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Abstract— The aim of this paper is to discuss a notion
of Zero Module and Zero Dynamics for linear, time-delay
systems. The Zero Module in the time-delay framework is
defined using the correspondence between time-delay systems
and system with coefficients in a ring, so to exploit algebraic
and geometric methods. By combining the algebraic notion
of Zero Module and the geometric structure of the lattice
of invariant submodules of the state module, we point out a
natural way to study the Zero Dynamics and its properties. In
particular, stability of this latter is characterized using, in the
ring framework, a formal notion of Hurwitz set. Application
to the study of decoupling problems with stability, inversion
problems and traking problems for timke-delay systems are
illustrated.

I. I NTRODUCTION

The notion of zero of a linear, dynamical system has
been investigated and studied by several authors from many
different points of view (see [Schrader and Sain, 1989] for
a comprehensive discussion of the literature). Among others,
the approach based on the notion of Zero Module, introduced
in [Wyman and Sain, 1981] and recalled below provides
conceptual and practical tools that, besides being useful in
the analysis and synthesis of classical linear systems, canbe
effectively generalized to a much larger class of dynamical
systems. In particular, an algebraic notion of zero in terms
of Zero Module has been given in [Conte and Perdon, 1984]
for linear, dynamical system with coefficients in a ring.
By exploiting the possibility to associate to any lin-
ear, time-delay system a system with coefficients in a
suitable ring, the algebraic notion of zero introduced
in the ring framework can be employed for defin-
ing a notion of zeros and of Zero Dynamics for
time-delay systems. This idea has been developed in
[Conte and Perdon, 2007],[Conte and Perdon, 2008] where
properties of the zeros and of the Zero Dynamics for time-
delay systems and their role in inversion and matching
problems have been studied.
Here, we give a unified presentation of the results of those
papers, discussing the basic aspects of the notion of zero and
its interpretation from the geometric point of view, as well
as the role of the Zero Dynamics in inversion and tracking
problems.
The paper is organized as follows. In Section II, dynamic
systems with coefficients in a ring, which are instrumental
in developing our approach, are considered and the notion
of Zero Module in the ring framework, first defined in
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[Conte and Perdon, 1984], is recalled. Under suitable hy-
pothesis, this give us the possibility to define a notion of
Zero Dynamics, which captures structural basic features of
the system at issue.
In Section III, the above notions are interpreted in the time-
delay framework, using the natural correspondence between
systems over rings and time-delay systems.
Issues such as invertibility, the existence of reduced, in a
suitable sense, inverses and stability of inverses are studied
by introducing, in Section IV, a notion of phase minimality,
based on that of Hurwitz sets and formal Hurwitz stability.
The analysis of the Zero Dynamics is then developed using
a geometric approach, which exploits the relation between
the Zero Dynamics and elements of the lattices of controlled
invariant submodules of the state module, in Section V.
Finally, application to control problems concerning decou-
pling with stability, inversion and tracking are discusseddin
Section VI.

II. Z EROS ANDZERO DYNAMICS FOR SYSTEMS OVER

RINGS

Let R denote a commutative ring. By a system with
coefficients inR, or a system overR, we mean a quadruple
Σ = (A,B,C,X ), whereX = Rn is a freeR-module of
dimensionn andA,B,C are, respectively,n×n, n×m, p×n
matrices with entries inR. The evolution ofΣ is described
by the set of difference equations

{

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where t ∈ IN is an independents variable,x(·) belongs
to the free moduleX = Rn, u(·) belongs to the free
moduleU = Rm, y(·) belongs to the free moduleY = Rp.
By analogy with the classical case of linear, dynamical,
discrete-time systems with coefficients in the field of real
numberR, we view the variablesx, u andy as, respectively,
the state, input and output ofΣ.

Remark 1 By letting the state moduleX to be a projective
module, instead of a free one, and interpretingA,B,C asR-
morphisms one obtains a slightly more general definition of
system with coefficients inR. For reasons that will be clear
after the next Section, we are mainly interested to the case
in which R is a ring of polynomials with real coefficients.
Therefore, since in that case projective modules are free (see
[Lam, 1978]), we can restrict our attention to the case in
which the state module is a freeR-module.



Besides being interesting abstract algebraic objects, systems
with coefficient in a ring have been proved to be useful
for modeling and studying particular classes of dynamical
systems, such as discrete-time systems with integer
coefficients, families of parameter dependent systems and
time-delay systems. General results concerning the theory
of systems with coefficients in a ring and a number of
related control problems can be found in [Sontag, 1976],
[Sontag,1981], [Brewer et al., 1986], [Kamen, 1991],
[Conte and Perdon, 2000a], [Perdon and Anderlucci, 2006]
and the references therein.
In the following, we will generally assume that the
considered rings are Noetherian rings, that is rings in
which non decreasing chains of ideals are stationary, having
no zero divisors. Examples of rings of that kind are the
rings of polynomials in one or several variables with real
coefficients, that isR[∆1, ...,∆k], k ≥ 1, which play a basic
role in dealing with time-delay systems. Fork = 1, R[∆] is
also a principal ideal domain (P.I.D.), that is a ring in which
any ideal has a single generator (see e.g. [Lang, 1984]).
Introducing the ringR[z] of polynomials in the indeterminate
z with coefficients inR and its localizationR(z) = S−1R[z]
at the multiplicatively closed setS of all monic polynomials
(that is the ring of all rational functions in the indeterminate
z with monic denominator), we can associate to any
system Σ of the form (1) its transfer function matrix
G(z) = C(zI − A)−1B, whose elements are inR(z), and
the inducedR(z)-morphismG : U ⊗ R(z) → Y ⊗ R(z),
which is said to be the transfer function ofΣ.
Each elementu(z) of U ⊗ R(z) can be written as
u(z) =

∑∞

t=t0
utz

−t, with ut ∈ U , and it can be naturally
interpreted as a time sequence, from some timet0 to ∞, of
inputs. Respectively, each elementy(z) of Y ⊗R(z) can be
written asy(z) =

∑∞

t=t0
ytz

−t , with yt ∈ Y, and it can
be naturally interpreted as a time sequence, from some time
t0 to ∞, of outputs. Therefore,G can be interpreted as a
transfer function between the space of input sequences and
the space of output sequences.
In order to simplify our study, we will assume for the rest
of the paper, thatΣ is a minimal realization of its transfer
function. Very roughly, this means that the dimension of
the state module cannot be reduced without altering the
transfer function. More precisely, minimal representation are
characterized by the fact that both the observability matrix
[CT CTAT ....CT (AT )n−1]T and the reachability matrix
[B AB....An−1B] are full rank. A stronger requirement
than minimality is thatΣ is a canonical realization of its
transfer function. Reachability, in the framework of systems
over rings, is a quite strong property, characterized by the
fact that the reachability matrix[B AB....An−1B] has a
right inverse overR. In general, we can have state space
representations of the form (1) that are minimal, in the
sense explained above, but not reachable and, of course,
cannot be transformed into a reachable representation by a
change of basis in the state module (see e.g. [Sontag,1981]).
From the point of view we adopt here, following
[Wyman and Sain, 1981], the zeros ofΣ are determined

by the transfer functionG in an abstract algebraic way.
To this aim, let us recall that theR[z]-modulesU ⊗ R[z]
and Y ⊗ R[z], usually denoted byΩU and by ΩY, are
naturally embedded intoU ⊗ R(z) and into Y ⊗ R(z),
respectively. Then, as in [Conte and Perdon, 1984], we
can extend to the framework of systems with coefficients
in a ring the definition of Zero Module introduced in
[Wyman and Sain, 1981].

Definition 1 (see [Conte and Perdon, 1984] Definition
2.1; [Wyman and Sain, 1981]) Given the system
Σ = (A,B,C,X) with coefficients in the ringR and
transfer functionG), the Zero Module ofΣ is the R[z]-
moduleZ defined by

Z =
G−1(ΩY ) + ΩU

Ker G+ ΩU
. (2)

The reader is referred to [Conte and Perdon, 1984] and
[Wyman and Sain, 1981] for a discussion of the above def-
inition. Essentially, in caseR is a field, the Zero ModuleZ
captures the information displayed in the so-called invariant
zeros ofΣ. Here, we remark that the elements ofZ have
a meaningful interpretation in terms of the dynamics ofΣ.
Any ζ ∈ Z can be written asζ = [u(z)], where brackets
denote equivalence class andu(z) =

∑∞

t=t0
utz

−t ∈ U(z)
represents a sequence of inputs whose outputG(u(z)) =
∑∞

t=t0
ytz

−t ∈ Y (z) is such thatyt = 0, for t ≥ 1. Then,
writing u(z) =

∑0

t=t0
utz

−t+
∑∞

t=1
utz

−t = u1(z)+u2(z)
- that is: as the sum of a polynomial part and of a strictly
proper one - one hasz = [u(z)] = [u2(z)] and we can say
that Z consists of the strictly proper parts of all the input
sequences that generates polynomial outputs.
From another point of view, with the above notations, one can
view u2(z) as representing an input sequence which produces
zero outputs if, att = 1, the system is in the state reached
from the null state by means of the outputu1(z) over the
interval [t0, 0].
An important property of the zero moduleZ is that it
turns out to be finitely generated over the ringR (see
[Conte and Perdon, 1984], Proposition 2.4). In caseZ is
also a freeR-module, this implies that we can represent it
as a pair(Rm, Z), for somem, whereZ is a matrix with
entries inR, that defines anR-automorphismZ : Rm → Rm

of the freeR-moduleRm. Then, we can give the following
Definition of the Zero Dynamics ofΣ.

Definition 2 Given a systemΣ with coefficients in the ring
R, whose zero module is representable as the pair(Rm, D),
the Zero Dynamics ofΣ is the dynamics induced onRm by
D, that is by the dynamic equationz(t + 1) = Dz(t), for
z ∈ Rm.

According to the above Definition, a Zero Dynamics is
represented by theR[z]-module structure induced on a free
R-module by anR-automorphism. This agrees conceptu-
ally with the fact that the dynamics of a systemsΣ =
(A,B,C,X ) with coefficients inR is represented by the



R[z]-structure induced on the state moduleX = Rn by the
R-automorphismA. Remark that in caseZ is not a free
R-module the Zero Dynamics ofΣ is not defined.

Remark 2 Definition 2 is slightly less general than the
one given in [Conte and Perdon, 2008], but more intuitive,
and for this reason it has been preferred here. When both
definitions apply, they characterize the same concept and
differences may exist only in very particular situations.

To analyze the structure ofZ on the basis of Definition1
may be quite complicated. The task is simplified, in several
situations by the relation between the Zero Module and
the numerator matrix in polynomial matrix factorizations of
G(z), as described in the following Proposition.

Proposition 1 ([Conte and Perdon, 1984] Proposition 2.5)
Let G(z) = D−1(z)N(z) be a factorization whereD(z)
and N(z) are coprime polynomial matrices of suitable
dimensions, withD(z) invertible over R(z). Then, the
canonical projectionpN : ΩY → ΩY/NΩU induces an
injective R[z]-homomorphismα : Z → Tor(ΩY/NΩU),
whereTor(ΩY/NΩU) is the so-called torsion submodule
of ΩY/NΩU .

The torsion submoduleTor(ΩY/NΩU) consists of the ele-
ments[y] ∈ ΩY/NΩU , where brackets denote equivalence
class andy =

∑0

t=t0
ytz

−t ∈ ΩY, such thatay ∈ NΩU
for somea 6= 0, a ∈ R, or, equivalently, such thata[y] = 0.
WhenR is a field,α, as shown in [Wyman and Sain, 1981],
is actually an isomorphism. To investigate the ring case, it
is useful to consider the following notion, first introducedin
[Conte and Perdon, 1982].

Definition 3 Let M ⊆ N be R-modules. The closure of
M in N , denoted byCLN (M) or simply CL(M) if no
confusion arises, is theR-module defined by

CLN (M) = {x ∈ N , such thatax ∈ M
for somea 6= 0, a ∈ R}.

(3)

If M = CLN (M), M is said to be closed inN .

A key property of closed submodules over a P.I.D.R is the
following one.

Proposition 2 [Conte and Perdon, 1982] LetR be a P.I.D..
Then, a submoduleM ⊆ N is closed inM ⊆ Rn if and only
if it is a direct summand ofM, i.e. there exists a submodule
W ⊆ N such thatM = N ⊕W , or, equivalently, any basis
of N can be completed to a basis ofM.

The notion of torsion submodules is clearly related to the
notion of closure and, for what we are concerned, this allows
to get the following results.

Proposition 3 The moduleTor(ΩY/NΩU) is finitely gen-
erated as anR-module if and only ifN(U(z)) isR(z)-closed
in Y (z).

Proposition 4 Assume thatN(U(z)) is R(z)-closed in
Y (z) and let α : Z → Tor(ΩY/NΩU) be the R[z]-
homomorphism defined in Proposition 1, then

i) α(Z) = Tor((DΩY + NΩU)/N(ΩU)) ⊆
Tor(ΩY/NΩU)

ii) α is anR[z]-isomorphism if and only ifN(ΩU)∩ΩY ⊆
DΩY +NΩU .

It is useful to remark, as in [Conte and Perdon, 1984], that,
besides the case in whichR is a field, α is an R[z]-
isomorphism ifG(Z) = D−1(z)N(Z) is a Bezout factor-
ization and G(z) is left or right invertible.

III. Z EROS ANDZERO DYNAMICS FOR TIME-DELAY

SYSTEMS

Let us consider, now, a linear, time-invariant, time-delay
systemΣd with non commensurable delaysh1, . . . , hk,
hi ∈ R

+, for i = 1, . . . , k, described by equations of the the
form











ẋ(t) =
∑k

i=1

∑a
j=0

Aijx(t − jhi)

+
∑k

i=1

∑b
j=0

Biju(t− jhi)

y(t) =
∑k

i=1

∑c
j=0

Cix(t− jhi)

(4)

whereAij , Bij , andCij are matrices of suitable dimensions
with entries in the field of real numberR.
In the last years, a great research effort has been devoted
to the development of analysis and synthesis techniques for
this kind of systems, mainly extending tools and methods
from the framework of classical linear systems (see e.g. the
Proceedings of the IFAC Workshops on Linear Time Delay
Systems from 1998 to 2007). Many of the difficulties in
dealing with systems of the form (4) is due to the fact
that their state space has infinite dimension. In order to
circumvent this, it is useful to associate to a time-delay
system a suitable system with coefficients in a ring of
polynomials with real coefficients (compare with Remark 1),
as described in the following.
For any delayhj, let us introduce the delay operatorδj
defined, for any time functionf(t), by δjf(t) = f(t− hj).
Accordingly, we can re-write the system (4) as

Σd =











ẋ(t) =
∑a

i=1

∑k
j=0

Aijδ
i
jx(t)

+
∑b

i=1

∑k
j=0

Bijδ
i
ju(t)

y(t) =
∑c

i=1

∑k
j=0

Cijδ
i
jx(t)

Now, by formally replacing the delay operatorsδj by the
algebraic unknowns∆j , it is possible to associate toΣd

the discrete-time systemΣ over the ringR = R[∆1, ...,∆k]
defined by equations of the form (1) where the matrices
A,B,C are given byA =

∑a
i=1

∑k
j=0

Aij∆
i
j , B =

∑b
i=1

∑k
j=0

Bij∆
i
j , C =

∑c
i=1

∑k
j=0

Cij∆
i
j . Actually,

the time-delay systemΣd and the associated systemΣ
over R = R[∆1, ...,∆k] are quite different objects from
a dynamical point of view, but they share a number of
structural properties that depend on the defining matrices.
In particular, control problems concerning the input/output
behavior ofΣd can be naturally formulated in terms of the



input/output behavior ofΣ, transferring them from the time-
delay framework to the ring framework. Since systems with
coefficients in a ring have finite dimensional state modules,
algebraic methods, similar to those of linear algebra, as
well as geometric methods apply. Then, solutions to specific
problems found in the ring framework can be interpreted in
the time-delay framework for solving the original problem
(see [Conte and Perdon, 2000a], [Conte and Perdon, 2005]
and the references therein).
It should be noted that in this approach the use of systems
over rings, beside being instrumental in clarifying the prob-
lem and in helping intuition, provides a sound basis for the
use of ring algebra. Here, we use the correspondence between
time-delay systems and systems over rings to derive a notion
of Zero Modules and Zero Dynamics for the first ones and
for investigating related control problems. More precisely,
we state the following Definition.

Definition 4 Given a time-delay systemΣd of the form
(4), the Zero Module ofΣd is the Zero ModuleZ of the
associated systemΣ over the ringR = R[∆1, ...,∆k].

In caseZ is a freeR-module and the Zero Dynamics ofΣ
is defined, we can consider that notion also forΣd.

Definition 5 Given a time-delay systemΣd of the form (4),
the Zero Dynamics ofΣd is the Zero Dynamics of the
associated systemΣ over the ringR = R[∆1, ...,∆k], if
the latter is defined.

Remark that ifZ is represented as the pair(Rm, Z), the
dynamics described in the ring framework by the equation
ζ(t+1) = Zζ(t) gives rise to an associated dynamicsζ̇(t) =
Zζ(t) in the time-delay framework by substituting, according
to the correspondence illustrated above, the indeterminate ∆
by the delay operatordelta in the matrixZ. Then, the Zero
Dynamics of a time-delay system can be viewed, in general,
as a time-delay dynamics.

IV. I NVERTIBILITY AND PHASE M INIMALITY

One of the most interesting aspects in the notions of
zeros and of Zeros Dynamics is the relation with inver-
sion problems. Roughly, one can expect that the zeros
of G(z) appear, in some sense, as poles of any inverse
transfer function, if some exists, and, henceforth, that they
characterize (part of) the dynamics of any inverse sys-
tems. The situation, in the ring framework, has been in-
vestigated in [Conte and Perdon, 1984](compare also with
[Wyman and Sain, 1981]).
Let us recall that right invertibility of a systemΣ with
coefficients in the ringR can be characterized by the fact that
its transfer functionG is surjective, while left invertibility
of Σ can be characterized by the fact that its transfer
function G is injective and its imageImG is a direct
summand ofY(z) = Y ⊗ R(z). In the following, we will
denote byGinv any inverse of a given transfer functionG
and by Σinv = (Ainv, Binv, Cinv, Xinv) its canonical

realization. Then, we can recall the following results of
[Conte and Perdon, 1984].

Proposition 5 Given a left (respectively, right) invertible
systemΣ = (A,B,C,X) with coefficients in the ringR and
transfer functionG, letGinv denote a left (respectively, right)
inverse ofG and letΣinv = (Ainv , Binv, Cinv, Xinv) be its
canonical realization. Then, the relationGinv G = Identity
induces an injectiveR[z]-homomorphismψ : Z → Xinv

(respectively, the relationG Ginv = Identity induces a
surjectiveR[z]-homomorphismϕ : Xinv → Z) between the
Zero Module ofΣ and the state module of the canonical
realization ofGinv .

The above Proposition says that the Zero ModuleZ is
contained, in a suitable algebraic sense, into the canonical
state moduleXinv of any inverse. On this basis, it is
interesting to investigate the situations in which, possibly,
Z coincides withXinv, namely the situations in which the
R[z]-homomorphismψ (respectively,ϕ) is an isomorphism.
In such case, the inverse can be viewed, in a suitable sense,
as a minimal or reduced inverse. In case the ringR is a
P.I.D. (this holds, in particular, when dealing with systems
associated to time-delay systems with commensurate delays)
andK denotes its field of fractions, using the notation of
Proposition 5, we can give the following Definition.

Definition 6 ([Conte and Perdon, 1984] Definition 3.4)
Given a transfer functionG, a left (respectively, right)
inverseGinv of G is said to be an essential inverse if
Xinv/ψ(Z) ⊗K = 0 (respectively, ifKerϕ⊗K = 0).

The above Definition reduces to that given in
[Wyman and Sain, 1981] whenR is itself a field. Moreover,
it implies that the Zero Module ofΣ and the state
moduleXinv of an essential inverse have the same rank
and, in case of right inverse, they are isomorphic (see
[Conte and Perdon, 1984], Section 3). A more practical
result is the following.

Proposition 6 Let G(z) = D−1(z)N(z) be a Bezout fac-
torization (respectively, whenR is a P.I.D., a coprime
factorization). Then,
i) in case of right invertibility, there exists an essential right
inverseGess of G if N(z) = Q(z)N ′(z), where the matrix
Q(z) is invertible overR(z) and the matrixN ′(z) is right in-
vertible overR[z]; moreover,Gess(z) = M(z)Q−1(z)D(z),
where the matrixM(z) is a right inverse overR[z] ofN ′(z),
is a factorization ofGess(z) whereM(z), Q(z) are right
coprime andQ−1(z)D(z) is a Bezout (respectively, coprime)
factorization;
ii) in case of left invertibility, there exists an essential left
inverseGess of G if N(z) = N ′(z)Q(z), where the matrix
Q(z) is invertible overR(z) and the matrixN ′(z) is left in-
vertible overR[z]; moreover,Gess(z) = Q−1(z)P (z)D(z),
whereP (z) is a left inverse overR[z] of N ′(z), is a Bezout
(respectively, coprime) factorization ofGess(z).



The explicit factorizations of essential inverses provided
by the above Proposition and the content of Proposition 1
explain the relation between inverses and Zero Modules in
terms of the numerator matrixN(Z) of a Bezout factoriza-
tion of G(z). Further results concerning the case in which
R is a P.I.D. are stated in [Conte and Perdon, 1984].
Using the corrspondence between time-delay systems and
systems with coefficients in a ring described in Section III,
the notion of essential inverse, as well as the results of the
above Propositions, can be directly extended to the time
delay-framework.
The main interest in the above results is related to the
construction of stable inverses. Since a ring cannot, in
general, be endowed with a natural metric structure, the
notion of stability for systems with coefficients in a ring
R can only be given in a formal way. However, in the
correspondence between the ring framework and the time-
delay one, formal stability can be related to the classical
notion. In order to proceed, let us introduce the formal
concept of Hurwitz set and the related notion of formal
stability (see also [Habets, 1994]).

Definition 7 Given a ringR, a subsetH ⊆ R[z] of polyno-
mials with coefficients inR in the indeterminatez is said to
be an Hurwitz set if

i) H is multiplicatively closed,
ii) H contains at least an element of the formz − α, with

α ∈ R,
iii) H contains all monic factors of all its elements.

Given a Hurwitz setH, a systemΣ of the form (1) with
coefficients inR is said to beH-stable ifdet(zI−A) belongs
to H.
In order to interpret the formal notion in a practical sense,let
us consider the ringR = R[∆1, ...,∆k], which comes into
the picture when studying time-delay systems of the form
(4). In that case, letting the Hurwitz setH be defined as

H = {p(z,∆1, ...,∆k) ∈ R[z],
such that p (γ, e−γh1 , ..., e−γhk) 6= 0

for all complex numberγ with Reγ ≥ 0},
(5)

we have that stability of a systemΣd in the time-delay frame-
work corresponds toH-stability of the associated systemΣ
in the ring framework (see [Datta and Hautus, 1984]).
Now, it is possible to introduce an abstract notion of phase
minimality in the ring framework.

Definition 8 Given a Hurwitz setH, a systemΣ of the form
(1) with coefficients inR for which the Zero Dynamics is
defined is said to beH-minimum phase if its Zero Dynamics
is H-stable.

Letting H be chosen as in (5), the notion ofH-minimum
phase can be used to characterized minimum phase time-
delay systems. Then, on the basis of Proposition 5, we can
state that non-minimum phase, time-delay systems cannot
have stable inverses. For a given time-delay systemΣd, stable
inverses can be constructed by means of essential inverses

of the associated systemΣ with coefficients inR, if the
hypothesis of Proposition 6 hold.

V. GEOMETRIC TOOLS AND ANALYSIS OF THE ZERO

DYNAMICS

A different point of view for looking at Zeros
is that based on the so-called geometric approach
(see [Basile and Marro, 1992], [Wohnam, 1985]).
Extensions to the framework of systems over rings
of geometric methods and tools have been considered
by many authors (see [Conte and Perdon, 2000a] and
[Perdon and Anderlucci, 2006] for an account of the
geometric approach to systems with coefficients in a ring).
The basic notion of the geometric approach we will need in
the following are briefly recalled below.

Definition 9 ([Hautus, 1982]) Given a systemΣ, defined
over a ringR by equations of the form (1), a submodule
V of its state moduleX is said to be

i) (A,B)-invariant, or controlled invariant, if and only if
AV ⊆ V + ImB;

ii) (A,B)-invariant of feedback type if and only if there
exists anR-linear mapF : X → U such that(A +
BF )V ⊆ V .

Any feedbackF as in ii) above is called a friend ofV .

While (A,B)-invariance is a purely geometric property,
controlled invariance is a notion related to system dynamics
which is equivalent to invariance with respect to a closed
loop dynamics. For systems with coefficients in a ring, an
(A,B)-invariant submoduleV is not necessarily of feedback
type and therefore it cannot always be made invariant with
respect to a closed loop dynamics, as it happens in the
special case of systems with coefficients in the field of
real numbersR. Equivalence between the (generally weaker)
geometric notion of(A,B)-invariance and the (generally
stronger) dynamic notion of feedback type invariance holds
if V is a direct summand ofX , that isX = V ⊕W for some
submoduleW (see [Conte and Perdon, 1998]).
Given a submoduleK ⊆ X , there exists a maximum(A,B)-
invariant submodule ofX contained inK, denoted byV∗(K),
but there may not be a maximum(A,B)-invariant submodule
of feedback type contained inK.
The computation ofV∗(K) is not difficult for systems with
coefficients in the field of real numbersR, since V∗(K)
coincides with the limit of the sequence{Vk} defined by

V0 = K
Vk+1 = K ∩A−1(Vk + ImB)

(6)

and the limit itself is reached in a number of steps lesser than
or equal to the dimension of the state space. For systems
with coefficients in a ring, the sequence (6), which is non-
increasing, may not converge in a finite number of steps and,
in such case, an algorithm for computingV∗(K) is in general
not available. In caseR is a P.I.D., however, using a different



characterization, the problem of computingV∗(K) has been
satisfactorily solved (see [Assan et al., 1999b]).
Together with the notion of controlled invariance, it is useful
to consider the following one.

Definition 10 Given a systemΣ, defined over a ringR by
equations of the form (1), a submoduleS of its state module
X is said to be

i) (A,C)-invariant, or conditioned invariant, if and only
if A(S ∩KerC) ⊆ S;

ii) injection invariant if and only if there exists anR-linear
mapH : Y → X such that(A+ CH)S ⊆ S.

Any output injectionH as in ii) above is called a friend of
S.

In the ring framework,(A,C)-invariance is a weaker prop-
erty than injection invariance. Given a submoduleK ⊆ X ,
there exists a minimum(A,C)-invariant submodule ofX
containingK, usually denoted byS∗(K), but there may not
be a minimum injection invariant submodule containingK.
As in the field case, it is not difficult to show that, denoting
simply by V∗ the (A,B)-invariant submoduleV∗(KerC)
and byS∗ the (A,C)-invariant submoduleS∗(ImB), the
submoduleR∗ defined by

R∗ = V∗ ∩ S∗ (7)

is the smallest(A,B)-invariant submodule ofV∗ containing
V∗∩ImB. Moreover, ifV∗ is of feedback type with a friend
F , alsoR∗ is of feedback type and it has the same friends
(see [Basile and Marro, 1992], [Wohnam, 1985]). The main
result relating the Zero Module with the geometric objects
we have introduced can now be stated.

Proposition 7 ( [Conte and Perdon, 1984], Proposition 4.2,
4.3) Given a systemΣ, defined over a ringR by equations of
the form (1), with zero moduleZ, assume thatΣ is reachable
and observable (respectively, whenR is a P.I.D., that it is
a minimal realization of its transfer functionG) and that
G(U(z)) is closed inY(z).
Then,V∗/R∗ is R-isomorphic toZ.
If, in addition, V∗ is of feedback type andF is one of
its friends,V∗/R∗ endowed with theR[z]-module structure
induced by theR-morphism(A + BF )|V∗/R∗ : V∗/R∗ →
V∗/R∗ is R[z]-isomorphic toZ.

Beside establishing a connection between the algebraic no-
tion of Zero Module and the geometric notion of con-
trolled invariant submodule, the above Proposition provides
a practical way to study the Zero Dynamics ofΣ. The
submodulesV∗ andR∗, as well as a friendF , if any exists,
can in fact be computed by means of suitable algorithms
in several interesting situations (see [Assan et al., 1999a],
[Assan et al., 1999b]). Then, the Zero Dynamics turns out
to be defined only ifV∗/R∗ is a freeR-module and, in that
case, it isH-stable only ifdet(zI−Z), whereZ is a matrix
that describes theR-morphism(A+BF )|V∗/R∗ : V∗/R∗ →
V∗/R∗, belongs to the Hurwitz setH.

However, it may happen thatV∗/R∗ is a freeR-module,
but no friends exist, asV∗ is not of feedback type. In this
case, the Zero Dynamics is defined, but its analysis on the
basis of the definition may be complicated. In order to handle
situations of this kind, we can proceed as follows.
Letting dimV∗ = s, we construct the extended system
Σe = (Ae, Be, Ce,Xe), with state moduleXe = X ⊕ Rs,
for which

Ae =

[

A 0
0 0

]

;Be =

[

B 0
0 I

]

;Ce = [ C 0 ] (8)

whereI and 0 denote, respectively, the identity matrix and
null matrices of suitable dimensions. Denoting byV a matrix
whose columns spanV∗ in X , the submoduleVe spanned in
X⊕Rs by the columns of the matrix[V T I]T is easily seen to
be(Ae, Be)-invariant and direct summand ofX⊕Rs. Hence,
Ve is of feedback type and, since the canonical projection
π : X ⊕ Rs → X is such thatπ(Ve) = V∗, it can be
viewed as an extension ofV∗. In addition, we have thatVe

is contained in the kernelKerCe of the output map ofΣe.
Moreover, denoting byCL(R∗) the closure ofR∗ in V∗, we
have the following results.

Proposition 8 In the above situation and with the above
notations, letRe be defined asRe = π−1(CL(R∗)). Then:

i) Re is an (Ae, Be)-invariant submodule ofXe;
ii) Re is the minimum closed submodule ofVe that con-

tainsVe ∩ ImBe;
iii) the canonical projectionπ induces anR-isomorphism

between the quotient moduleVe/Re and the quotient
moduleV∗/(CL(R∗)).

It follows from the above Proposition, that the system
extension produces anR-moduleVe/Re and anR-morphism
(Ae + BeFe)|Ve/Re

, where Fe is a friend of Ve, that
form a pair akin to the pairV∗/R∗ and (A + BF )|V∗/R∗

considered in the last statement of Proposition 7. However,
the R-morphism (Ae + BeFe)|Ve/Re

can be constructed
also whenV∗ is not of feedback type and, henceforth, no
friend F is available to define theR-morphism(A + BF ).
In addition, if the Zero Dynamics is defined,R∗ is closed
in V∗ and, therefore, the quotient moduleVe/Re and the
quotient moduleV∗/R∗ are isomorphic. This allows us to
state the following result, which is of help in analyzing the
Zero Dynamics in many situations.

Proposition 9 In the above context and with the above
notations, assuming that the Zero Dynamics ofΣ is defined,
let Ve/Re be a freeR-module of dimensionm and letZ be
a matrix representing theR-morphism ,(Ae+BeFe)|Ve/Re

:
Ve/Re → Ve/Re, whereFe is a friend ofVe. Then, the Zero
Dynamics ofΣ can be represented by the pair(Rm, Z).

Example 1 This example, that was already discussed in
[Conte and Perdon, 2008], can be revisited here in the light
of Definition 2. Let us consider the time-delay systemΣd



described by the equations

Σd =















ẋ1(t) = x3(t− h) + u(t− h)
ẋ2(t) = x1(t) + x3(t− h) + u(t− h)
ẋ3(t) = x2(t) + x3(t− h)
y(t) = x3(t)

and the associated systemΣ = (A,B,C,X) with coefficients
in R = R[∆] and matrices

A =





0 0 ∆
1 0 ∆
0 1 ∆



 ;B =





∆
∆
0



 ;C = [0 0 1] .

Computations in the ring framework show thatV∗ is the
submodule ofR3 spanned by the vectorV = (∆ 0 0)T

and that R∗ = {0}. The controlled invariantV∗ is not
of feedback type (because it is not closed), but it is free.
Therefore, the Zero Dynamics ofΣ is defined and it can be
represented as a suitable pair(Rm, Z) in order to check, for
instance, phase minimality.
To analyze the Zero Dynamics, in accordance with the
above construction, we consider the extensionΣe =
(Ae, Be, Ce, Xe), where

Ae =









0 0 ∆ 0
1 0 ∆ 0
0 1 ∆ 0
0 0 0 0









;Be =









∆ 0
∆ 0
0 0
0 1









;Ce = [0 0 1 0]

We have, now, thatVe is the submodule ofR4 spanned by
the vector[V T 1]T = (∆ 0 0 1)T andRe = {0}. The Zero
Dynamics ofΣ, as well as that ofΣd, is defined and can be
explicitly evaluated. A friendFe of Ve is given, for instance,

by Fe =

[

0 0 0 −1
0 0 0 −1

]

. Therefore, the dynamic matrix

Ac = (Ae + BeF ) of the compensated system isAc =








0 0 ∆ −∆
1 0 ∆ −∆
0 1 ∆ 0
0 0 0 −1









. SinceAc[V
T 1]T = −[V T 1]T , the

Zero Dynamics turns out to be given by(R, [−1]) or, in other
terms by

ξ(t+ 1) = −ξ(t)

(ξ̇(t) = −ξ(t) in the time-delay framework)
(9)

with ξ ∈ R (respectivelyξ ∈ R).
Alternatively, we could analyze directly the Zero Dynamics,
starting from its definition. The transfer function matrix of
Σ is

G(z) =
∆z + ∆

z3 − ∆z2 − ∆z − ∆

and then, by Proposition 1, the zero moduleZ of Σ can
be viewed, through the injectiveR[z]-morphismα, as a
submodule ofTor(ΩY/(∆z + ∆)ΩU). We have, in our
case,Tor(ΩY/(∆z + ∆)ΩU) = R[∆, z]/(∆z + ∆)R[∆, z]
and, since any elementp(∆, z) ∈ R[∆, z] can be written
in a unique way asp(∆, z) = ∆p′(∆, z) + p′′(z) =
∆[(z+1)q(∆, z)+q′(∆)]+p′′(z), we can say that, denoting
equivalence classes by brackets, any element[p(∆, z)] ∈
Tor(ΩY/(∆z + ∆)ΩU) can be written in a unique way

as [p(∆, z)] = [∆q′(∆)] + [p′′(z)], for suitable polynomials
q′(∆) ∈ R[∆] and p′′(z) ∈ R[z]. It turns out thatα(Z)
coincides with the submodule ofR[∆, z]/(∆z + ∆)R[∆, z]
consisting of all elements of the form[∆q′(∆)] with q′(∆) ∈
R[∆]. Inspection shows that, for any element of that kind,
z[∆q′(∆)] = [z∆q′(∆)] = [−∆q′(∆)] and therefore we can
conclude that theR[z]-moduleZ can be viewed as defined
by the pair(R, [−1]), in accordance with what expressed by
equation (9).
To conclude, we can say that, taking the Hurwitz setH as in
(5),Σ is H-minimum phase and, respectively,Σd is minimum
phase.

Example 2 Let us consider the time-delay systemΣd de-
scribed by the equations

Σd =







ẋ1(t) = x2(t)
ẋ2(t) = x1(t) + u1(t− h1) + u2(t− h2)
y(t) = x2(t)

and the associated systemΣ = (A,B,C,X) with coefficients
in R = R[∆1,∆2] and matrices

A =

[

0 1
1 0

]

;B =

[

0 0
∆1 ∆2

]

;C = [0 1] .

Computations in the ring framework show thatV∗ is the
submodule ofR2 given byspan{(∆1 0)T , (∆2 0)T } and that
R∗ = 0. In this case, the Zero ModuleZ = V∗/R∗ = V∗ is
not free, since it has a minimal set of generators which are
not linearly independent. Hence, the Zero Dynamics ofΣ is
not defined.

VI. A PPLICATIONS

The notion of Zero Dynamics we have defined can be
employed in dealing with control problems that imply in-
version or geometric decomposition of the state space. As
explained in Section III, problems formulated in the time-
delay framework can be interpreted in the ring framework,
using the correspondence between time-delay systems and
systems over rings. If a solution is found, it can generally
be interpreted in the time-delay framework. However, one of
the most effective use of this techniques is in pointing out
the obstruction that prevents a problem to be solvable.

A. Decoupling problems

Zero Dynamics can be used to characterizes the fixed
dynamics with respect to feedbacks which make a system
maximally unobservable. To see this, recall thatV∗ repre-
sents the largest submodule of the state moduleX that can
be made unobservable by means of a feedback, either a static
one, in caseV∗ is of feedback type, or a dynamic one, in
case it is not. This property is fundamental in dealing with
the problem of decoupling the output of the system from a
disturbance input (see [Conte and Perdon, 1995]).
Given a systemΣ, with coefficient inR, of the form (1), let
us consider the submoduleV∗ of its state module. In order
to deal with all possible situations at the same time, let us
consider a systemΣe = (Ae, Be, Ce, Xe) that, in caseV∗



is not of feedback type, is an extension ofΣ constructed
as in Section V and that, in caseV∗ is of feedback type,
coincides withΣ. In both cases we have the submodules
Ve and Re, which, in particular, whenΣe coincides with
Σ, coincide withV∗ andCL(R∗). Now, let us assume that
the Zero Dynamics ofΣ is defined and thatVe is a direct
summand ofXe (as we have seen in Section V, this is true by
construction ifΣe is actually an extension ofΣ, but it must
be assumed explicitly in the other situation). Remark that
the existence of the Zero Dynamics implies, in particular,
thatR∗ is closed, that isR∗ = CL(R∗). In both situations,
then, we can writeXe = X ⊕ Rr = Re ⊕W1 ⊕W2 for
some submodulesW1 andW2, such thatVe = Re ⊕W1

andXe = Ve ⊕W2. Writing Ae andBe in that basis and
partitioning accordingly, we get

Ae =





A11 A12 A13

0 A22 A23

A31 A32 A33



 ;Be =





B1

0
B3



 . (10)

Compensating the system by means of a state feedbackFe

that is a friend ofVe, we can force the motions originating
in Ve to remain inKerCe, making the system maximally
unobservable and, actually, decoupling the output from pos-
sible inputs whose image is inVe. The dynamic matrix
Ac = (Ae+BeF ) of the compensated system, for any friend
Fe = [ F1 F2 F3 ] of Ve, takes, in such case, the form

Ac =





A11 +B1F1 A12 +B1F2 A13 +B1F3

0 A22 A23

0 0 A33 +B3F3





(11)
showing that the dynamics of the blockA22 remains fixed
for any choice ofFe and that, being described by(Ae +
BeFe)|Ve/Re

= A22, it coincides with Zero Dynamics ofΣ.
As a consequence, stability of the decoupled system cannot
be achieved ifΣ is not minimum phase.

B. Inversion of time delay systems

Inversion of time delay-system has been studied, us-
ing methods and results from the theory of systems with
coefficients in a ring, in [Conte and Perdon, 2000b] and
[Conte, Perdon, Iachini, 2001]. Let us consider, for sake of
illustration, only the case of Single Input/Single Output,or
SISO, systems, the extension to more general situations being
worked out in the above mentioned papers. Given a SISO
time-delay systemΣd described by the set of equations

Σd =

{

ẋ(t) =
∑a

i=0
Aix(t − ih)+

∑b
i=0

biu(t− ih)
y(t) =

∑c
i=0

cix(t− ih)
(12)

and the corresponding SISO systemΣ, defined, over the
principal ideal domainR = R[∆], by the set of equations

Σ =

{

x(t+ 1) = A(∆)x(t) + b(∆)u(t)
y(t) = c(∆)x(t)

(13)

one can apply the Silverman Inversion Algorithm in the
ring framework by evaluating recursively y(t+1), y(t+2),......

Since the general formula (where∆ has been omitted for
simplicity) yields

y(t+ k) = cAkx(t) +
k−1
∑

i==

cAk−i−1 b u(t+ i),

either cAk−1 b = 0 for all k ≥ 1, or there existsk0,
necessarily lesser than or equal todim X , such that for all
k < k0 cA

k−1 b = 0 and cAk0−1 b 6= 0. In such case, one
gets

y(t+ 1) = cAx(t)
y(t+ 2) = cA2x(t)
...
y(t+ k0) = cAk0x(t) + cAk0−1bu(t)

(14)

It is clear, then, thatΣ is invertible if and only ifcAk0−1 =
c(∆)cA(∆)k0−1b(∆) is an invertible element ofR = R[∆].
If this is the case, an inverse in the ring framework is given
by the system

Σinv =















z(t+ 1)

u(t)

=

=

(A− b(cAk0−1b)−1cAk0)z(t)+
b(cAk0−1b)−1y(t+ k0)
−(cAk0−1b)−1cAk0z(t)+
(cAk0−1b)−1y(t+ k0)

(15)
From the expression of the inverse in the ring frame-
work it is easy to derive that of an inverse in the orig-
inal time-delay framework. The defining matrices of this
will simply be obtained by substituting the algebraic in-
determinate∆ with the delay operatorδ. Now, following
[Conte and Perdon, 2000b], we introduce the following Def-
inition.

Definition 11 Given the SISO systemΣ = (A, b, c,X ) with
coefficients in the ringR, assume that there existsk0, such
that cAk−1 b = 0 for all k < k0 and cAk0−1 b 6= 0. Then,
we say thatΣ has finite relative degree equal tok0. If, in
addition,cAk0−1 b is an invertible element ofR, we say that
the relative degree is pure. Alternatively, ifcAk−1 b = 0 for
all k ≥ 1 , we say thatΣ has no finite relative degree.

Invertibility of Σ is therefore characterized by the fact that
the system has pure, finite relative degree. If we write the
transfer function matrixG(z) of Σ as

G(z) = c(zI −A)−1b = d(z)−1n(z)

whered(z), n(z) are polynomials inR[z], that is they are
polynomials in the indeterminatez with coefficients inR,
andd(z) is monic, it is not difficult to see that the leading
coefficient ofn(z) is just cAk−1 b. If Σ has pure relative
degreek0, than the zero moduleZ of Σ is isomorphic, by
Proposition 1, to the torsionR[z]-moduleR[z]/n(z)R[z]. In
such case, the notion ofH-minimum phase system discussed
at the end of Section IV can be easily characterized in terms
of the numerator polynomialn(z).
Essential inverses ofH-minimum phase SISO, time-delay
systems areH-stable and, on the other hand, non minimum
phase systems do not have stable inverses.



Extension of the Silverman Algorithm and of the
above discussion to the multi input-multi output case
is possible due to the abstract, algebraic nature of
our arguments (see [Conte and Perdon, 2000b] and
[Conte, Perdon, Iachini, 2001]. The inverse systemΣinv

constructed by means of the Silverman Inversion Algorithm,
when it exists, is not essential. In facts, its dimension is the
same of that of the systemΣ, which is equal to the degree
of the denominator polynomiald(z), while the dimension of
Z, being equal to the degree of the numerator polynomial
n(z), is smaller than that. ReducingΣinv to an essential
inverse, in general, may be complicated, so, to construct an
essential inverse, it is preferable to make use of the explicit
decomposition given in Proposition 6.

Example 3 Assuming that the transfer function of a given
n-dimensional, SISO systemΣ, with coefficients in the ring
R[∆], is G = d(z)−1n(z) with n(z) = c0 + c1z + .... +
cn−1z

n−1 and cn−1 6= 0, the relative degree ofΣ is 1 and
cAk0−1 b = cb = cn−1 . If cn−1 is invertible, it is not
difficult to see, using a suitable realization ofΣ, that the
characteristic polynomial of the dynamical matrix ofΣinv is
p(z) = (cn−1)

−1(c0 + c1z + ....+ cn−1z
n−1)z.

From the above results and discussion, it follows that the
use of inversion as a synthesis procedure in the framework
of time-delay systems can be dealt with, in connection with
the issue of stability of inverses, by studying Zero Modules
and Zero Dynamics.

C. Tracking problems for time delay systems

Given a SISO time-delay systemΣd described by the set
of equations (4) and the corresponding systemΣ, defined,
over the principal ideal domaiR = R[∆], by the set of
equations (1), let us consider the problem of designing a
compensator which forcesΣd to track a reference signalr(t)
(see [Conte, Perdon and Moog, 2007]). Working in the ring
framework, we consider the extended system

ΣE =

{

x(t+ 1) = Ax(t) + bu(t)
e(t) = cx(t) − r(t)

(16)

whose output is the tracking error and, assuming thatΣ has
pure relative degreek0, we apply the Silverman Inversion
Algorithm. This gives the following relation

e(t+ k0) = cAk0x(t) + cAk0−1bu(t) − r(t+ k0)

Then, choosing a real polynomialp(z) = zk0 +
∑k0−1

i=o aiz
j

in such a way that it is in the Hurwitz setH, we can construct
the compensator

ΣC =















z(t+ 1) = Az(t) + bu(t)
u(t) = −(cAk0−1b)−1(cAk0z(t)

−r(t+ k0)+

−(cAk0−1b)−1
∑k0−1

i=0
aie(t+ i)

(17)

whose action onΣ causes the error to evolve according to
the following equation

e(t+ k0) =

k0−1
∑

i=o

aie(t+ i) = cAk0(x(t) − z(t)) (18)

H-stability of the compensator is of course a key issue and,
since its construction is based on inversion, it can be dealt
with as for inverses. IfΣ, and henceΣE , areH-minimum
phase (that is: their Zero Dynamics isH–stable); anH-
stable reduced compensator can be obtained by means of
an essential inverse.
Then, as in the case of inversion, it is easy to derive a com-
pensator in the time-delay framework fromΣC . Its defining
matrices are obtained from those ofΣC by substituting the
algebraic indeterminate∆ with the delay operatorδ. Thank
to (18) and to the corresponding relation in the time-delay
framework, the tracking error behaves in a desired way. More
precisely, in case the initial conditions forΣ are known
and the compensator can be initialized accordingly, then,
the compensated system tracks asymptotically the reference
signal.
In case the correct initialization is not possible, ifΣ is glob-
ally asymptotically stable, the tracking error can be made ar-
bitrarily small for t sufficiently large. Extension to the MIMO
case is possible (see [Conte, Perdon and Moog, 2007]), al-
though the situation complicates and results are relatively
weaker.
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