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Computational Intelligence techniques

Neural Networks - RHONNs

Fuzzy Systems and their Functional Representation  



Computational Intelligence and the use of 
“Intelligent”

 
Techniques

We are using the so-called intelligent techniques when the mathematical 
model of the process is not sufficient or it does not exist. Instead, there are 
operating data or human knowledge expressed with linguistic rules.

Computational Intelligence comprises the following research areas

•Expert Systems

•Fuzzy Systems

•Neural Network Systems

•Fuzzy – Neuro (or Neuro-Fuzzy) Systems

•Evolutionary Computation



Modern History on Computational 
Intelligence

DARPA recently awarded $4.9M to IBM and 5 other Universities through the 
SyNAPSE Program for the buildup of BRAIN-LIKE computers

•Production for the first time of an electronic system that behaves as the 
simulations do

•180 degree shift in perspective: Seek algorithm first, problem second.

•Difference between von Neumann and current machine: the current does 
not separate memory and computation

•Time ripe now: Neuroscience mature, supercomputing methods available, 
nanotechnology allowing deployment  of enough micro-operations and 
synapses put in small surface areas.

•If the project succeeds: Birth to novel cognitive systems, ubiquitously 
deployed computers, imbued with new intelligence, respond in context- 
dependent way, learn over time, action and cognition in complex real-world 
environments.

•Goal: inevitable but unpredictable



Past History on Computational Intelligence

When the linear separability problem existed back in 
1980’s still prominent scientists were insisting on doing 
research in this area, most of the times underfunded and 
frustrated, like

•David Rumelhart

•Geoffrey Hinton

•Roland Williams

•Bob Newcomb

And many other pioneers, just a few to name of



When the mathematical model is imprecise or does not exist 

If x is a1    Then y is     b1
If x is a2 Then y is     b2

…
If x is ai Then y is     bi

…
If x is an Then y is     bn

One Significant Observation

Building

Linguistic
Descriptions

One could describe the function 
with two alternative ways

1. Based on I/O data using 
Neural Networks

2. Based on Fuzzy rules building 
Fuzzy Linguistic Description

We describe it

Using the rules



What does a NN do?

In reality it is an emulator of the linear or 
non-linear mapping between inputs and 
outputsΙ Ο

F

Where are they used ?

• Modelling / Parameter Estimation

• Filtering (Signal / Image Processing)

• Pattern Recognition / Classification / Identification

• Forcasting / Prediction

• Control

In many fields!!!



Topologies and Training of NNs

Partially –

 

connected   Fully -

 

connected  Feedback / Recurrent
Feedforward

 

Feedforward

 

Dynamical

Training

In conventional FF NNs the backpropagation algorithm and its varieties are 
well established

In 1-layer recurrent  NNs the linearity in the parameters property is exploited 
to train the NN to reach its goal exponentially fast

ˆ ˆ ˆ( ) ( )T Tf x W V xσ=



Advantage of NN Control over 
Conventional Adaptive Control

( , )=τ W q,q q φ& &&+ + + + =v dM(q)q V(q,q) F (q) F (q) G(q) τ&& & & &
LIP

ˆ ˆ( ) ( )f x R x φ=

Conventional Adaptive Control

Neural Network Adaptive Control

ˆ ˆ( ) ( )Tf x W xσ=

Linear in respect to the tunable parameters 
(masses and friction coefs). The regression 
matrix R

 

depends on f(x)

 

and must be 
recomputed for each different robot arm [f(x)].

Linear in respect to the tunable parameters 
(neural weights). The same basis functions σ(x) 
suffices for every

 

f(x).

A Neural network controller is much more powerful than conventional adaptive 
controller. The former, is a universal controller for all rigid-link robot arms.

Let the dynamic equations of  rigid-link robot arms.



Recurrent High Order NNs

Recurrent Higher order Neural Networks
are very suitable for the approximation of 
the dynamics of non linear systems
They constitute the so-called Π – Σ
networks. In the first layer(s) there are the 
inputs, the feedback and higher order 
products of them. In the second layer the 
next state value is estimated by weighting 
and summing the elements from the first 
layer. 
Their functional representation is linear 
with respect to the tunable parameters wij, 
therefore their estimate can be made using  
existing knowledge from adaptive 
estimation theory
They can be used as the first part of a 
direct or indirect controller scheme 
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Fuzzy Controllers
u(t) y(t)Plant

Human 
Expertise

In fuzzy control the controller incorporates the 
experience of

 

the human manipulator of a 
plant

A typical use of a fuzzy controller and its components



Functional Representation of Fuzzy 
Systems

Depending on the type of the Fuzzy system (Mamdani – or Tagaki-Sugeno) 
and on the implication operator used in the inference procedure a fuzzy 
system can be represented in a functional form and can be used as a 
function approximator.
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Typical functional representation of a 
Mamdani-type fuzzy system with the 
Larsen’s product implication operator
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Our Our NeuroNeuro--Fuzzy ApproachFuzzy Approach

We consider the indirect adaptive control of unknown nonlinear dynamical 
systems. The proposed scheme uses the concept of Adaptive Fuzzy Systems 
(AFS) operating in conjunction with High Order Neural Network Functions (F-
HONNFs). 

Weight updating laws for the involved HONNFs are provided, which 
guarantee that both the identification error and the system states reach zero 
exponentially fast, while keeping all signals in the closed loop bounded.

The identification scheme leads up to a Recurrent High Order Neural 
Network, which however takes into account the centers of the fuzzy output 
partitions of the initial FDS. 

We first propose its approximation by a special form of a fuzzy dynamical 
system (FDS) and in the sequel the fuzzy rules are approximated by 
appropriate HONNFs. 

The applicability of the method is tested on a DC Motor system where it is 
shown that by following the proposed procedure one can obtain asymptotic 
regulation. 



A. A. Fuzzy approaches of Fuzzy approaches of MamdaniMamdani
 

and TSK typeand TSK type

Suppose that the the nonlinear function f(x)

 

is approximated by an adaptive 
(Mamdani

 

type) fuzzy system

 

which is linear in the adjustable parameters

where M is the number of fuzzy rules, θ=(θ1

 

,…,θΜ

 

)Τ, ξ(x) = (ξ1

 

(x)

 

,…,ξM

 

(x))T

 

and 
ξl

 

(x) is the fuzzy basis

 

function defined by:
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where θl

 

are adjustable parameters, and       are given membership functions of 
the input variables.
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Obviously, the combination of the above equations, are

 

equivalent to the 
following equation:
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In Tagaki-Sugeno

 

formulation f(x) is given by:

1
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M

T
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where                                              with        being the elements of  
vector x and          as being defined previously.

,0 ,1 1 ,( ) ...l l l l n ng x a a x a x= + + + , 1,...,ix i n=
( )l xξ
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Ωdenotes the indicator function of the subset , that is,
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Define now the following dynamical system:
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+
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The system in above equation is a generator for the FDS ( nll
mnjjR

,...,1
,...,1 + ).

However, in order the approximation problem to make sense the space uy ×= χ:
must be compact.

B. B. Fuzzy representation with Indicator functionsFuzzy representation with Indicator functions



Let us define the following high order neural network functions 
(HONNFs) that approximate the Indicator functions.

As it is reported in the literature the HONNF N(·) satisfies the Stone – Weierstrass theorem and therefore can 
approximate bounded and measurable functions. It is worth noticing that while the Stone – Weierstrass theorem is 
valid for continuous functions we can extend it by using the Lusin theorem to functions that are discontinuous like 
indicator functions.
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C. Approximation of Indicator functions with  C. Approximation of Indicator functions with  
HONNFHONNF’’ss

HONNF1

HONNF2

HONNFS

(x,u) F(x,u)
Σ

HONNF1

HONNF2

HONNFS

(x,u) F(x,u)
Σ



D. D. NeuroNeuro--Fuzzy modelling for affine in the control Fuzzy modelling for affine in the control 
systemssystems

We consider affine in the control, nonlinear dynamical systems of the form

( ) ( )x f x G x u= + ⋅&

where the state          , is assumed to be completely measured,

 

the control     is 
in      ,     is an unknown smooth vector field called the drift

 

term and      is a 
matrix with columns the unknown smooth controlled vector fields ,          
and                         . 

nRx∈ u
nR f G

ig ni ,...,2,1=
][ 21 ngggG =

We are using an affine in the control fuzzy dynamical system, which 
approximates the system described above and uses two fuzzy subsystem blocks 
for the description of         and          as follows( )f x ( )G x

,..., ,...,1 1( ) ( ),..., ,...,1 1

l l l ln nf A f Ij j j jn n
χ χ χ= + ×∑

,..., ,...,1 1( ) ( ) ( ),..., ,...,11 1
i i

l l l ln ng g Ij j j jn n
χ χ= ×∑



D. D. NeuroNeuro--Fuzzy modelling for affine in the control Fuzzy modelling for affine in the control 
systemssystems

Every indicator function can be approximated with the help of a suitable 
HONNF. 1, II

,..., ,...,1 1( ) ( ),..., ,...,1 1

l l l ln nf A f Nj j j jn n
χ χ χ= + ×∑

,..., ,...,1 1( ) ( ) ( ),..., ,...,11 1
i i

l l l ln ng g Nj j j jn n
χ χ= ×∑

Since some rules result to the same output partition, we could replace the NNs

 
associated to the rules having the same output with one NN and therefore the 
summations are carried out over the number of the corresponding output 
partitions. 

1
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Or in a more compact form:

1 1 1ˆ ˆ ( ) ( )A XWS X W S uχ χ χ χ= + +&

Where A is a stable matrix which for simplicity can be taken to be 
diagonal as .X ,X1

 

are matrices containing the centres 
of  the partitions of every fuzzy output variable of f(x)

 

and g(x) respectively, 
as it can be seen below.

 

S(x), S1

 

(x) are matrices containing high order 
combinations of sigmoid functions of the state χ

 

and W, W1

 

are matrices 
containing respective neural weights.

],...,,[ 21 naaadiagA =
nn ×



Configuration of a neuro-fuzzy (F-RHONN) approximator



ΕΕ. Identification Scheme. Identification Scheme
We assume the existence of only parameter uncertainty, so, we can take into 
account that the actual system can be modeled by the following neural form

1 1 1( ) ( )e Ae XWS X W S uχ χ= + +% %&

uSWXSXWA )()( 111 χχχχ ∗∗ ++=&

Define now, the error between the identifier states and the real

 

states as

χχ −= )e

Then we obtain the error equation
∗−= WWW~

∗−= 111
~ WWW

Regarding the identification of  
we are now able to state the following theorem

W 1W



ΕΕ.Weight updating laws for identification and .Weight updating laws for identification and 
indirect controlindirect control

Consider the identification scheme given by:

1 1 1( ) ( )e Ae XWS X W S uχ χ= + +% %&

The learning law:
a) For the elements of iW

b) For the elements of 1 iW

( )i i
j l j i i lw f p e s χ= −&

1
1 ( )i i i

j j i i i iw g p e u s χ= −&

with 1, , , 1, , , 1, ,i n j m l k= = =K K K guarantees the following properties:

1 2ˆ, , , ,e W W L e Lχ ∞∈ ∈% %

1lim ( ) 0, lim ( ) 0, lim ( ) 0t t te t W t W t→∞ →∞ →∞= = =& &% %



ΕΕ.Weight updating laws for system identification.Weight updating laws for system identification

The proof is provided by considering  the Lyapunov

 

function candidate:

And choosing the weight updating law so that 

1 1 1
1 1 1( , , ) { } { }
2 2 2

T T TV e W W e P e tr W W tr W W= ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅% % % % % %

0V ≤&

Control ObjectiveControl Objective

Our purpose is to find suitable control and learning laws to drive the error 
and the state to zero, while all other signals in the closed loop remain 
bounded. Taking  u

 

to be equal to

[ ] )()( 1
111 χχ XWSSWXu −−=

We finally obtain χχ )&) A=



ΕΕ..
 

Introduction to weight hoppingIntroduction to weight hopping

However, regarding the control law: [ ] )()( 1
111 χχ XWSSWXu −−=

the existence of                    has to be assured.[ ] 1
1 1 1( )X W S χ −

Since         is diagonal with its element             and      are block 
diagonal the existence of the inverse is assured when           ,            

1( )S χ ( ) 0is χ ≠ 1 1,X W
1 1 0i iX W⋅ ≠ 1,i n∀ = K

Therefore, W1

 

has to be confined such that                    with      being
a design parameter.
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Pictorial Representation of parameter hopping

Term
1 1 1

1 1

2 ( )
{( ) }

i i i T
i T i X W X

tr X X

determines the magnitude of weight 
hopping, which has to be two times the 
distance of the current weight vector to 
the forbidden hyper-plane. Therefore 
the existence of the control signal is 
assured because the weights never 
reach the forbidden plane.

In our case the boundary surface is linear and the direction of 
updating is normal to it. Therefore, the projection of the updating vector 
on the boundary surface is of no use. Instead, using concepts from 
multidimensional vector geometry we modify the updating law such

 

that, 
when the weight vector approaches (within a safe distance  ) the

 
forbidden plane              , it drives the weights in the direction of the 
updating but on the other side of the space, where here the weight 
space is divided into two sides by the forbidden plane. 

iθ

1 1 0i iX W⋅ =



Vector explanation of parameter 
hopping

Apparently, if one wants to get the position vector of B/

 

(the symmetrical of B in 
respect to the plane), this is given by

2 b nr b n
n
⋅

= −

In our problem , our plane is described by the
equation                   and the normal to it is the vector   . 

1 ib W=
1 1 0i iX W⋅ = 1 iX

Vector equation of a line r b nλ= +

Vector equation of a plane
Passing through 0

0r n⋅ =

Point N of BN is also a point of  the plane

0 ( ) 0r n b n n
b n
n

λ

λ

⋅ = ⇒ + ⋅ =
⋅

⇒ = −



ΕΕ.Weight updating laws for identification and .Weight updating laws for identification and 
indirect controlindirect control

Consider the control scheme given by:

The learning law:

1 1 1( ) ( )e Ae XWS X W S Uχ χ= + +% %& [ ] )()( 1
111 χχ XWSSWXu −−= χχ )&) A=

( )i i
j l j i i lw f p e s χ= −&

b) For the elements of 1 iW

guarantees the following properties:
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ˆlim ( ) 0, lim ( ) 0t te t tχ→∞ →∞= =s

1lim ( ) 0, lim ( ) 0t tW t W t→∞ →∞= =& &% %s

a) For the elements of iW



ΕΕ. . Simulation ResultsSimulation Results
The dynamics of our system which is a 1 KW DC motor

 

are described as follows:

1 1
11 2 3 0

1 1 10 0 02 1 3 2
2103 1 3

3

x x x
T Ta a Tx a uK mLx x x x

uT T Tm m mx
x T f

T a xf β
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The states are chosen to be the armature current, the angular speed and the 
stator flux

 

. As control inputs the armature and the field voltages 
are used. 
x Ia

⎡ ⎤= Ω Φ⎣ ⎦
u V Va f

⎡ ⎤= ⎢ ⎥⎣ ⎦

The regulation problem of a DC motor is translated as follows: Find a state 
feedback to force the angular velocity  and the armature current

 

to go to zero, 
while the magnetic flux varies.



In the above neuro-fuzzy (F-HONNF) model, the number of fuzzy partitions of 
each    is selected to be m

 

= 5 and the depth of high order sigmoid terms k=9. 
In this case        assume high order connection up to the third

 

order. Also, the 
number of fuzzy partitions of each     is m

 

= 3

 

with high order connection up to 
the first order. Thus, the dynamic equations can be written in a

 

more detailed 
form

if
( )is x

iig

( ) ( ) ( )
( ) ( )

1,1 1,9 6,1 6,9 1,1 3,1

7,1 7,9 12,1 12,9 4,2 6

1 1 1,1 1,1
1 1 1 1 1 9 6 1 9 1 3 1 1

2 2 2,2 2,2
2 2 2 1 1 9 6 1 9 1 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a f W s W s f W s W s g W g W s u

a f W s W s f W s W s g W g W

χ χ χ χ χ χ χ

χ χ χ χ χ χ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

= − + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ +

= − + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ +

&

& ( ),2 2 2( )s uχ∗

When Φ

 

is considered constant, the above nonlinear 3rd order system can

 

be 
linearized

 

and reduced to a second order form having 2 states ( Ι

 

and Ω)

 
Inspired by that, we first assume that the system is described, within a degree 
of accuracy, by a 2nd

 

order linear neuro-fuzzy system of the form

1 1 1 1 1 1
1 1 1 1 1

2 2 1 2 1 2
2 2 2 2 2

( ) ( )
( ) ( )

a X W S X W s u
a X W S X W s u

χ χ χ χ
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∗ ∗

= − + +

= − + +

&

&



For comparison purposes we test the identification abilities of

 

the 
proposed F-HONNF model against the conventional RHONN approximator, 
using equivalent parameters regarding learning rate and number of high 
order terms used.

 

The following scheme shows the performance of the 
proposed scheme (blue line) against the corresponding performance of 
RHONN (red line). 



In the identification phase, we use the parameters            and the range of             
[-182.5667 , 0],     [-19.3627 , 30.0566],       [148 , 150] and        [42 , 44]. 

The inputs were chosen to be                                    . All initial values were 
set to zero, except that of the magnetic flux which was taken to

 

be equal to 
0.98. The following figures gives the evolution of the errors e1

 

and e2

 
respectively.   

15ia =

1f 2f 11g 22g
1 0.8sin(0.001 )1 2u u t= = +



The produced control law is applied on the system, which in turn

 

produces states      
, which in the sequel are used for the computation of the estimation errors that 
are employed by the updating laws. Therefore, the control inputs

 

has the form:
1 2,x x

( ) ( )
( )

( ) ( )
( )

2 2
1 7,1 1 7,9 9 6 12,1 1 12,9 9

2 2,2 2,2
1 4,2 3 6,2 2

1 1
1 1,1 1 1,9 9 6 6,1 1 6,9 9

1 1,1 1,1
1 1,1 3 3,1 1

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

f W s W s f W s W s
u

g W g W s

f W s W s f W s W s
u

g W g W s

χ χ χ χ

χ

χ χ χ χ

χ

+⋅⋅⋅+ + ⋅⋅⋅ + + ⋅⋅⋅+
= −

+⋅⋅⋅ +

+ ⋅⋅⋅ + + ⋅⋅⋅+ + ⋅⋅⋅ +
= −

+ ⋅⋅⋅ +

In the control phase, the following figures show the evolution of the angular 
velocity and armature current respectively. 



FF. . ConclusionsConclusions

The results of this paper indicate that the concept of Fuzzy 
Dynamical Systems (FDS) operating in conjunction with Recurrent 
High Order Neural Networks (RHONNs) can be successfully used in 
the indirect control of general unknown nonlinear dynamical 
systems.

A novel method of parameter hopping was introduced to assure 
the existence of the control signal

The two stage procedure that was followed, was tested on the 
control of a ‘Dc Motor’. It was shown that the proposed Neuro-Fuzzy 
model lead the states to zero very fast, while all signals remain 
bounded.

The proposed approach can be extended to direct control and to 
systems with parameter and dynamics uncertainties.
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