbidden hyper-plane,
it introduces a hopping which drives the weights in the
direction of the updating but on the other side of the space,
where here the weight space is divided into two sides by
the forbidden hyper-plane. This procedure is depicted in Fig.
3, where a simplified 2-dimensional representation is given.
Theorem 3 below introduces this hopping in the updating law.

Theorem 3: Consider the control scheme (35), (36), (37).
The updating law:

a) For the elements of W i given by (38)
b) For the elements of 1W i given by the modified form:

1Ẇ i = −(1Xi)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0
or

∣∣1Xi · 1W i
∣∣ = θi and 1Xi · 1Ẇ i ≤ 0

1Ẇ i = −(1Xi)T pieiuisi(χ)−
− 2

tr{(1Xi)T 1Xi}
1Xi 1W i (1Xi)T otherwise

guarantees the properties of theorem 2 and assures the
existence of the control signal.

Proof: In order the properties of theorem 2 to be valid
it suffices to show that by using the modified updating law
for 1W i the negativeness of the Lyapunov function is not
compromised. Indeed the if part of the modified form of
1Ẇ i is exactly the same with (39) and therefore according
to theorem 2 the negativeness of V is in effect. The if part
is used when the weights are at a certain distance (condition
if

∣∣1Xi · 1W i
∣∣ > θi )from the forbidden plane or at the safe

limit (condition
∣∣1Xi · 1W i

∣∣ = θi) but with the direction of
updating moving the weights far from the forbidden plane
(condition 1Xi · 1Ẇ i ≤ 0).

In the otherwise part of 1Ẇ i, term
− 2

tr{(1Xi)T 1Xi}
1Xi 1W i (1Xi)T determines the magnitude

of weight hopping, which as explained later and is depicted
in Fig. 4 has to be two times the distance of the current
weight vector to the forbidden hyper-plane. Therefore the
existence of the control signal is assured because the weights
never reach the forbidden plane. Regarding the negativeness
of V̇ we proceed as follows.

Let that 1W ∗i contains the initial values of 1W i provided
from the identification part such that

∣∣1Xi · 1W ∗i
∣∣ >> θi and

that 1W̃ i = 1W i − 1W ∗i. Then, the weight hopping can be
equivalently written with respect to 1W̃ i as −2θi

1W̃ i/‖1W̃ i‖.
Under this consideration the modified updating law is rewritten
as 1Ẇ i = −(1Xi)T pieiuisi(χ)− 2θi

1W̃ i/‖1W̃ i‖. With this
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updating law it can be easily verified that V̇ = − 1
2eT e −

1
2 χ̂T χ̂ − Θ, with Θ being a positive constant expressed as
Θ =

∑
2θi

(
(1W̃ i)T )1W̃ i)

)
/‖1W̃ i‖, where the summation

includes all weight vectors which require hopping. Therefore,
the negativeness of V̇ is actually enhanced.

xw=0
xw=è

xw=-è

Hopping
magnitude

w
1

w
2

Weight
updating
direction

Fig. 3. Pictorial Representation of parameter hopping)

1) Vectorial proof of parameter hopping: In selecting the
terms involved in parameter hopping we start from the vector
definition of a line, of a plane and the distance of a point to
a plane. The equation of a line in vector form is given by
r = a + λt, where a is the position vector of a given point of
the line, t is a vector in the direction of the line and λ is a
real scalar. By giving different numbers to λ we get different
points of the line each one represented by the corresponding
position vector r. The vector equation of a plane can be
defined by using one point of the plane and a vector normal
to it. In this case r · n = a · n = d is the equation of the
plane, where a is the position vector of a given point on the
plane, n is a vector normal to the plane and d is a scalar.
When the plane passes through zero, then apparently d = 0.
To determine the distance of a point B with position vector
b from a given plane we consider Fig. 4 and combine the
above definitions as follows. Line BN is perpendicular to
the plane and is described by vector equation r = b + λn,
where n is the normal to the plane vector. However, point N
also lies on the plane and in case the plane passes through zero

r · n = 0 ⇒ (b + λn) · n = 0 ⇒ λ = −b·n
‖n‖ .

Apparently, if one wants to get the position vector of B́
(the symmetrical of B in respect to the plane), this is given
by

r = b− 2 b·n
‖n‖n.

In our problem b = 1W i, our plane is described by the
equation 1Xi · 1W i = 0 and as it has already been mentioned
the normal to it is the vector 1Xi.

o

b

B

A

a

N

Plane

B’

Fig. 4. Vector explanation of parameter hopping)

V. SIMULATION AND EXPERIMENTAL RESULTS

To demonstrate the potency of the proposed scheme we
present simulation and experimental results. First, the function
approximation abilities of the proposed technique are com-
pared with those of a well established approach of adaptive
fuzzy system definition for function approximation (see Eq.
(2)). The simulations are carried out on the approximation
of a nonlinear function appearing in the inverted pendulum
benchmark problem. Next, the benchmark problem of Van
der Pol oscillator is considered and two simulation results
are presented. The first shows off the minimal parameter
requirements of the proposed method when applied on this
benchmark example, which would require a very large number
of rules to be tackled by conventional fuzzy logic approach.
The second presents the regulation of the Van der Pol system
by using the proposed approach in comparison to a well
established fuzzy adaptive control approach [2]. Due to the
Brunovsky canonical form of the system the proposed method
operates in a reduced model order, which although performing
fairly well, does not permit to show off its full potential.
The full potential of the method is demonstrated in the next
simulation, where the proposed method is compared with the
well known RHONN approach [32] in approximating and
regulating a Dc Motor described by nonlinear equations. In this
case both modeling approaches assume a generic affine in the
control form. Finally, the proposed method was implemented
and used to regulate a real DC Motor in an experimental set-
up.

A. Comparison of function approximation abilities

Let the well known problem of the control of an inverted
pendulum. Its dynamical equations can assume the following
Brunovsky canonical form [48]

ẋ1 = x2

ẋ2 = f(x) + g(x)u (44)

where x1 = θ and x2 = θ̇ are the angle from the vertical
position and the angular velocity respectively. f(x) assumes
the following form

f(x1, x2) =
g sin x1 − mlx2

2 cos x1 sin x1
mC+m

l
(

4
3 − m cos2 x1

mC+m

) (45)
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where g = 9.8 m/s2 is the acceleration due to gravity, mc

is the mass of the cart, m is the mass of the pole, and l is the
half-length of the pole. We choose mc = 1 kg, m = 0.1 kg,
and l = 0.5 m in the following simulation. In this case we
also have that |x1| ≤ π/6 and |x2| ≤ π/6.

It is our intention to compare the approximation abilities of
the proposed Neuro-Fuzzy approach with Wang [2] adaptive
Fuzzy approach. To this end we assume that f(x) can be ap-
proximated using Wang’s approach and Eq. (2) or alternatively
by the XWS term of Eq. (32) in the proposed approach. The
weight updating laws are chosen to be: For the Wang approach
([2], page 115 )

θ̇f = −γ1e
T Pbcξ(x) (46)

where only the simplified approach, without parameter projec-
tion case was necessary to be used.

For the proposed F-HONNF approach we use the following
adaptive law:

Ẇ = −XT PeST (47)

The experimental data were obtained as follows: Based on
Wang’s input variables limits and fuzzy partition we created
an artificial stair-like signal shown in Fig. (6). Input variables
x1 and x2 assume values in the interval [−π/6, π/6].

Taking 5 samples from x1 and 100 samples from x2 we
obtain 500 samples of f(x1, x2) presenting the stair discon-
tinuities when x1 changes values. For the construction of ξi

functions used in Eq. (2) and given in Eq. (3) we used the
fuzzy membership partitions and the final rules characterizing
f(x1, x2) and shown in Fig. (5), which comprises 25 fuzzy
rules carefully chosen and given by Wang in [2] (page
129). Under these design specifications Eq. (2) assumes 25
adjustable weights.
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Fig. 5. Linguistic fuzzy rules for f(x1, x2)

In order our model to be equivalent with regard to adjustable
parameters we have chosen 5 centers for the fuzzy output vari-

ables partition (-8, -4, 0, 4, 8) and 5 high order sigmoidal terms
(s(x1), s(x2), s(x1) · s(x2), s2(x1), s2(x2)) in each HONNF.
This configuration also assumes 25 adjustable weights. Terms
γ1Pbc in Eq. (46) and P (the updating learning rates) in Eq.
(47) were chosen to have the same values. Fig. (6) shows the
approximation abilities of (2) with the updating law of (46)
while Fig. (7) shows the performance of the proposed approach
with the updating law of (47). The mean squared error (MSE)
for Wang’s approach was measured to be 6.24 · 10−4, while
for the proposed approach was 1.25 · 10−5, demonstrating a
significant (order of magnitude) increase in the approximation
performance, although in our approach no a-priori information
regarding the inputs were used.
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Fig. 6. Approximation of the f function with Eq.(2)
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Fig. 7. Approximation of the f function with the proposed approach.

B. Demonstrating the minimum parameter requirements
Van der Pol oscillator is usually used as a simple benchmark

problem for testing identification and control schemes. It’s
dynamical equations are of the same Brunovsky form as (44)
and are given by

ẋ1 = x2

ẋ2 = x2 ·
(
a− x2

1

) · b− x1 + u
(48)
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The approximation of the dynamical equations using con-
ventional fuzzy system approach requires a very large number
of fuzzy rules. Even after a careful selection of rules, this
number could be chosen to be almost 2500 for very accurate
fuzzy representation [47]. This in turn would lead to a param-
eter explosion when using an adaptive scheme like that of Eq.
(2).

We are using the proposed approach with Eq. (32) to
approximate Van der Pol dynamics. The proposed Neuro-
Fuzzy model was chosen to use 5 output partitions of f
and 2 output partitions of g. The number of high order
terms used in HONNF’s were chosen to be 3. Therefore,
the number of adjustable weights is 30 for f and 6 for G,
because in this case only the second equation is assumed to
be influenced by the input. Therefore, the total number, 36, of
the adjustable weights is much smaller than the required one
in the conventional adaptive fuzzy approach. Consequently,
the required training time of the proposed approach is much
smaller. Numerical training data were obtained by using Eq.
(48) with initial conditions, x1(0) = x2(0) = 1, and a
persistently exciting input u = 1 + 0.8 sin(0.001t). Fig. (8)
and Fig. (9) shows the approximating errors of the proposed
scheme for x1 and x2 respectively, which approaches zero very
fast. Also, Fig. (10) and Fig. (11) shows the approximation for
the variables x1 and x2 respectively.
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C. Regulation of the Van der Pol oscillator

The regulation of the Van der Pol oscillator (48) is consid-
ered next. It has to be mentioned here that both inverted pen-
dulum and Van der Pol dynamic equations, which are usually
used as benchmark problems, assume a Brunovsky canonical
form with the control input appearing in the last equation.
Our modeling approach does not bear to this restriction and
assumes a more generic affine in the control form, which
however requires inputs in all dynamic equations. Therefore,
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Fig. 10. Approximation for variable x1

a comparison can be made only if our technique assumes a
reduced model order form; in the problem under study the
F-HONNF is reduced to a first order model (1 state).

The proposed technique is compared to the indirect fuzzy
adaptive control appearing in [2], which is frequently used for
comparison reasons in the recent literature. In this approach
a feedback linearizing certainty equivalent control law is used
assuming the form ([2], chapter 8, page 108)

u =
1

ĝ(x1, x2)

[
−f̂(x1, x2) + ẋ2d + kT e

]
(49)

where f̂ , ĝ are fuzzy adaptive approximations of f and g
respectively, according to Eq. (2). e is a vector containing
the errors between their respective desired values and the
states x1, x2, kT = [k1, k2] is a gain vector and ẋ2d = ẍ1d

is the desired value of ẋ2. In such approximate feedback
linearizing laws, the term kT e acts also as a robustifying term
keeping the approximately linearized dynamics stable until the
approximates f̂ and ĝ become sufficiently accurate [52]. In a
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Fig. 11. Approximation for variable x2

state regulation problem x1d = x2d = 0, so Eq. (49) is reduced
to

u =
1

ĝ(x1, x2)

[
−f̂(x1, x2)− k1x1 − k2x2

]
. (50)

In simulating the above approach we assumed that f̂ and
ĝ are estimated using Eq. (2), where x1, x2 are partitioned
into 5 fuzzy membership values each. Therefore, for each of
the functions 25 rules and consequently 25 weights in the
corresponding weights vectors θ are required. Thus the total
number of the adjustable weights amounts to 50. The weight
updating is performed by using equations (8.42) - (8.46) of [2],
where the design parameters are carefully chosen so that the
regulation of the Van der pol benchmark is optimal. Thus, we
choose k1 = 5 and k2 = 4 (so that s2+k1s+k2 has roots in the
open left half-plane) and Q = diag(10, 10). Then, according
to [2] we solve equation ΛT

c P + PΛc = −Q to obtain

P =
[

11.25 1.25
1.25 1.25

]
(51)

where Λc =
[

0 1
−k2 −k1

]

This P is positive definite. From the bounds of f(x1, x2)
and g(x1, x2) we see that the range of f(x1, x2) is larger
than that of g(x1, x2), therefore we choose the gains g1 =
5 and g2 = 1. Continuously, we choose the initial weights
θf (0) randomly in the interval [−1, 1] and θg(0) randomly in
the interval [0.8, 1.2]. Finally, the tuning of the membership
functions becomes such that the bounds of x1 and x2 are
covered. Thus, the membership functions have the following
form

µ(xi) = exp

[
−

(
xi + cj

d

)2
]

(52)

where cj = [−1,−0.5, 0, 0.5, 1] (j=1,2,...,5) are the centers
and d = 0.15 is the deviation.

The proposed method is also tested on the same problem.
To this end, since the method assumes a general affine in the
control form and not a Brunovsky one, it is assumed that the

system is approximated by a first order nonlinear FHONNF
model given by

˙̂χ2 = −αχ̂2 + XWS(x) + X1W1S1(x)u (53)

where α is a positive constant, X is a row vector of m = 5
centers of fuzzy partitions covering the range [-23, -11], S(x)
is a column vector with k = 5 high order sigmoidal terms and
W is a m× k matrix with neural weights. Similarly, X1 is a
row vector of m = 5 centers of fuzzy partitions covering the
range [0.8, 1.2] S1 is a column vector with k = 5 high order
sigmoidal terms and W1 a matrix containing the corresponding
neural weights. Finally, the parameters of the sigmoidals that
have been used are α1 = α2 = 0.1, β1 = β2 = 1 and γ1 =
γ2 = 0.

The control objective is to drive state x2 to zero with
x1 being kept bounded. To this end, in order to have an
equivalent comparison with the control law of (50) containing
robustifying terms the control law (42) of remark 1 was used.
In this example the control law is written as

u = − [X1W1S1(χ)]−1 [XWS(χ) + kx2] (54)

where k = 5 and the other quantities were defined in (53)
above. Figure (12) shows the convergence of state x2 to
zero using the approach in [2] and the proposed approach
respectively, while figure (13) shows the evolution of control
inputs. It can be observed that although the proposed approach
operates in a reduced model order form it performs much
better than the conventional approach and presents much
smoother evolution of the state x2 to zero.

Fig. 12. Evolution of state x2 for F-HONNF and Wang approach.

D. DC Motor Identification and Control

In this section we present simulations, where the proposed
approach is applied to solve the problem of controlling the
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Fig. 13. Evolution of control input u for F-HONNF and Wang approach.

speed of a 1 KW DC motor with a normalized model described
by the following dynamical equations [46]

Ta
dIa

dt = −Ia − ΦΩ + Va

Tm
dΩ
dt = ΦIa −K0Ω−mL

Tf
dΦ
dt = −If + Vf

Φ = aIf

1+bIf

(55)

The states are chosen to be the armature current, the angular
speed and the stator flux x = [ Ia Ω Φ ]T . As control inputs
the armature and the field voltages x = [ Va Vf ]T are used.
With this choice, we have




ẋ1

ẋ2

ẋ3


 =




− 1
Ta

x1 − 1
Ta

x2x3
1

Tm
x1x3 − K0

Tm
x2 − mL

Tm− 1
Tf

x3
a−βx3


 +




1
Ta

0
0 0
0 1

Tf




[
u1

u2

]
(56)

which is of a nonlinear, affine in the control form. The
regulation problem of a DC motor is translated as follows:
Find a state feedback to force the angular velocity and the
armature current to go to zero, while the magnetic flux varies.

When Φ is considered constant, the above nonlinear 3rd
order system can be linearized and reduced to a second order
form having 2 states ( x1 = Ia and x2 = Ω ), with the value
Φ being included as a constant parameter. Inspired by that, we
first assume that the system is described, within a degree of
accuracy, by a 2nd order (n = 2) nonlinear neuro-fuzzy system
of the form (32), where x1 = Ia and x2 = Ω. Coefficients ai

in matrix A of (32) were chosen to be ai = 15. The number of
fuzzy partitions in X was chosen to be m = 5 and the range
of f1 [-182.5667 , 0], f2 [-19.3627 , 30.0566]. The depth of
high order terms was k = 2 (only first order sigmoidal terms
S(x1), S(x2) were used). The number of fuzzy partitions of
each gi i in X1 is m = 1 and the range of g11 is [148 , 150]
and of g22 is [42 , 44]. The parameters of the sigmoidals that
have been used are α1 = 0.4, α2 = 5, β1 = β2 = 1 and
γ1 = γ2 = 0. In the simulations carried out, the actual system
is simulated by using the complete set of equations (56). The
produced control law (36) is applied on this system, which in
turn produces states x1, x2, which in the sequel are used for
the computation of the estimation errors that are employed by
the updating laws.

TABLE I
PARAMETER VALUES FOR THE DC MOTOR.

Parameter Value
1/T a 148.88
1/T m 42.91
K0/T m 0.0129
Tf 31.88
TL 0.0
a 2.6
β 1.6

We simulated a 1KW DC motor with parameter values that
can be seen in Table I. Our two stage algorithm, was applied.

For comparison purposes we test the identification abilities
of the proposed F-HONNF model against the conventional
RHONN approximator presented in [32] using equivalent
parameters regarding learning rate and number of high order
terms used. Fig. 14 shows the performance of the proposed
scheme (blue line) against the corresponding performance
of RHONN (red line). In the embedded figure a detailed
comparison between the two methods for the first iterations
is presented, where the graph is adjusted to the scale of the
lower error values (those of the F-HONNF model). The mean
square error (MSE) was measured to be 5, 87 ∗ 10−5 for the
proposed scheme and 1, 18 ∗ 10−2 for RHONN showing that
the proposed scheme performs much better.

Fig. 14. Evolution of e2.

In the control phase, we assumed that the system variables
have the initial values Ω = 0.1, Ia = 0.1, Φ = 0.98. The
proposed feedback control law and the corresponding control
law of [32] were applied, with the corresponding initial weight
values resulted from the identification phase. Figures 15, 16
give the evolution of the angular velocity and armature current
respectively, for F-HONNF (blue line) and RHONN (red line).
As can be seen, both Ω and Ia converge to zero very fast as
desired and the corresponding mean squared errors are 0.0017
and 0.0135 for x1 (F-HONNF Vs RHONN approach) and
0.0013 and 0.0094 for x2 (F-HONNF Vs RHONN approach),
demonstrating a significant improvement when the proposed
method is used.



PAPER PRESENTED AT: SIMPOSIO TECNICO EN HONOR A BILL WOLOVICH, UNA FIESTA PARA WOLOVICH, CANCUN, MEXICO, DECEMBER 7, 2008 14

0 0.02 0.04 0.06 0.08 0.1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)E
vo

lu
tio

n 
of

 s
ta

te
 x

1 
fo

r 
F

−
H

O
N

N
F

 (
bl

ue
 li

ne
) 

an
d 

R
H

O
N

N
 (

re
d 

lin
e)

Fig. 15. Convergence of the angular velocity to zero from 0.1 initially.
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Fig. 16. Convergence of the armature current to zero from 0.1 initially.

E. Experimental setup and verification

The proposed method was also verified on an experimental
setup. It consists of two separately excited dc machines (one of
which is operating as a motor providing the second one with
mechanical power, which in turn is operating as a generator
supplying a resistor bank ), a Digital Signal Processor (DSP)
card, dc power supplies, dc-dc converters, a rotary encoder,
shunt resistors, and a personal computer. It is represented
schematically in Fig. 17. A data acquisition card (DAC)
mounted in the PC is interfaced with the assembly module
to acquire the speed and the current information. The data
acquisition in the PC and data acquisition and control in
the DSP card is accomplished using C++ programming. The
setup can be used for armature and field weakening control
of the separately excited DC motor but it is also used to
test the proposed control algorithm, which assumes control
of both armature and field excitation. Motor data are given in
table II. The control algorithm performs weight updating and
control input calculation according to equations (38),(39),(36).
Similarly to the simulations given in the previous section
we assume a second order affine in the control F-HONNF
representation of the system. The number of fuzzy partitions

TABLE II
MOTOR DATA USED IN THE SETUP.

Parameters Value
Armature resistance R 0.81 ohms
Armature inductance L 57 mH
Moment of inertia J 0.39 kg-m
Viscous friction coefficient 0.0164 Nm./rad/Sec
Back e.m.f. coefficient K 1.55 V/rad/sec

in X was chosen to be m = 5 and the depth of high order
terms was k = 5 (up to second order sigmoidal terms S(xi),
were used). The number of fuzzy partitions of each gi i in
X1 is m = 3. The control objective was to drive both angular
velocity and armature current to zero starting from 0.3 of their
nominal values. The results of the experiment are shown in
Figs. 18 and 19, verifying the effectiveness of the proposed
technique.

Fig. 17. Schematic diagram of the experimental setup
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Fig. 18. Convergence of current to zero from 0.3 (p.u) initially

VI. CONCLUSION

An indirect adaptive control scheme was considered in this
paper, aiming at the regulation of non linear unknown plants.
The approach is based on a new Neuro-Fuzzy Dynamical
Systems definition, which uses the concept of Adaptive Fuzzy
Systems (AFS) operating in conjunction with High Order
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Fig. 19. Convergence of speed to zero from 0.3 (p.u) initially

Neural Network Functions (F-HONNFs). Since the plant is
considered unknown, we first propose its approximation by a
special form of an affine in the control fuzzy dynamical system
(FDS) and in the sequel the fuzzy rules are approximated by
appropriate HONNFs. Once the system is identified around an
operation point is regulated to zero adaptively. The proposed
scheme does not require a-priori experts’ information on the
number and type of input variable membership functions
making it less vulnerable to initial design assumptions. Weight
updating laws for the involved HONNFs are provided, which
guarantee that both the identification error and the system
states reach zero exponentially fast, while keeping all signals
in the closed loop bounded. A method of parameter hopping
assures the existence of the control signal and is incorporated
in the weight updating law. Simulations illustrate the potency
of the method by comparing its performance with this of
established conventional approaches on benchmark problems.
And finally, the applicability of the method was tested on a
DC Motor system where it is shown that by following the
proposed procedure one can obtain asymptotic regulation.
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