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Abstract—The aim of this paper is to discuss a notion [Conte and Perdon, 1984], is recalled. Under suitable hy-
of Zero Module and Zero Dynamics for linear, time-delay pothesis, this give us the possibility to define a notion of

systems. The Zero Module in the time-delay framework is  7ar4 pynamics, which captures structural basic features of
defined using the correspondence between time-delay system -
the system at issue.

and system with coefficients in a ring, so to exploit algebrai . . . . .
and geometric methods. By combining the algebraic notion N Section llI, the above notions are interpreted in the time

of Zero Module and the geometric structure of the lattice delay framework, using the natural correspondence between
of invariant submodules of the state module, we point out a systems over rings and time-delay systems.
natural way to study the Zero Dynamics and its properties. In 5505 such as invertibility, the existence of reduced, in a

particular, stability of this latter is characterized using, in the . . - . .
ring framework, a formal notion of Hurwitz set. Application suitable sense, inverses and stability of inverses argestud

to the study of decoupling problems with stability, inversbn by introducing, in Section IV, a notion of phase minimality,
problems and traking problems for timke-delay systems are based on that of Hurwitz sets and formal Hurwitz stability.

illustrated. The analysis of the Zero Dynamics is then developed using
a geometric approach, which exploits the relation between
I. INTRODUCTION the Zero Dynamics and elements of the lattices of controlled

invariant submodules of the state module, in Section V.

The_ nouqn of zero of a linear, dynamical system haf’:inally, application to control problems concerning decou
been investigated and studied by several authors from maBF{ng with stability, inversion and tracking are discusstia
different points of view (see [Schrader and Sain, 1989] fo, ection VI '

a comprehensive discussion of the literature). Among ather
the approach based on the notion of Zero Module, introduced,
in [Wyman and Sain, 1981] and recalled below provides
conceptual and practical tools that, besides being useful i
the analysis and synthesis of classical linear systemspean Let R denote a commutative ring. By a system with
effectively generalized to a much larger class of dynamic&oefficients inR, or a system oveR, we mean a quadruple
systems. In particular, an algebraic notion of zero in terms = (4, B,C, X), whereX = R" is a free R-module of
of Zero Module has been given in [Conte and Perdon, 1984jmensiom andA, B, C' are, respectively; xn, nxm, pxn
for linear, dynamical system with coefficients in a ring.  matrices with entries irR. The evolution of¥ is described
By exploiting the possibility to associate to any lin-by the set of difference equations
ear, time-delay system a system with coefficients in a

suitable ring, the algebraic notion of zero introduced { ot +1) = Ax(l) + Bu(t)
in the ring framework can be employed for defin- yt) = Ca()

ing a notion of zeros and of Zero Dynamics forwheret e IN is an independents variable(-) belongs
time-delay systems. This idea has been developed {9 the free module¥ = R, u(-) belongs to the free
[Conte and Perdon, 2007],[Conte and Perdon, 2008] whefgodulel/ = R™, y(-) belongs to the free modull = R?.
properties of the zeros and of the Zero Dynamics for timeBy analogy with the classical case of linear, dynamical,
delay systems and their role in inversion and matchingiscrete-time systems with coefficients in the field of real

problems have been studied. numberR, we view the variables, v andy as, respectively,
Here, we give a unified presentation of the results of thosfie state, input and output &f.

papers, discussing the basic aspects of the notion of zero an
its interpretation from the geometric point of view, as well

as the role of the Zero Dynamics in inversion and traCkingaemark 1 By letting the state modul# to be a projective

problems. .module, instead of a free one, and interpretitgB, C' as R-

Thet paper_tls org?rr_n_zedt as follqws. Inh_Srt]actmn_ Il,tdynamtl orphisms one obtains a slightly more general definition of
systems with coefiicients in a ring, which are instrumentaly g0, with coefficients iR. For reasons that will be clear

Ionf dzeevriloﬂggu?;rir?pt%faﬁ:’ iran:Z\TvSoI?ker?i?s?n ddeftir::e dn?::%a{ter the next Section, we are mainly interested to the case
9 ’ in which R is a ring of polynomials with real coefficients.
- ) i ) ) ) Therefore, since in that case projective modules are free (s
Dipartimento di Ingegneria Informatica, Gestionale e’'dellomazione, L 1978 . . h .
Universita Politecnica delle Marche, Via Brecce Bianchecona 60100, [L&M, 1), we can restrict our attention fo the case in
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ZEROS ANDZERO DYNAMICS FOR SYSTEMS OVER
RINGS
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Besides being interesting abstract algebraic objectseisygs by the transfer functionz in an abstract algebraic way.

with coefficient in a ring have been proved to be usefulo this aim, let us recall that th&[z]-modules/ @ R|[z|

for modeling and studying particular classes of dynamicand ) ® R|[z], usually denoted byQl/ and by Q), are

systems, such as discrete-time systems with integeaturally embedded inté/ ® R(z) and into Y ® R(z),

coefficients, families of parameter dependent systems angspectively. Then, as in [Conte and Perdon, 1984], we

time-delay systems. General results concerning the theatgn extend to the framework of systems with coefficients

of systems with coefficients in a ring and a number oin a ring the definition of Zero Module introduced in

related control problems can be found in [Sontag, 1976[Wyman and Sain, 1981].

[Sontag,1981], [Brewer et al., 1986], [Kamen, 1991],

[Conte and Perdon, 2000a], [Perdon and Anderlucci, 200jefinition 1 (see [Conte and Perdon, 1984] Definition

and the references therein. 2.1; [Wyman and Sain, 1981]) Given the system

In the following, we will generally assume that they = (A4,B,C,X) with coefficients in the ringR and

considered rings are Noetherian rings, that is rings ifransfer functionG), the Zero Module of: is the R[z]-

which non decreasing chains of ideals are stationary, gavimoduleZ defined by

:}(r)] zero leISOfS.. Exa_lmples of rings of thgt kind are the G-LQY) + QU
gs of polynomials in one or several variables with real Z=— ‘"7 - 2)

coefficients, that iR[A, ..., Ax], k > 1, which play a basic Ker G+ QU

role in dealing with time-delay systems. Foe= 1, R[A] is  The reader is referred to [Conte and Perdon, 1984] and

also a principal ideal domain (P.1.D.), that is a ring in whic [Wyman and Sain, 1981] for a discussion of the above def-

any ideal has a single generator (see e.g. [Lang, 1984]). inition. Essentially, in case is a field, the Zero ModuleZ

Introducing the ringR[z] of polynomials in the indeterminate captures the information displayed in the so-called irartri

z with coefficients inR and its localization?(z) = S~'R[z]  zeros of¥. Here, we remark that the elements Bfhave

at the multiplicatively closed s&t of all monic polynomials a meaningful interpretation in terms of the dynamicsXbf

(that is the ring of all rational functions in the indeter@i@  Any ¢ € Z can be written ag = [u(z)], where brackets

z with monic denominator), we can associate to angenote equivalence class an¢z) = 3 .2, u;z~" € U(z)

system X of the form (1) its transfer function matrix represents a sequence of inputs whose oupt(z)) =

G(z) = C(2I — A)~'B, whose elements are iR(z), and Zjito vzt € Y(z) is such thaty, = 0, for ¢t > 1. Then,

the inducedR(z)-morphismG : U ® R(z) — Y ® R(z),  writing u(z) = Z?:to Uz T 30 w2t = g (2) +ua(z)

which is said to be the transfer function bf - that is: as the sum of a polynomial part and of a strictly

Each elementu(z) of U ® R(Z) can be written as proper one - one has = [’U,(Z)] — [UQ(Z)] and we can say

u(z) = 3272, wez ™", with uy € U, and it can be naturally that 2 consists of the strictly proper parts of all the input

interpreted as a time sequence, from some t#im® oo, of  sequences that generates polynomial outputs.

inputs. Respectively, each elemeytt) of Y @ R(z) can be From another point of view, with the above notations, one can

written asy(z) = 332, vz ', with y, € Y, and it can  view u,(z) as representing an input sequence which produces

be naturally interpreted as a time sequence, from some tigro outputs if, at = 1, the system is in the state reached

to to oo, of outputs. Therefore( can be interpreted as a from the null state by means of the output(z) over the

transfer function between the space of input sequences ggagerval ¢, 0].

the space of output sequences. An important property of the zero modulg is that it

In order to simplify our study, we will assume for the restyrns out to be finitely generated over the ritg) (see

of the paper, thak is a minimal realization of its transfer [Conte and Perdon, 1984], Proposition 2.4). In c&Beis

function. Very roughly, this means that the dimension ofjso a freeR-module, this implies that we can represent it

the state module cannot be reduced without altering thgs a pair(R™, Z), for somem, where Z is a matrix with

transfer function. More precisely, minimal representaive  entries inR, that defines af-automorphisnf : R™ — R™

characterized by the fact that both the observability matriof the free R-module ™. Then, we can give the following

[CT CTAT...CT(AT)"']" and the reachability matrix Definition of the Zero Dynamics of.

[B AB...A""'B] are full rank. A stronger requirement

than minimality is that¥ is a canonical realization of its pefinition 2 Given a systent with coefficients in the ring
transfer function. Reachability, in the framework of syste R, whose zero module is representable as the p&iF, D),
over rings, is a quite strong property, characterized by thge zero Dynamics of is the dynamics induced oR™ by

fact that the reachability matrixB AB....A""!'B] has a D, that is by the dynamic equation(t + 1) = Dz(t), for
right inverse overR. In general, we can have state space - pm.

representations of the form (1) that are minimal, in the

sense explained above, but not reachable and, of courgdecording to the above Definition, a Zero Dynamics is
cannot be transformed into a reachable representation byepresented by th&[z]-module structure induced on a free
change of basis in the state module (see e.g. [Sontag,198ymodule by anR-automorphism. This agrees conceptu-
From the point of view we adopt here, followingally with the fact that the dynamics of a systers =
[Wyman and Sain, 1981], the zeros &f are determined (A, B,C,X) with coefficients inR is represented by the



RJz]-structure induced on the state moddfe= R" by the Proposition 4 Assume thatN(U(z)) is R(z)-closed in
R-automorphismA. Remark that in case is not a free Y(z) and leta : Z2 — Tor(QY/NQU) be the R[z]-
R-module the Zero Dynamics at is not defined. homomorphism defined in Proposition 1, then

) a(Z2) = Tor((DQY + NQU)/N(QU)) C
Remark 2 Definition 2 is slightly less general than the Tor(QY/NQU)
one given in [Conte and Perdon, 2008], but more intuitive, jj « is an R[z]-isomorphism if and only itV (Q/)NQY C
and for this reason it has been preferred here. When both  pOy + NQu.
definitions apply, they characterize the same concept and
differences may exist only in very particular situations. It is useful to remark, as in [Conte and Perdon, 1984], that,

besides the case in whicR is a field, « is an R][z]-
To analyze the structure of on the basis of Definitionl jsomorphism ifG(Z) = D~!(z)N(Z) is a Bezout factor-

may be quite Complicated. The task is Slmpllfled, in SeVeraiation and G(Z) is left or r|ght invertible.
situations by the relation between the Zero Module and

the numerator matrix in polynomial matrix factorizatiorfs o Ill. ZEROS ANDZERO DYNAMICS FOR TIME-DELAY
G(z), as described in the following Proposition. SYSTEMS

Let us consider, now, a linear, time-invariant, time-delay
Proposition 1 ([Conte and Perdon, 1984] Proposition 2.5) system¥, with non commensurable delaysi, ..., hs,

Let G(z) = D'(z)N(z) be a factorization whereD(z) p, € R+, fori = 1,...,k, described by equations of the the
and N(z) are coprime polynomial matrices of suitableform
dimensions, withD(z) invertible over R(z). Then, the

. k a .
canonical projectionpy : Q)Y — QY/NQU induces an #(t) = Zi:}czj:g Agje(t = jhi)
injective R[z]-homomorphismy : Z — Tor(QY/NQU), + 21 2o Bigult —jhi)  (4)
where Tor(QY/NQU) is the so-called torsion submodule y(t) = Zle 25:0 Cixz(t — jh;)
of QV/NQU. : : : .
whereA;;, B;;, andC;; are matrices of suitable dimensions

The torsion submodul@or(QY/NQU) consists of the ele- With entries in the field of real numbét.

ments[y] € QY/NQU, where brackets denote equivalencén the last years, a great research effort has been devoted
class andy = Z?:to yz"t € QY, such thatay € N/ 1o the development of analysis and synthesis techniques for
for somea # 0,a € R, or, equivalently, such that[y] = 0. this kind of systems, mainly extending tools and methods

WhenR is a field,«, as shown in [Wyman and Sain, 1981],from the framework of classical linear systems (see e.g. the
is actually an isomorphism. To investigate the ring case, Rroceedings of the IFAC Workshops on Linear Time Delay

is useful to consider the following notion, first introduded Systems from 1998 to 2007). Many of the difficulties in
[Conte and Perdon, 1982]. dealing with systems of the form (4) is due to the fact

that their state space has infinite dimension. In order to

Definition 3 Let M C N be R-modules. The closure of circumvent this, it is useful to associate to a time-delay

M in N, denoted byC'Ly (M) or simply CL(M) if no system a suitable system with coefficients in a ring of
confusion arises, is th&-module defined by polynomials with real coefficients (compare with Remark 1),

as described in the following.

CLyx(M) = {z € N, such thatax € M (3) For any delayh;, let us introduce the delay operatéy

for somea # 0, a € R}. defined, for any time functiotf(t), by &; f(t) = f(t — h;).
If M =CLN(M), M is said to be closed inV. Accordingly, we can re-write the system (4) as
A key property of closed submodules over a P.IIDis the it) = Y, Zf:o Aijdia(t)
following one. Ya = 3 Z?:o Bijdtu(t)

o y(t) = i, Z?:o Cij‘sj‘fc(t)
Proposition 2 [Conte and Perdon, 1982] Le® be a P.I.D.. ]
Then, a submodul&t C A is closed inM C R™ ifand only  Now, by formally replacing the delay operatais by the
if it is a direct summand oM, i.e. there exists a submodule /gebraic unknowns;, it is possible to associate

W C A such thatM = N @ W, or, equivalently, any basis the discrete-time systefd over the ringR = R[Aq, ..., Ag]
of A" can be completed to a basis 8f. defined by equations of the form (1) where the matrices

A,B,C are given byA = Y0 >h 0 A AL B =
The notion of torsion submodules is clearly related to th 3—1 Z{?_O ByAi, C = Y5 Z{?_O Cyy AL Actually,
notion of closure and, for what we are concerned, this a”0V\tﬁe_timeJ-_delay systenty, and the associated system
to get the following results. over R = R[A4,...,A;] are quite different objects from

a dynamical point of view, but they share a number of
Proposition 3 The moduleT'or(2Y /N is finitely gen-  structural properties that depend on the defining matrices.
erated as am-module if and only ifV (U (2)) is R(z)-closed |n particular, control problems concerning the input/autp
in Y(2). behavior ofX; can be naturally formulated in terms of the



input/output behavior o, transferring them from the time- realization. Then, we can recall the following results of
delay framework to the ring framework. Since systems witfiConte and Perdon, 1984].
coefficients in a ring have finite dimensional state modules,

algebraic methods, similar to those of linear algebra, gsroposition 5 Given a left (respectively, right) invertible
well as geometric methods apply. Then, solutions to specifisystemy = (A, B, C, X) with coefficients in the ringz and
problems found in the ring framework can be interpreted ifransfer functior(, let G;,,,, denote a left (respectively, right)
the time-delay framework for solving the original probleminverse ofG and letY;,,, = (Ainw, Binv, Cinv, Xiny) beits
(see [Conte and Perdon, 2000a], [Conte and Perdon, 20Q&nonical realization. Then, the relatia®;,,, G = Identity
and the references therein). induces an injectiveR[z]-homomorphism) : Z2 — X,

It should be noted that in this approach the use of systemspectively, the relatiorG G;., = Identity induces a
over rings, beside being instrumental in clarifying thekpro surjective R[z]-homomorphisny : X;,, — Z) between the

lem and in helping intuition, provides a sound basis for thgero Module of% and the state module of the canonical
use of ring algebra. Here, we use the correspondence betweggslization of G

time-delay systems and systems over rings to derive a notion

of Zero Modules and Zero Dynamics for the first ones andhe above Proposition says that the Zero Moddleis

for investigating related control problems. More pregisel contained, in a suitable algebraic sense, into the canonica

we state the following Definition. state moduleX,,, of any inverse. On this basis, it is
interesting to investigate the situations in which, pdgsib

Definition 4 Given a time-delay systerii; of the form £ coincides withX;,,, namely the situations in which the

(4), the Zero Module of, is the Zero ModuleZ of the [[z]-homomorphism) (respectively,) is an isomorphism.

associated systeifi over the ringR = R[Aq, ..., Ax]. In such case, the inverse can be viewed, in a suitable sense,
as a minimal or reduced inverse. In case the ridgs a

In caseZ is a freeR-module and the Zero Dynamics & P.I.D. (this holds, in particular, when dealing with system

is defined, we can consider that notion also . associated to time-delay systems with commensurate delays
and K denotes its field of fractions, using the notation of

Definition 5 Given a time-delay syste®, of the form (4), Proposition 5, we can give the following Definition.

the Zero Dynamics of,; is the Zero Dynamics of the

associated systerit over the ringR = R[Aq,...,Ag], if  Definition 6 ([Conte and Perdon, 1984] Definition 3.4)

the latter is defined. Given a transfer functionGz, a left (respectively, right)
inverse G;,, of G is said to be an essential inverse if

Remark that if Z is represented as the paiR™, Z), the x, /i (2)® K =0 (respectively, itKery @ K = 0).
dynamics described in the ring framework by the equation

C(t+1) = Z((t) gives rise to an associated dynamjés) = The above Definition reduces to that given in

Z((t) in the time-delay framework by substituting, accordindWyman and Sain, 1981] wheR is itself a field. Moreover,

to the correspondence illustrated above, the indetermihat it implies that the Zero Module ofY and the state

by the delay operatafelta in the matrixZ. Then, the Zero module X;,, of an essential inverse have the same rank

Dynamics of a time-delay system can be viewed, in generand, in case of right inverse, they are isomorphic (see

as a time-delay dynamics. [Conte and Perdon, 1984], Section 3). A more practical
result is the following.

nv-

IV. INVERTIBILITY AND PHASE MINIMALITY

One of the most interesting aspects in the notions d?roposition 6 Let G(z) = D~ 1(z)N(z) be a Bezout fac-
zeros and of Zeros Dynamics is the relation with invertorization (respectively, whem? is a P.I.D., a coprime
sion problems. Roughly, one can expect that the zerdactorization). Then,
of G(z) appear, in some sense, as poles of any inversgin case of right invertibility, there exists an essentiahi
transfer function, if some exists, and, henceforth, thayth inverseG.ss of G if N(z) = Q(2)N’'(z), where the matrix
characterize (part of) the dynamics of any inverse sys2(z) is invertible overR(z) and the matrixV'(z) is right in-
tems. The situation, in the ring framework, has been invertible overR|[z]; moreoverGess(2) = M (2)Q~*(z)D(z),
vestigated in [Conte and Perdon, 1984](compare also withhere the matrix\/ (z) is a right inverse oveR[z] of N'(z),
[Wyman and Sain, 1981]). is a factorization ofG.ss(z) where M(z),Q(z) are right
Let us recall that right invertibility of a systel with coprime and~'(z)D(z) is a Bezout (respectively, coprime)
coefficients in the ring? can be characterized by the fact thatfactorization;
its transfer functionGG is surjective, while left invertibility i) in case of left invertibility, there exists an essentiat lef
of X can be characterized by the fact that its transfanverseG.ss of G if N(z) = N'(2)Q(z), where the matrix
function G is injective and its imagelmG is a direct Q(z) is invertible overR(z) and the matrixV'(z) is left in-
summand ofY(z) = ¥ ® R(z). In the following, we will vertible overR[z]; moreover,G.ss(z) = Q71 (2)P(2)D(z),
denote byG,,, any inverse of a given transfer functi@n whereP(z) is a left inverse oveR[z] of N’(z), is a Bezout
and by X, = (Ainw, Binw, Cinv, Xinw) its canonical (respectively, coprime) factorization 6f.ss(z).



The explicit factorizations of essential inverses prodideof the associated system with coefficients inR, if the
by the above Proposition and the content of Proposition Rypothesis of Proposition 6 hold.

explain the relation between inverses and Zero Modules in
terms of the numerator matri¥ (Z) of a Bezout factoriza-
tion of G(z). Further results concerning the case in which
R is a P.I.D. are stated in [Conte and Perdon, 1984]. A different point of view for looking at Zeros
Using the corrspondence between time-delay systems aisd that based on the so-called geometric approach
systems with coefficients in a ring described in Section Ill(see [Basile and Marro, 1992], [Wohnam, 1985]).
the notion of essential inverse, as well as the results of thextensions to the framework of systems over rings
above Propositions, can be directly extended to the tin® geometric methods and tools have been considered
delay-framework. by many authors (see [Conte and Perdon, 2000a] and
The main interest in the above results is related to thgerdon and Anderlucci, 2006] for an account of the
construction of stable inverses. Since a ring cannot, igeometric approach to systems with coefficients in a ring).
general, be endowed with a natural metric structure, thEhe basic notion of the geometric approach we will need in
notion of stability for systems with coefficients in a ringthe following are briefly recalled below.

R can only be given in a formal way. However, in the

correspondence between the ring framework and the time-

delay one, formal stability can be related to the classic&efinition 9 ([Hautus, 1982]) Given a systeri, defined

V. GEOMETRICTOOLS AND ANALYSIS OF THE ZERO
DYNAMICS

notion. In order to proceed, let us introduce the formabver a ring R by equations of the form (1), a submodule
concept of Hurwitz set and the related notion of formal of its state modulet’ is said to be

stability (see also [Habets, 1994]).

Definition 7 Given a ringR, a subset{ C R|z| of polyno-
mials with coefficients ik in the indeterminate is said to
be an Hurwitz set if
i) H is multiplicatively closed,
i) H contains at least an element of the form- o, with
a € R,
iif) H contains all monic factors of all its elements.

Given a Hurwitz setH, a systemX of the form (1) with
coefficients inR is said to beH-stable ifdet(zI—A) belongs
to H.

In order to interpret the formal notion in a practical sereg,
us consider the rindR = R[Aq, ..., Ax], which comes into

i) (A, B)-invariant, or controlled invariant, if and only if
AY CV+ ImB;

i) (A, B)-invariant of feedback type if and only if there
exists anR-linear map F : X — U such that(A +
BF)YY CV.

Any feedbaclkF' as in ii) above is called a friend of.

While (A4, B)-invariance is a purely geometric property,
controlled invariance is a notion related to system dynamic
which is equivalent to invariance with respect to a closed
loop dynamics. For systems with coefficients in a ring, an
(A, B)-invariant submodul® is not necessarily of feedback
type and therefore it cannot always be made invariant with
respect to a closed loop dynamics, as it happens in the

the picture when studying time-delay systems of the formge i) case of systems with coefficients in the field of

(4). In that case, letting the Hurwitz séf be defined as
H= {p(za Ala ey Ak) € R[Z],
such thatp (y,e "M, ... e= ") £ 0
for all complex numbery with Rey > 0},

®)

we have that stability of a systeR), in the time-delay frame-
work corresponds t@{-stability of the associated system
in the ring framework (see [Datta and Hautus, 1984]).

Now, it is possible to introduce an abstract notion of phas

minimality in the ring framework.

Definition 8 Given a Hurwitz sef{, a systenk of the form

(1) with coefficients inR for which the Zero Dynamics is
defined is said to b&{-minimum phase if its Zero Dynamics

is H-stable.

Letting H be chosen as in (5), the notion &f-minimum

real number®. Equivalence between the (generally weaker)
geometric notion of(A, B)-invariance and the (generally
stronger) dynamic notion of feedback type invariance holds
if V is a direct summand ot, that isX = V@ W for some
submoduleV (see [Conte and Perdon, 1998]).
Given a submodulé&C C X, there exists a maximuif¥, B)-
invariant submodule ok’ contained inC, denoted by* (K),

ut there may not be a maximuf, B)-invariant submodule
of feedback type contained ig.
The computation of*(K) is not difficult for systems with
coefficients in the field of real numbei®, since V*(K)
coincides with the limit of the sequend®’.} defined by

V() = ,C (6)
Viri = KNA7Y(Vy + ImB)

and the limit itself is reached in a number of steps lessar tha

phase can be used to characterized minimum phase tin@-equal to the dimension of the state space. For systems
delay systems. Then, on the basis of Proposition 5, we cavith coefficients in a ring, the sequence (6), which is non-
state that non-minimum phase, time-delay systems canrintreasing, may not converge in a finite number of steps and,

have stable inverses. For a given time-delay sysignstable

in such case, an algorithm for computivig(KC) is in general

inverses can be constructed by means of essential inversed available. In cas® is a P.1.D., however, using a different



characterization, the problem of computig(K) has been However, it may happen that*/R* is a free R-module,

satisfactorily solved (see [Assan et al., 1999b]). but no friends exist, a¥* is not of feedback type. In this

Together with the notion of controlled invariance, it isfude case, the Zero Dynamics is defined, but its analysis on the

to consider the following one. basis of the definition may be complicated. In order to handle
situations of this kind, we can proceed as follows.

Definition 10 Given a systenXt, defined over a ring? by Letting dimV* = s, we construct the extended system

equations of the form (1), a submoddleof its state module . = (A, B, Ce, X.), With state moduleX, = X & R?,

X is said to be for which

if A(SQKBTC)QS; 0 0 0 I
i) injection invariant if and only if there exists aR-linear

map H : Y — X such that(A + CH)S C S. where I and 0 denote, respectively, the identity matrix and
Any output injectionf as in ii) above is called a friend of null matrices of suitable_ dimensions. Denotingibya matrix
S. whose columns spayi* in X, the submodul®’, spanned in

X @ R? by the columns of the matri®/ 7 I]7 is easily seen to

In the ring framework(A, C)-invariance is a weaker prop- be(A., B.)-invariant and direct summand &f¢ R®. Hence,
erty than injection invariance. Given a submodileC X, V. is of feedback type and, since the canonical projection
there exists a minimuni4, C)-invariant submodule ot 7 : X & R®* — X is such thatr(),) = V*, it can be
containingkC, usually denoted by*(K), but there may not viewed as an extension of*. In addition, we have thap,
be a minimum injection invariant submodule containig is contained in the kerneKerC, of the output map of:..
As in the field case, it is not difficult to show that, denotingMoreover, denoting by’ L(R*) the closure ofR* in V*, we
simply by V* the (A, B)-invariant submodule/*(Ker(C) have the following results.
and by §* the (A, C)-invariant submoduleS*(ImB), the

submoduleR* defined by Proposition 8 In the above situation and with the above
R =V NS* (7) notations, letR, be defined aR. = 7Y (CL(R*)). Then:
i) R.is an(A., B.)-invariant submodule of;

[
is the smallest A, B)-invariant submodule oP* containing i) R, is the minimum closed submodule)af that con-
V*NImB. Moreover, ifV* is of feedback type with a friend tains V, N ImB,;

F, alsoR* is of feedback type and it has the same friendsy the canonical projectionr induces anR-isomorphism

(see [Basile and Marro, 1992], [Wohnam, 1985]). The main * patwveen the quotient module /R. and the quotient
result relating the Zero Module with the geometric objects moduleV* /(CL(R*)).

we have introduced can now be stated.

i) (A,C)-invariant, or conditioned invariant, if and onl
) Y Ae[AO};Be{BO};Ce[O 0] (®

- N It follows from the above Proposition, that the system
Proposition 7 ([Conte and Perdon, 1984], Proposition 4.2, extension produces a@i-moduleV, /R, and ankR-morphism
4.3) Given a syster, defined over a ring? by equations of (Ae + B.F.)|y,/r., where F, is a friend of V., that
the form (1), with zero modulg, assume thak is reachable form a pair akin to the paiv*/R* and (A + BF) Ve /R
and observable (respectively, whéhis a P.I.D., that it is considered in the last statement of Proposition 7. However,
a minimal realization of its transfer functioty) and that the R-morphism (4. + B.F.)|y./z. can be constructed
G(U(z)) s closed iny(z). also whenV* is not of feedback type and, henceforth, no
Then,V*/R* is R-isomorphic toZ. _ friend F is available to define th&-morphism(A + BF).

If, in addition, V* is of feedback type and’ is one of |n addition, if the Zero Dynamics is define®* is closed
its friends,V* /R* endowed with theR?[z]-module structure in V* and, therefore, the quotient modulg /R, and the
induced by thekR-morphism(A + BF)|y-/r- : V*/R* —  quotient moduleV*/R* are isomorphic. This allows us to
V*/R* is R|[z]-isomorphic toZ. state the following result, which is of help in analyzing the

. i . . Zero Dynamics in many situations.
Beside establishing a connection between the algebraic no- y y

tion of Zero Module and the geometric notion of con- N ]

trolled invariant submodule, the above Proposition presid Proposition 9 In the above context and with the above
a practical way to study the Zero Dynamics Bf The notations, assuming that the Zero_ Dyngmms)]otfs defined,
submodule3’* andR*, as well as a friend”, if any exists, €t Ve/R. be a freek-module of dimensiom and letZ be
can in fact be computed by means of suitable algorithnfsMatrix representing th&-morphism (A, + B Fe)|y, /. :

in several interesting situations (see [Assan et al., 19998/ Re — Ve/Re, whereF. is a friend ofV.. Then, the Zero
[Assan et al., 1999b]). Then, the Zero Dynamics turns olRYnamics ofi: can be represented by the paiR™, Z).

to be defined only ifV*/R* is a freeR-module and, in that

case, it isH-stable only ifdet(zI — Z), whereZ is a matrix Example 1 This example, that was already discussed in
that describes th&-morphism(A+ BF)|y- z- : V*/R* —  [Conte and Perdon, 2008], can be revisited here in the light
V*/R*, belongs to the Hurwitz sef. of Definition 2. Let us consider the time-delay systEm




described by the equations as [p(A, z)] = [A¢(A)] + [p”(2)], for suitable polynomials
¢ (A) € R[A] and p”(z) € Rz]. It turns out thata(Z)

283 _ 8) fgg@“_(th) ?u(t B coincides with the submodule BIA, 2]/(Az + A)R[A, 7]
g = Ba(t) = aa(t) + za(t — h) consisting of all elements of the fofi ¢’ (A)] with ¢'(A) €
y(t) = w5t R[A]. Inspection shows that, for any element of that kind,
z[AG' (A)] = [zA¢ (A)] = [-A¢'(A)] and therefore we can
and the associated systéin= (4, B, C, X) with coefficients  conclude that thek[z]-moduleZ can be viewed as defined
in R = R[A] and matrices by the pair(R, [—1]), in accordance with what expressed by
00 A A equation (9).
A=|1 0 A |:B=|A |;c=[001]. To conclude, we can say that, taking the Hurwitz7geds in
01 A 0 (5), X is H-minimum phase and, respectively; is minimum
phase.

Computations in the ring framework show thgt is the

3 _ T
submodule off” spanned by the vector’ = (A 0 0)"  gyample 2 Let us consider the time-delay systetn de-
and that R* = {0}. The controlled invariantV* is not i ;

L > scribed by the equations

of feedback type (because it is not closed), but it is free.
Therefore, the Zero Dynamics &f is defined and it can be @1(t) = x2()
represented as a suitable pgiR™, Z) in order to check, for ~ Xa = #2(t) = x1(t) +ur(t — h1) 4 ua(t — ha)
instance, phase minimality. y(t) = a2(t)

To analyze the Zero Dynamics, in accordance with thSnd the associated systéin= (A, B, C, X) with coefficients

above construction, we consider the extensibp = R = R[A, As] and matrices
(Ae, Be, Ce, X¢), Where
00 A 0 A0 A=Y g 0 Va0 ).
10 Ar Ay
A= |02 0 12 0 e o010
c 101 A o0’ |0 0T [ ] Computations in the ring framework show thgt is the
00 0 0 0 1 submodule of?? given byspan{(A; 0)T, (A2 0)T} and that

R* = 0. In this case, the Zero Modulg = V*/R* = V* is
not free, since it has a minimal set of generators which are
not linearly independent. Hence, the Zero Dynamic& d$

We have, now, thay, is the submodule oR* spanned by
the vector[V? 1]7 = (A 00 1) and R. = {0}. The Zero
Dynamics ofx, as well as that o, is defined and can be

explicitly evaluated. A friend", of V. is given, for instance, not defined.
by F, = 8 8 8 j . Therefore, the dynamic matrix VI. APPLICATIONS
A. = (A, + B.F) of the compensated system 4 = The notion of Zero Dynamics we have defined can be
00 A —A employed in dealing with control problems that imply in-
1 0 A —A ) R R versiqn or_geome_tric decomposition of the state space. As
01 A o |-SinceA[VT 1T =—[VT1]7, the explained in Section Iil, problems formulated in the time-
00 0 -1 delay framework can be interpreted in the ring framework,
Zero Dynamics turns out to be given b, [—1]) or, in other using the correspondence between time-delay systems and
terms by systems over rings. If a solution is found, it can generally
be interpreted in the time-delay framework. However, one of
. gt +1)=—¢(1) (9) the most effective use of this techniques is in pointing out

(&(t) = =£(t) in the time-delay framewoyk

with £ € R (respectively¢ € R). .
Alternatively, we could analyze directly the Zero Dynamicéb" Decoupling Problems _ _
starting from its definition. The transfer function matrik o Zero Dynamics can be used to characterizes the fixed

the obstruction that prevents a problem to be solvable.

Y is dynamics with respect to feedbacks which make a system
G(z) = Az+A maximally unobservable. To see this, recall thét repre-
22— Az2 - Az - A sents the largest submodule of the state modulthat can

and then, by Proposition 1, the zero modueof ¥ can be made unobservable by means of a feedback, either a static
be viewed, through the injectiv&[z]-morphisma, as a one, in case/* is of feedback type, or a dynamic one, in
submodule ofTor(2Y/(Az + A)QU). We have, in our case it is not. This property is fundamental in dealing with
case,Tor(QY/(Az + A)QU) = R[A, z]/(Az + A)R[A,z]  the problem of decoupling the output of the system from a
and, since any elememt(A, z) € R[A,z] can be written disturbance input (see [Conte and Perdon, 1995]).

in a unique way asp(A,z) = Ap'(A,z) + p”(2) = Given a systent, with coefficient inR, of the form (1), let
Al(z+1)g(A, 2)+4¢'(A)]+p"(2), we can say that, denoting us consider the submodulé* of its state module. In order
equivalence classes by brackets, any elempf, z)] € to deal with all possible situations at the same time, let us
Tor(QY/(Az + A)QU) can be written in a unique way consider a systerk, = (A, B, Ce, X¢) that, in caseV*



is not of feedback type, is an extension Bfconstructed Since the general formula (whee® has been omitted for
as in Section V and that, in ca3¢* is of feedback type, simplicity) yields

coincides withX. In both cases we have the submodules b1

Ve aqd Re, wh|ch, in particular, wherd, coincides with y(t+ k) = CAkx(t) + ZCAk—i—l b u(t + 1),

%, coincide withV* and CL(R*). Now, let us assume that —

the Zero Dynamics of is defined and thavt, is a direct | o1 )
summand ofY. (as we have seen in Section V, this is true byither cA" " b = 0 for all & > 1, or there existsko,
construction ifS, is actually an extension df, but it must necessanl?cl Ifsser than or ?Cq“fl‘m” A, such that for all
be assumed explicitly in the other situation). Remark thdf < ko ¢A™ b =0andcA®™™ b # 0. In such case, one
the existence of the Zero Dynamics implies, in particulad€tS

that R* is closed, that iSR* = C'L(R*). In both situations, y(t+1) = CA;C@

then, we can writeX, = X @ R" = R. @ W, @ W, for y(t +2) = cA%(1) (14)
some submoduled/; and W5, such thaty, = R. @ W, :

and X, = V. & W,. Writing A. and B, in that basis and y(t + ko) = cAFox(t) 4+ cA*o~1hu(t)

partitioning accordingly, we get ) . o .
It is clear, then, thak is invertible if and only ifcA*o—1 =

A A Agg By c(A)cA(A)R~1b(A) is an invertible element o = R[A].
Ac=1| 0 A Ass [;Be=| 0 |. (10) If this is the case, an inverse in the ring framework is given
Azr Aspx Ass Bs by the system
Compensating the system by means of a state feedBack 2(t+1) = (A—b(cAFo—1b)~LeAko)z(t)+
that is a friend of)., we can force the motions originating ., b(cA*o=1b) =1y (t + ko)
in V. to remain inKerC,, making the system maximally ~*"*" — u(t) = —(cAko=1p)=leAkoz(t)+
unobservable and, actually, decoupling the output from pos (cA*=1p) =Ly (t + ko)
sible inputs whose image is iW.. The dynamic matrix (15)

A. = (A.+ B.F) of the compensated system, for any friend=rom the expression of the inverse in the ring frame-
F.=[ F F, F;]ofV,,takes, in such case, the form work it is easy to derive that of an inverse in the orig-
inal time-delay framework. The defining matrices of this

An +BiFy A+ BiFy Az + BiF3 will simply be obtained by substituting the algebraic in-
A= 0 Aso Ass determinateA with the delay operatod. Now, following
0 0 Aszz + B3 F3 [Conte and Perdon, 2000b], we introduce the following Def-
(11) inition.

showing that the dynamics of the block,, remains fixed

for any choice off. and that, being described byl +  pefinition 11 Given the SISO systeB= (A, b, ¢, X) with
BeFe)lv./r. = Az, it coincides with Zero Dynamics 0. coefficients in the ringR, assume that there exisks, such
As a consequence, stability of the decoupled system canqfti .41  — 0 for all < ko and cA¥—1 b #£ 0. Then,
be achieved i is not minimum phase. we say that® has finite relative degree equal ta. If, in
addition,cA*0—1 p is an invertible element ok, we say that
the relative degree is pure. Alternatively,cifi*—1 b = 0 for
Inversion of time delay-system has been studied, usdl &£ > 1, we say tha® has no finite relative degree.

ing methods and results from the theory of systems with o ) )
coefficients in a ring, in [Conte and Perdon, 2000b] andnvertibility of X is therefore characterized by the fact that

[Conte, Perdon, lachini, 2001]. Let us consider, for sake df'¢ System has pure, finite relative degree. If we write the
illustration, only the case of Single Input/Single Outporr, transfer function matrixG(z) of X as

SISO, syster_ns, the extension to_ more general sit_uationg bei G(z) = ez — A)‘lb _ d(z)_ln(z)

worked out in the above mentioned papers. Given a SISO

time-delay systent, described by the set of equations ~ Whered(z), n(z) are polynomials inR[z], that is they are
polynomials in the indeterminate with coefficients inR,

Sy = { B(t) =Y ;o Aiw(t —ih)+ S0 biu(t — ih) andd(z) is monic, it is not difficult to see that the leading
y(t) = > i cix(t —ih) coefficient ofn(z) is just cA*=! b. If  has pure relative
) ) (12) degreeky, than the zero modul& of X is isomorphic, by
and the corresponding SISO systé defined, over the proposition 1, to the torsioR[z]-module R[z] /n(z)R[2]. In
principal ideal domainz = R[A], by the set of equations  gych case, the notion 6f-minimum phase system discussed
. 2(t +1) = AA)2(t) + b(A)u(t) 12 at the end of Section IV can be easily characterized in terms
{ y(t) = c(A)x(t) (13) ofthe r_1urr_1erator ponnoml_ad(z). _
Essential inverses ol-minimum phase SISO, time-delay
one can apply the Silverman Inversion Algorithm in thesystems aré{-stable and, on the other hand, non minimum
ring framework by evaluating recursively y(t+1), y(t+2),. phase systems do not have stable inverses.

B. Inversion of time delay systems



Extension of the Silverman Algorithm and of thewhose action ort: causes the error to evolve according to
above discussion to the multi input-multi output casehe following equation

is possible due to the abstract, algebraic nature of ko—1

our arguments (see [Conte and Perdon, 2000b] and _ ) N ko _

[Conte, Perdon, lachini, 2001]. The inverse systéiy,, et + ko) = Z aie(t +i) = cA™ (x(t) — 2(t))  (18)
constructed by means of the Silverman Inversion Algorithm . i i
when it exists, is not essential. In facts, its dimensiorhis t /¢-Stability of the compensator is of course a key issue and,
same of that of the systei, which is equal to the degree since its constructlon is based on inversion, it can be dealt
of the denominator polynomial(z), while the dimension of With as for inverses. I&, and hencelr, are’-minimum

Z, being equal to the degree of the numerator polynomi@hase (that is: their Zero Dynamics f$-stable); an¥-

n(z), is smaller than that. Reducing:,, to an essential stable reduced compensator can be obtained by means of

inverse, in general, may be complicated, so, to construct ) essent_|al inverse.. . .
Then, as in the case of inversion, it is easy to derive a com-

essential inverse, it is preferable to make use of the akplic . : o
decomposition given in Proposition 6. pens_ator in the t|me—delay framework frony.. Its_ dc_eﬂnmg
matrices are obtained from those ¥f by substituting the
algebraic indeterminat& with the delay operatos. Thank
Example 3 Assuming that the transfer function of a giveno (18) and to the corresponding relation in the time-delay
n-dimensional, SISO system with coefficients in the ring framework, the tracking error behaves in a desired way. More
R[A], is G = d(z)"'n(2) with n(z) = co + 12 + ... +  precisely, in case the initial conditions f& are known
cp—12""" andc,—1 # 0, the relative degree of is 1 and and the compensator can be initialized accordingly, then,
cAFo=l b = ¢b = ¢,y . If ¢,y is invertible, it is not  the compensated system tracks asymptotically the referenc
difficult to see, using a suitable realization &f that the sjgnal.
characteristic polynomial of the dynamical matrix®f,., is  |n case the correct initialization is not possibleYifis glob-
p(2) = (en1) o+ 1z + oo+ cn12" )z ally asymptotically stable, the tracking error can be made a
bitrarily small for t sufficiently large. Extension to the MD
From the above results and discussion, it follows that thgzse is possible (see [Conte, Perdon and Moog, 2007]), al-

use of inversion as a synthesis procedure in the framewogioygh the situation complicates and results are relativel
of time-delay systems can be dealt with, in connection witl,eaker.

the issue of stability of inverses, by studying Zero Modules

=0
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