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Positive LTI System Definition:

Definition 1 A linear system

ẋ = Ax + Bu

y = Cx + Du
(1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n, and D ∈ R

r×m

is considered to be a positive linear system if for ev-
ery nonnegative initial state and for every nonnegative
input the state of the system and the output remain
nonnegative.

University of Toronto 7



Positive LTI System Definition:

It turns out that Definition 1 has a very nice interpretation in
terms of the matrix quadruple (A,B,C,D).

Theorem 1 A linear system (1) is positive if and only if
the matrix A is a Metzler matrix, and B, C, and D are
nonnegative matrices.

A matrix A is Metzler if all the off-diagonal terms are
nonnegative.

≥ 0

≥ 0
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Almost Positive LTI Systems:

An arbitrary linear system is considered to be an
almost-state (output) positive linear system with respect to
x0 if for any given δ = (δ1, δ2, ..., δn(r)) ∈ R

n(r)
+ \ {0} there

exists a uδ such that the state x (output y) of the system
satisfies

xi(t)(yi(t)) ≥ −δi, ∀i = 1, 2, ..., n(r), ∀t ∈ [0,∞).

δi

t

xi

x0i
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Problem statement:

Motivation - why positive systems? X

Introduction and background to positive LTI
systems X

SISO results and examples

Servomechanism problem for SISO positive
LTI systems
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System of Interest: .

SISO system

ẋ = Ax + bu + eωω

y = cx + du + fω

e := y − yref

(2)

u ∈ R
m is the input, x ∈ R

n
+ is the state, y ∈ R+ is the

output to be regulated, ω ∈ R
Ω are the disturbances,

yref ∈ R+ is the tracking signal and e ∈ R
r is the error

in the system. Matrix A is stable Metzler, and
matrices b, c, eωω, fω, and d are nonnegative.
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Key Assumptions: .

Assumption 1 Given (2) assume that

rank(d − cA−1b) = 1

and for all tracking and disturbance signals in ques-
tion, it’s assumed that the steady-state of the system
(2) given by





xss

uss



 = −





A b

c d





−1 



eω 0

f −1









ω

yref



 (3)

and has the property that uss ∈ R+.
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Servomechanism problem for SISO
positive LTI systems: .

Problem: Consider the plant (2), with initial condition x0 ∈ R
n
+,

under Assumption 1. Find a nonnegative controller u that

(a) guarantees closed loop stability;

(b) ensures the plant (2) is nonnegative, i.e. the states x and the
output y are nonnegative for all time; and

(c) ensures tracking of the reference signals, i.e. e = y−yref →

0, as t → ∞, ∀yref ∈ Yref and ∀ω ∈ Ω. In addition,

(d) assume that a controller has been found so that conditions
(a), (b), (c) are satisfied; then for all perturbations of the
nominal plant modal which maintain properties (a) and (b),
it is desired that the controller can still achieve asymptotic
tracking and regulation, i.e. property (c) still holds.
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Servomechanism problem for SISO
positive LTI systems: .

Problem: Consider the plant (2), with initial condition x0 ∈ R
n
+,

under Assumption 1. Find a nonnegative controller u that

(a) guarantees closed loop stability;

(b) ensures the plant (2) is nonnegative, i.e. the states x and the
output y are nonnegative for all time; and

(c) ensures tracking of the reference signals, i.e. e = y−yref →

0, as t → ∞, ∀yref ∈ Yref and ∀ω ∈ Ω. In addition,

(d) the controller is robust.
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Servomechanism problem for
"almost" positive LTI systems:

Remark 1

In the sequel when almost-state and almost-output
positivity will be considered, then in the previous prob-
lem the words state and output should be replaced
by almost-state and almost-output, respectively.
Additionally, the constraint of nonnegativity on the
input will be lifted, i.e. the input can be bidirectional.

We call this problem the servomechanism prob-
lem for "almost" positive LTI systems.
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Clamping Tuning Regulator: .

η̇ = ǫ(yref − y), η0 = 0

u = kη
, (4)

where

k =

{

0 η ≤ 0

1 η > 0

and η0 = 0 and ǫ ∈ (0, ǫ∗], ǫ∗ ∈ R+ \ {0}.

University of Toronto 16



Clamping Tuning Regulator: .

+

−

1
s

ǫ
η̇ η yyref Positive LTI

System

Unknown System

η̇ = ǫ(yref − y), η0 = 0

u = kη
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Key Assumptions: .
Finding rank(d − cA−1b) = 1 .

Algorithm 1 It is assumed that the output of the sys-
tem is measurable and the input is excitable the dis-
turbance set to zero, i.e. ω = 0.

1. Apply an input u = u to (2), with u having a non-
zero steady-state value.

2. Measure the corresponding steady-state value of
the output y = y.

3. If y 6= 0, then the existence condition holds true.
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Key Assumptions: .
Remark on uss .

ẋ = 0 = Axss + buss + eωω

η̇ = ǫ(yref − y) = 0 = cxss + duss + fω − yref

Isolating for xss we get:

xss = −A−1buss − A−1eωω.

By substituting xss and isolating for uss we obtain:

uss =
cA−1eωω − fω + yref

d − cA−1b
.
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Key Assumptions: .
Remark on uss .

ẋ = 0 = Axss + buss + eωω

η̇ = ǫ(yref − y) = 0 = cxss + duss + fω − yref

Isolating for xss we get:

xss = −A−1buss − A−1eωω.

Therefore:

cA−1eωω − fω + yref ≥ 0.
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Solution: .

Theorem 2 Consider system (2) under the clamping
tuning regulator. Further assume that

rank(d − cA−1b) = 1

x0 ∈ R
n
+

uss > 0 .

Then there exists an ǫ∗ such that for all ǫ ∈ (0, ǫ∗] the
clamping tuning regulator solves the servomechanism
problem.
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Algorithm: .

Algorithm 2

1. Check the existence condition rank(d− cA−1b) = 1 by Algo-
rithm 1.

(a) If Algorithm 1 returns y = 0, then there does not exist a
solution to the servomechanism problem.

(b) Otherwise, go to Step 2.

2. Apply the clamping regulator to the unknown plant.

(a) If the clamping controller remains at zero for t ∈ [t+,∞),
where t+ ≥ 0, and no tracking/regulation occurs, then
the servomechanism problem is not solvable under any
control law.

(b) Otherwise, the clamping regulator solves the
servomechanism problem.
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Intravenous Anesthetic

F12

F21

F31

F13

F01

Compartment 1

Compartment 2 Compartment 3

transfertransfer

∗stable, rank(d − cA−1b) = 1

−(f01 + f21 + f31) f12 f31

f21 −f12 0

f31 0 −f13

1

0

0
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0

0

ωu +ẋ = x +

y = [1 0 0]x
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Intravenous Anesthetic

Output
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Intravenous Anesthetic
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Water Tanks: .
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Water Tanks: .
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Also, assume the output y is of the form

y =
[

0 0 0 0 0 1
]

x

* ǫ = 0.5.
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Simulation: .
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Tuning Regulator: “Almost”
positivity

What about “almost” positivity?

η̇ = y − yref

u = −ǫη
(5)

where η0 = 0 and ǫ ∈ (0, ǫ∗], ǫ∗ ∈ R+ \ {0}.

−

+

1
s

−ǫ
η̇ η yyref Positive LTI

System

Unknown System
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Servomechanism for
“Almost” positivity

The controller:

η̇ = y − yref

u = −ǫη
(6)

where η0 = 0 and ǫ ∈ (0, ǫ∗], ǫ∗ ∈ R+ \ {0}, under the
assumption that

rank(d − cA−1b) = 1, xss ∈ R
n
+ and x0 ∈ R

n
+

solves Problem 1 under Remark 1, i.e. the
servomechanism problem for “almost” positivity can

be attained under (5).
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Optimal approach: LQcR control .

.
Consider the same problem under the controller:

η̇ = y − yref , η0 = 0

u = max{[Kx Kη]

[

x

η

]

, 0}

where Kx ∈ R
1×n and Kη ∈ R are found by solving the

cheap control problem:
∫ ∞

0

ǫ2eT e + u̇T u̇dτ (7)

where ǫ > 0
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Optimal approach: LQcR control .

.
Consider the same problem under the controller:

η̇ = y − yref , η0 = 0

u = max{[Kx Kη]

[

x

η

]

, 0}

for the system:

[

ẍ

ė

]

=

[

A 0

c 0

] [

ẋ

e

]

+

[

b

d

]

u̇

e = [0 1]

[

x

e

]
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Optimal Approach: LQcR control
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Optimal Approach: LQcR control

We cannot blindly use the standard LTI approach! E.g.
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Experimental results: LQcR control
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Experimental results: LQcR control
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Results and examples:

Motivation - why positive systems? X

Introduction and background to positive LTI
systems X

SISO results and examples X

MIMO results and examples
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System of Interest:

MIMO case

ẋ = Ax + Bu + Eω

y = Cx + Du + Fω

e := yref − y

(8)

u ∈ R
m is the input, x ∈ R

n
+ is the state, y ∈ R+ is the

output to be regulated, ω ∈ R
Ω
+ are the disturbances,

yref ∈ R+ is the tracking signal and e ∈ R
r is the error

in the system. Matrix A is stable Metzler, and
matrices B, C, D, E, F are nonnegative with m = r.
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Problem of Interest:

Find a controller u ∈ R
m
+ for all reference tracking signals

yref ∈ R
r
+ and for all disturbance signals ω ∈ R

Ω
+ such that

(a) closed loop stability is maintained;

(b) nonnegativity of states x and outputs y occurs for all time;

(c) tracking of reference signals occurs, i.e. e = yref − y → 0,

as t → ∞, ∀yref ∈ R
r
+ and ∀ω ∈ R

Ω
+.

(d) assume that an LTI controller has been found so that condi-
tions (a), (b), (c) are satisfied; then for all perturbations of the
nominal plant modal which maintain properties (a) and (b),
it is desired that the controller can still achieve asymptotic
tracking and regulation, i.e. the controller is robust.
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In General No Solution:

Theorem: There does not exist a solution to the
problem of interest for almost all positive systems (8).

Reason:

uss = Kryref + Kdω

= (D − CA−1B)−1yref

− (D − CA−1B)−1(F − CA−1E)ω

≥ 0
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Key Assumption:

Assumption 2 Given (8) assume that

rank(D − CA−1B) = r

and for all tracking and disturbance signals in ques-
tion, it’s assumed that the steady-state of the system
(8) is given by





xss

uss



 = −





A B

C D





−1 



E 0

F −I









ω

yref





and has the property that uss = Kryref + Kdω ∈ R
m
+ .
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Key Assumptions:
Finding Kr

1. Apply an input vector u = [0 ... 0 ui 0 ... 0]T to (8),
∀i = 1, ...,m.

2. Measure the corresponding steady-state value of
the output vectors y = yi ∈ R

r, ∀i = 1, ...,m.

3. Solve the equation:

K1















u1 0 ... 0

0 u2 ... 0
. . .

0 0 ... um















=















y1
1 y1

2 ... y1
m

y2
1 y2

2 ... y2
m

. . .

yr
1 yr

2 ... yr
m















for K1 = (D − CA−1B). Note Kr = K−1
1 .
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Measurable Disturbances:
Finding Kd

1. Apply a disturbance vector ω = [0 ... 0 ωi 0 ... 0]T

to (8), ∀i = 1, ..., Ω̃.

2. Measure the corresponding steady-state value of
the output vectors y = yi ∈ R

r, ∀i = 1, ..., Ω̃.

3. Solve the equation:

K2















ω1 0 ... 0

0 ω2 ... 0
. . .

0 0 ... ωΩ̃















=















y1
1 y1

2 ... y1
Ω̃

y2
1 y2

2 ... y2
Ω̃

. . .

yr
1 yr

2 ... yr

Ω̃















for K2 = (F −CA−1E). Note: Kd = −KrK2.
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Tuning Regulators and
Feedforward control:

Tuning Regulator:

η̇ = ǫ(yref − y)

utr = (D − CA−1B)−1η
(9)

where ǫ ∈ (0, ǫ∗], ǫ∗ ∈ R+ \ {0}.

Feedforward Control:

u = (D−CA−1B)−1yref−(D−CA−1B)−1(F−CA−1E)ω
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Tuning Regulators and Feedforward
control:

+

−

ǫ
s

(D − CA−1B)−1
η̇ η

yyref Positive LTI
System

Unknown System

ω

+

+

+

+

utr

uff

−(D − CA−1B)−1(F − CA−1E)

(D − CA−1B)−1
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New Problem and Solution:

New Problem: Obtain the largest subclass of tracking signals
yref ∈ Yref ⊂ R

r
+ and disturbance signals ω ∈ Ω ⊂ R

Ω
+ such that

the original Problem of Interest is satisfied.

Theorem: The original problem is solvable if and only if

(yref , ω) ∈ Yref × Ω := {(yref , ω) ∈ R
r
+ × R

Ω
+ |

Kryref > −Kdω component-wise}. (10)

Moreover, it suffices to use the feedforward compensator and
the tuning regulator control as the control input u, i.e.

u = uff + utr.
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Water Tanks:
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Water Tanks:
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Also, assume the output y is of the form

y =





0 0 1 0 0 0

1 0 0 0 0 1



 x

* ǫ = 0.1.
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Simulation:
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Simulation:

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

time (s)

ou
tp

ut
 (

L)
output y

University of Toronto 51



Extensions and future development:

Motivation - why positive systems? X

Introduction and background to positive LTI
systems X

SISO results and examples X

MIMO results and examples X

Extensions and future development
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Extensions and future development:

Assume model is known - want to solve the same
type of problem using optimal control techniques

Previous study, aside from “almost” positivity, has
been for positive systems constraint by nonneg-
ative control - want to solve the same type of
problem for nonpositive and bidirectional control
- presently ongoing!
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Results for Optimal Control:
Water Tanks Example with

nonnegative input
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Results for Optimal Control:
Water Tanks Example (Figure 1)
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* no constraints, yref = 1, ω = 0, violation of u ≥ 0
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Results for Optimal Control:
Water Tanks Example (Figure 2)
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* same as Figure 1, but u ≥ 0 is satisfied
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Results for Optimal Control:
Water Tanks Example (Figure 3)
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* same as Figure 2, but an improved controller
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Results for Optimal Control:
Water Tanks Example with

nonnegative input
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Results for Optimal Control:
Water Tanks Example (Figure 4)
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* same as Figure 3, but eω = [0 0 0 − 1 0 0]T
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Results for Optimal Control:
Water Tanks Example with

nonnegative input
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Results for Optimal Control:
Water Tanks Example (Figure 5)
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* no constraints are applied, fω = 0.5, yref = 1, eω = 0

* violation occurs!
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Results for Optimal Control:
Water Tanks Example (Figure 6)
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* same as Figure 5, but input constraint is satisfied
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Results for Optimal Control:
Building Example
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Results for Optimal Control:
Building Example
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