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Introduction

Time delay systems are interesting in connection with:

•
 

industrial applications
 

(where delays are
 

unavoidable effects 
of the

 
transportation of materials)

•
 

tele-operated systems, networked systems, large Integrated 
Communication Control Systems or ICCS

 
(where delays 

originates from dispatching
 

information through slow or very 
long communication lines). 

In the last years, a great research effort has been devoted to 
the

 
development of analysis and synthesis techniques for time 

delay systems (Proc. IFAC Workshop on LTDS
 

2000, 2001, 
2003, 2005).



Introduction

The notion of ZERO and of ZERO DYNAMICS play an
 

 
important role in several control problems, especially when 
solutions require some sort of inversion.

For classical linear systems, ZERO and ZERO DYNAMICS 
can be characterized  in abstract algebraic terms by the notion 
of ZERO MODULE (Wyman,Sain-1981). 

The notion of ZERO MODULE can be generalized to other 
classes of dynamical systems, notably to that of systems with 
coefficients in a ring.

By exploiting the relations between systems with coefficients 
in a ring and time-delay systems, suitable notions of ZERO 
and ZERO DYNAMICS can be defined these latter. 
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Time delay systems

Time delay system with uncommensurable delays:

t ∈ ℜ,
 

continuous time axis
x ∈

 
X = ℜn, state value space

{states=functions x: [T-ahi

 

,T) →ℜn}
 

(∞-dim. ℜ-vector space)
u ∈

 
U = ℜm, input value space (m-dim. ℜ-vector space)

y ∈
 

Y = ℜp, output value space (p-dim. ℜ-vector space)
Aij

 

, Bij

 

, Cij

 

real matrices of suitable dimensions
hi

 

for i=1,...,k are fixed time delays
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Systems with coefficients in a ring

Given a ring R, a system Σ
 

with coefficients in R is a 
quadruple (A,B,C,X) where A, B, C are matrices of 
dimensions n×n, n×m, p×n

 
with entries in R and X= Rn. 

Dynamical interpretation:

t ∈
 

Z,  ordered set of integer numbers (discrete time)
x ∈

 
X = Rn, state module (n-dim. free R-module) 

u ∈
 

U = Rm, input module (m-dim. free R-module) 
y ∈

 
Y = Rp, output module (p-dim. free R-module) 

⎩
⎨
⎧

=
+=+

=Σ
)t(Cx)t(y

)t(Bu)t(Ax)1t(x



Time delay  ⇔ Coefficients in a ring
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Delay operator δ, defined, 
for any time function f(t), by 

δf(t)= f(t-h)
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Substitute δ
 

with the indeterminate Δ



Time delay  ⇔ Coefficients in a ring
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t, x, u, and y have different meanings 
in the two frameworks: e.g. x(t) ∈ ℜn

 in the time delay fremework, x(t) ∈
 Rn

 

in the ring framework; notations 
are kept equal by abuse. 



Zero module for systems w.c.in a ring

R[z] ring of polynomials in the indeterminate z with       
coefficients in R 

R(z) = S-1R[z] localization at the multiplicative set S of all 
monic polynomials

Transfer Function Matrix GΣ

 

= C(zI-A)-1B (entries in R(z))
R(z)-morphism C(zI-A)-1B : U⊗R(z) → Y⊗R(z)

u(z) ∈
 

U⊗R(z), u(z) =                  , ut

 

∈
 

U (input sequence) 

y(z) ∈
 

Y⊗R(z), y(z) =                  , yt

 

∈
 

Y (output sequence)
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R[z]-modules 
ΩU = U⊗R[z] ⊆

 
U⊗R(z) 

ΩY = Y⊗R[z] ⊆
 

Y⊗R(z)

Definition (CP-1983, after WS-1981) Given the system Σ
 

= 
(A,B,C,X) with coefficients in the ring R and transfer function 
matrix GΣ

 

, the Zero Module of Σ
 

is the R[z]-module ZΣ

 
defined by  

ZΣ

 

= (GΣ

 

-1(ΩY) + ΩU)/(KerG + ΩU)

Zero module for systems w.c.in a ring
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Proposition (CP-1983) Let GΣ

 

= D(z) -1N(Z) be a coprime 
factorization. The canonical projection pN

 

: ΩY → ΩY/NΩU 
induces an injective R[z]-homomorphism α: ZΣ

 

→
 Tor(ΩY/NΩU).

As a consequence of the above Proposition we have the 
following foundamental result

ZΣ

 

is a finitely generated, torsion R[z]-module

Zero module for systems w.c.i. a ring
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=C(zI-A)-1B : U⊗R(z) → Y⊗R(z)

ZΣ

 

= (G-1(ΩY) + ΩU)/(KerG + ΩU)



Zero module for time-delay systems
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Delay operator δ, defined, 
for any time function f(t), by 

δf(t)= f(t-h)
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with the indeterminate Δ



Zero module for time-delay systems
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ZΣ

 

= (G-1(ΩY) + ΩU)/(KerG + ΩU) = ZΣd

ZERO MODULE



Zero module for time-delay systems

⎩
⎨
⎧

=
+=+

=Σ
)t(Cx)t(y

)t(Bu)t(Ax)1t(xSystem w. c. in the 
ring R = ℜ[Δ]

⎩
⎨
⎧

−=
−+−=

=Σ
∑

∑∑
=

==
c

0i i

b
0i i

a
0i i

d )iht(xC)t(y
)iht(uB)iht(xA)t(x&Time delay 

system

Definition Given a time-delay system Σd

 

, 
let Σ

 
be the associated system with 

coefficients the ring R. The Zero Module 
ZΣd

 

of Σd

 

is the Zero Module ZΣ

 

of Σ.



If the zero module ZΣ

 

of Σ
 

is
 

free, over the ring R, then it can 
be represented as ZΣ

 

= (Rm, D), where D: Rm

 

→
 

Rm

 

is an R-
 homomorphism. Then, we can consider the following notion.

Definition Given a system Σ
 

with coefficients in the ring R, 
whose zero module ZΣ

 

can be represented as the pair (Rm

 

,D), 
the Zero Dynamics of Σ

 
is the dynamics induced on Rm

 

by D, 
that is by the dynamic equation z(t+1) = Dz(t), for z ∈

 
Rm.

Remark that in case ZΣ

 

cannot be represented as a pair (Rm,D), 
the Zero Dynamics is not defined.

Zero dynamics



Σ= (A,B,C,X) with coefficients in R:
a controlled invariant submodule (c.i.s.) of X is a submodule 
V ⊆

 
X such that A(V) ⊆

 
V + ImB 

feedback property: there exists an R-morphism F: X → U 
such that (A+BF)V ⊆

 
V (F is called a friend of V).

V* = maximum c.i.s. contained in KerC 
R* = minimum c.i.s. containing  ImB ∩

 
V* 

Proposition Given Σ
 

= (A,B,C,X), w.c.in R and C(zI-A)-1B = 
D-1N coprime, let N(U⊗R(z)) be a direct summand of Y⊗R(z) 
and let V* have the feedback property with a friend F. Then, 
V*/R* endowed with the R[z] structure induced by (A+BF) is 
isomorphic to ZΣ

 

.

Zero module and geometric structure



If V* has the feedback property with a friend F and V*/R* is a 
free R-module, say V*/R* = Rm, letting D be a matrix that 
represents (A + BF)V*/R*

 

with respect to the canonical basis of 
Rm, it is be possible to represent the Zero Dynamics of Σ

 
as 

the dynamics induced on Rm

 
by D:  z(t+1) = Dz(t), for z ∈

 
Rm.

The above characterization of Zero Dynamics allows 
us to analyse it in a simple, practical way, avoiding the 
necessity of working with R[z]-modules and of involved 
computations. Unfortunately, it holds only if V* has the 
feedback property (strong requirement).

Zero module and geometric structure



Proposition Given Σ
 

= (A,B,C,X), w.c.in R, it is possible to 
construct, in a canonic way, a dynamical extension Σe

 

of Σ
 such that Ve

 

* has the feedback property with a friend Fe

 

. 
Then, if Ve

 

*/ Re

 

* is free, it is isomorphic to the largest free 
submodule of V*/ R*. 

Proposition In the above context and with the above 
notations, assuming that the Zero Dynamics of Σ

 
is defined, 

let Ve

 

*/ Re

 

* be a free R-module of dimension m and let D be a 
matrix representing the R-morphism (Ae

 

+ Be

 

Fe

 

)Ve*/ Re*

 

with 
respect to the canonical basis of Rm. Then, the ZeroDynamics 
of Σ

 
is the dynamics induced on Rm

 
by D

z(t+1) = Dz(t), for z ∈
 

Rm

 
.

Zero module and geometric structure



Definition Given a time-delay system Σd

 

, let Σ
 

be the 
associated system with coefficients the ring R. The 
Zero Dynamics of Σd

 

is that of Σ, if the latter is 
defined.

Proposition Given the time-delay system Σd

 

, with 
commensurable delays, let Σ

 
be the associated system 

with coefficients the ring R. Then, if Σ
 
is left 

invertible and V* is free, the Zero Dynamics of Σ
 

is 
defined and so is that of Σd

 

.

Zero dynamics for time-delay systems



Hurwitz set: a set H  of monic polynomials in R[z]
• H  contains at least one linear monomial  z + a  with  a ∈

 
R;

• H is multiplicatively closed;
• any factor of an element in H belongs to H. 
Definition A system Σ

 
= (A,B,C,X) w.c.i. R is said to be 

• H-stable if det(zI-A) belongs to H
•H-minimum phase if its zero dynamics is defined and H-

 
stable.

For systems associated to time-delay ones, R = ℜ[Δ]

Zeros and phase minimality

H ={p(z,Δ)∈ℜ[z, Δ], such that p(s,e-hs) ≠
 

0  for all 
s∈C with Re(s) ≥

 
0}

H-stability (phase min.) in 
the ring framework

Asymptotic stability (phase min.) 
in the time-delay framework



Inversion problems 

Proposition Given a left (respectively, right) invertible 
system  Σ

 
= (A,B,C,X) with coefficients in the ring R and 

transfer function G, let Ginv

 

denote a left (respectively, right) 
inverse of G and let Σinv = (Ainv

 

, Binv

 

, Cinv

 

, Xinv

 

) be its 
canonical realization. Then, the relation Ginv

 

G = Identity 
induces an injective R[z]-homomorphism  ψ

 
: ZΣ

 

→
 

Xinv

 
(respectively, the relation G Ginv

 

= Identity induces a 
surjective R[z]-homomorphism ϕ: Xinv

 

→
 

ZΣ

 

) between the 
Zero Module of Σ

 
and the state module Xinv  of the 

canonicalrealization of Ginv.

In case the Zero Dynamics of Σ
 

is defined, but not minimum 
phase,  the above Proposition allows us to say that Σ

 
has no H-

 stable inverses.

.



Tracking problems 

Problem Given a SISO time-delay system Σd

 

and the 
corresponding system Σ

 
w.c.in R = ℜ[Δ], consider 

the problem of designing a compensator which forces 
Σd

 

to track a reference signal r(t).

Consider the extended system 

whose output is the tracking error and apply the 
Silverman Inversion Algorithm. 

.
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Tracking problems 

This gives the  relation
.

Then, choosing a real polynomial 
in such a way that it is in the Hurwitz set H, we can construct 
the compensator 

whose action on Σ
 

causes the error to evolve according to the 
equation

.
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Tracking problems 

The compensator 

solves the tracking problem.

H-stability of the compensator is a key issue and, since its 
construction is based on inversion, it can be dealt with by 
using phase minimality.

If Σd

 

and Σ, and hence ΣE

 

, are H-minimum phase (that is: their 
zero dynamics is H-stabe), an H-stabe compensator is 
obtained. 

.
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Example

Example.
Consider the time-delay system

and the associated system  Σ

 

= (A,B,C,X) with coefficients in R = R[Δ] 
and matrices

V* = span (Δ

 

0 0)T

 

⊆

 

R3 , V* is not of feedback type (because it is not 
closed), but it is free. R* = {0}. 

The Zero Dynamics is defined and it can be represented as a suitable pair 
(Rm,Z) in order to check, for instance, phase minimality.



Example

Example (continued).
To analyze the Zero Dynamics, we consider the extension Σe

 

= 
(Ae

 

,Be

 

,Ce

 

,Xe

 

), with 

Ve *= span (Δ

 

0 0 1)T

 

⊆

 

R4

 

is of feedback type , Fe

 

=  

The dynamic matrix Ac

 

= (Ae

 

+ Be

 

F) of the compensated system is 

Ac

 

= 



Example

Example (continued).
The Zero Dynamics turns out to be given by (R, 

[−1]) or, in other terms, by the dynamic equation

ξ(t + 1) = −
 

ξ(t)

ξ(t) = −
 

ξ(t)  in the time-delay framework. 

We can conclude that the system is minimum phase.

.



Conclusion

The notions of Zero Module and of Zero Dynamics 
have been introduced in the time-delay framework, 
by exploiting the correspondence between system 
with coefficients in a ring and time-delay systems 
and the algebraic characterization of Zeros. 

Stability of the Zero Dynamics and Phase 
Minimality

 
can then be defined and used for the 

construction of stable inverses and of stable 
solutions to tracking problems in the time delay 
framework.
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