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Abstract— In this paper we consider the sensor network
design problem. Given a system with its sensor network and a
property which is satisfied by this system with the existing
sensors, we will classify the sensors with respect to their
importance relatively to the preservation of this property in
case of failure. More precisely we will characterize the sensors
which are critical, i.e. which failure leads to property loss and
those which are useless for the property. We will also quantify
the relative importance of the sensors which are neither useless
nor critical. The properties which will be studied here are
observability and Fault Detection and Isolation (FDI), we will
then provide the sensor classification for these properties in
case of sensor failure. The proposed graph approach is visual,
easy to handle and close to the physical structure of the system.
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Isolation, Sensor failure, Sensor classification

I. INTRODUCTION

Control and diagnosis of dynamical systems require mea-
sures or estimation of system variables via sensors. In this
paper we consider the sensor network design problem. This
problem amounts to find sets of variables to be measured by
sensors for observation or control purposes as observability,
disturbance rejection or diagnosis for example. In this paper
we address the sensor classification problem in the following
sense. Given a system with its sensor network and a property
P which is satisfied by this system with the existing sensors,
we will classify the sensors with respect to their importance
relatively to the preservation of the property P in case of fail-
ure. More precisely we will characterize the sensors which
are critical, i.e. which failure leads to property loss and those
which are useless for the property. We will also quantify the
relative importance of the sensors which are neither useless
nor critical. We consider here linear structured system models
[1], [2], they represent a large class of parameter dependent
linear systems. This allows us to use graph theory in order to
easily exploit the structure of the process irrespective of the
parameter values. The properties which will be studied here
are observability and Fault Detection and Isolation (FDI), we
will then provide the sensor classification for these properties
in case of sensor failure. The Fault Detection and Isolation
(FDI) problem has received considerable attention in the past
ten years [3], [4]. It consists of building residuals from the
available data and isolating, whenever possible, the faults
using the residuals. In [5], the authors provide a qualitative
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classification of sensors with respect to their importance
concerning observability. They determine the critical sensors,
called essential, which failure leads to observability loss, as
well as the useless ones, which may fail without impacting
system observability. The complexity of the classification
algorithms is polynomial with respect to the dimension of
the system. The contribution of this approach is to provide
with a unified framework allowing, with only a structural
knowledge on the system, to determine which sensors are
compulsory to use or useless to preserve a given property.
Furthermore we propose a quantification of the respective
importance of the useful sensors. For this purpose we define
for each sensor a criticity degree related with its importance
for the FDI solvability problem in case of sensor failure. It
turns out that this criticity degree is zero for useless sensors,
one for essential ones and from zero to one for sensors which
are neither useless nor essential. The larger the criticity
degree is, the worst for FDI solvability in case of failure
of this sensor. The proposed graph approach is visual, easy
to handle and close to the physical structure of the system.
The underlying ideas are general and can be applied to other
classes of models and properties.
The paper is structured as follows. The problem is formulated
in Section 2. Structured systems are presented in Section 3.
In Section 4, we provide with a characterization of useless
and essential sensors for the observer-based FDI problem. A
quantitative classification of sensors is given in Section 5.
Concluding remarks end the paper.

II. PROBLEM FORMULATION

A. Observer-based FDI problem
Let us consider the following linear time-invariant system:

Σ
{

ẋ(t) = Ax(t) + Lf(t) + Bu(t)
y(t) = Cx(t) + Mf(t) . (1)

where x(t) ∈ Rn is the state vector, f(t) ∈ Rr the fault
vector, u(t) ∈ Rm is the control input vector and y(t) ∈ Rp

the measured output vector. Each output variable is provided
by a specific sensor. For the sake of simplicity, in the
following we will denote by yi either the ith sensor or
the ith output variable. A,C, B, L and M are matrices of
appropriate dimensions.
A dedicated residual set is designed using a bank of r
observers for system (1), according to the dedicated observer
scheme [3].
The ith observer of this bank of r observers is designed for
a system of type (1) as follows:

˙̂xi(t) = Ax̂i(t) + Ki(y(t)− Cx̂i(t)) + Bu(t), (2)



where x̂i(t) ∈ Rn is the state of the ith observer, Ki is the
observer gain to be designed such that x̂i(t) asymptotically
converges to x(t), when f(t) = 0.
The residuals are defined as :

ri(t) = Qi(y(t)− Cx̂i(t)), for i = 1, . . . , r, (3)

where Qi is a 1× p matrix.
Definition 1: Let Σ be a linear system as in Equation

(1) with the set of sensors Y = {y1, . . . , yp}. The bank
of observer-based FDI problem associated with Y consists
has a solution if the system is observable and there exist
matrices Ki and Qi, such that, for i = 1, 2, . . . , r, the fault
to residual transfer matrix is non zero, proper and diagonal.
It is clear that the solvability of this problem relies on
the available sensors, a sufficient amount of information is
needed for observability and to detect and isolate the faults
via the dedicated observer scheme.

B. Sensor classification for FDI

In this paper, we tackle the problem of property preser-
vation under sensor failure. We define a failing sensor as
a sensor which is down i.e. whose measure is no more
available. This output will then no more appear in the
model. We will study the preservation of properties (e.g.
observability) of dynamic systems under sensor failure. We
point out different classes of sensors mainly the essential
ones which are compulsory to preserve the property and the
useless ones which do not play any role for the problem
under consideration. A property P is a function mapping
from Y = {y1, y2, . . . , yp} into {0, 1} and the property P is
true when P(Y ) = 1.
For a given property P we define now different categories
of sensors.

Definition 2: Let Σ be the linear system defined by 1 with
a property P such that P(Y ) = 1. We call admissible sensor
set for the property P a set of sensors V ⊆ Y such that
P(V ) = 1.

1) A sensor y∗ is called a useless sensor if for any
admissible sensor set V containing y∗, V \{y∗} is still
an admissible sensor set for P where V \{y∗} is the set
V minus the sensor y∗. A sensor which is not useless
is called a useful sensor.

2) A sensor y∗ is called an essential sensor if y∗

belongs to any admissible sensor set V . The set of
essential sensors is a subset of the set of useful sensors.

In the sequel, following [5] we will apply these notions to
classify the sensors for the FDI problem in the context of
structured systems. We recall the determination of the sets
of useless and essential sensors. Then we provide with a
classification of the sensors with respect to their relative
importance for this property. This is the main contribution.
Besides this qualitative classification we will quantify the
criticity degree of each sensor in case of sensor failure.

III. LINEAR STRUCTURED SYSTEMS

A. Definitions and basic properties

We will consider models based on the available physical
knowledge on the system. These models capture the relations
between internal variables but without fixing the precise
value of the parameters. In this paper we will consider linear
structured systems as in [1]. We consider linear systems as
described in (1), but with parameterized entries and denoted
by ΣΛ

ΣΛ

{
ẋ(t) = Ax(t) + Lf(t) + Bu(t)

y(t) = Cx(t) + Mf(t) . (4)

This system is called a linear structured system if the

entries of the composite matrix J =
[

A L B
C M 0

]
are

either fixed zeros or independent parameters (not related by
algebraic equations). Λ = {λ1, λ2, . . . , λk} denotes the set
of independent parameters of the composite matrix J . More
details can be found in [2].
For such systems one can study generic properties i.e. prop-
erties which are true for almost all values of the parameters
collected in Λ [6].
A directed graph G(ΣΛ) = (W,Z) can be easily associated
with the structured system ΣΛ of type (4) where the matrix[

A L B
C M 0

]
is structured:

• the vertex set is W = U ∪ F ∪ X ∪ Y where U , F , X
and Y are the control input, fault, state and output sets given
by {u1, u2, . . . , um}, {f1, f2, . . . , fr}, {x1, x2, . . . , xn} and
{y1, y2, . . . , yp} respectively,
• the arc set is Z = {(ui, xj)|Bji 6= 0} ∪ {(fi, xj)|Lji 6=
0} ∪ {(xi, xj)|Aji 6= 0} ∪ {(xi, yj)|Cji 6= 0} ∪ {(fi, yj)|
Mji 6= 0}, where Aji (resp. Bji Cji,Lji,Mji) denotes the
entry (j, i) of the matrix A (resp. B, C,L,M ).
Recall that a directed path P in G(ΣΛ) from a vertex i0 to a
vertex iq is a sequence of arcs (i0, i1), (i1, i2), . . . , (iq−1, iq)
such that it ∈ V for t = 0, 1, . . . , q and (it−1, it) ∈ W for
t = 1, 2, . . . , q. If i0 ∈ F and, iq ∈ Y , P is called a fault-
output path. If i0 ∈ V1 and iq ∈ V2, where V1 and V2 are
two subsets of V , P is called a V1-V2 path. Moreover, if i0
is the only vertex of P which belongs to V1 and il is the
only vertex of P which belongs to V2, P is called a direct
V1-V2 path.
A set of paths with no common vertex is said to be vertex
disjoint. A V1-V2 linking of size k is a set of k vertex disjoint
V1-V2 paths. A linking is maximal when k is maximal.

B. Observability of linear structured systems

The structural controllability or the dual notion of ob-
servability has been studied in several papers following the
pioneering work of [1].
Introduce now the concept of contraction which is the dual
notion of the dilation defined by Lin for the study of
controllability.

Definition 3: Let ΣΛ be the linear structured system de-
fined by (4) with associated graph G(ΣΛ), vertex set Z and



arc set W . Consider a set S ⊆ X . Denote E(S) the set of
vertices:

E(S) = {zj ∈ Z | ∃ xi ∈ S such that (xi, zj) ∈ W}
(5)

S is said to be a contraction if card(S) > card(E(S)) where
card(.) denotes the cardinality of a set.
Recall the graph characterization of the structural observabil-
ity, which will be useful later [1], [6].

Theorem 1: Let ΣΛ be the linear structured system de-
fined by (4) with associated graph G(ΣΛ). The system is
structurally observable if and only if:

1) The system ΣΛ is output-connected,
2) G(ΣΛ) contains no contraction.

C. Fault Detection and Isolation

Give now the result concerning the diagonal FDI problem
by using a bank of observers, which was stated first in [7].

Theorem 2: Consider the structured system with r faults
ΣΛ as defined in (4) and its associated graph G(ΣΛ). The
bank of observer-based diagonal FDI problem of Definition
1, is generically solvable if and only if:
• ΣΛ is structurally observable
• k = r where k is the size of a maximal fault-output

linking in G(ΣΛ).
The second condition of Theorem will be referred to as the
rank condition for FDI in the sequel.

IV. SENSOR CLASSIFICATION FOR FAULT DETECTION
AND ISOLATION

This section gives a summary of the main results of [5] and
[8]. We classify the sensors for three properties, the output
connection, the contraction avoidance and the rank condition
k = r. Then we combine these three classifications to obtain
the sensor classification for the FDI problem.

A. Sensor classification for output connection

In this sub-section we classify the sensors with respect to
the output connection property. We start with an observable
structured system and we wonder if output connection is
preserved under sensor failure. For this purpose we define
irreducible separators as minimal subsets of output vertices
which loss output disconnect some state vertices, see [5]. The
sensors corresponding to irreducible separators of dimension
1 are shown to be essential for output connection. The
sensors belonging to no irreducible separator are shown
to be useless for output connection. We will illustrate this
classification on the following example.

Example 1: Consider the linear structured system with 3
control inputs, 6 faults and 10 sensors illustrated in Figure
1

From Figure 1, G(ΣΛ) is output connected. One can
observe that removing y1 output disconnects x9 and re-
moving {y6, y7, y8} output disconnects x14, these two sets
are indeed irreducible separators. It can be shown that
we have 8 irreducible separators included in Y . They are
S1 = {y1}; S2 = {y2}; S3 = {y3, y5}; S4 = {y3, y4};

Fig. 1. Graph G(ΣΛ) of Example 1

S5 = {y4, y5, y7}; S6 = {y6, y7, y8}; S7 = {y9} and
S8 = {y10}. It turns out that, for the output connection,
y11 is a useless sensor because it does not belong to any
irreducible separator. All the others sensors are useful. The
following sensors are essential for the output connection y1,
y2, y9, y10 because they belong to the irreducible separators
of cardinality one, S1, S2, S7, S8 respectively.

B. Sensor classification for contraction avoidance

In this sub-section we classify the sensors with respect to
the contraction avoidance property. This will be performed
using a bipartite graph associated with the system ΣΛ.
The bipartite graph is well suited for generic matrix
rank computations. The bipartite graph of this system is
B(ΣΛ) = (B+, B−; W ′) where the sets B+ and B− are
two disjoint vertex sets and W ′ is the arc set.

A matching in a bipartite graph B(ΣΛ) = (B+, B−; W ′)
is an arc set M ⊆ W ′ such that the arcs in M have
no common vertex. The cardinality of a matching, i.e.
the number of arcs it consists of, is also called its size.
A matching M is called maximum if its cardinality is
maximum. In general, a maximum matching is not unique.
The maximum matching problem is the problem of finding
such a matching of maximal cardinality. This problem can
be solved using very efficient algorithms based on alternate
augmenting chains or ideas of maximum flow theory [9]. It
is know that there is no contraction on ΣΛ if and only if
the maximum matching on B(ΣΛ) is of cardinality n where
n is number of state vertices.

Using the classical Dulmage-Mendelsohn decomposition
[6] of B(ΣΛ), we can then characterize the contractions
of the graph G(ΣΛ). The essential sensors for contraction
avoidance correspond to the output vertices which failure in-
duces a decrease in the dimension of the maximal matching.
The useless sensors for contraction avoidance correspond to



the output vertices which are of no use for building a max-
imal matching. The DM-Decomposition B(ΣΛ) associated
with the system ΣΛ of Example 1 is given in Fig. 2.

Fig. 2. Graph B(ΣΛ) and the DM-decomposition of Example 1

we have 4 essential sensors {y1, y2, y9, y10} for the con-
traction avoidance because removing one of them induces
a decrease in the dimension of the maximal matching. Any
maximum matching with minimal number of outputs covers
4 output vertices of {y3, y4, y5, y6, y7, y8} but none of them
covers y11. Then, y11 is a useless sensor and {y1, . . . y10}
are useful sensors.

C. Sensor classification for the rank condition of FDI

The useless sensors of Definition 2 for the FDI can then
be characterized as follows.

Theorem 3: Consider the linear structured system ΣΛ with
sensor set Y and its associated graph G(ΣΛ). A sensor yi ∈
Y is useless if and only if there is no F -{yi} path in G(ΣΛ),
where F is the fault set.
Define now an important set of vertices.

Definition 4: The set of essential vertices Vess of G(ΣΛ)
is the set of vertices which belong to any maximal size fault-
output linking.
From [8], one can state the following.

Theorem 4: Consider the linear structured system ΣΛ with
its associated graph G(ΣΛ). The set of essential sensors for
the rank condition of FDI, is given by Ye=Y ∩ Vess, where
Y is the sensor set and Vess is the set of essential vertices
of G(ΣΛ).
The corresponding set of essential vertices is
Vess = {y1, y2, f1, . . . , f6, x1, . . . , x6, x9, . . . , x14},
see Figure 3.
- The sensors y1 and y2 are essential sensors because they

belong to Y ∩ Vess.
- The sensors y9, y10 and y11 are useless sensors because
they belong to no F -Y path.
- The sensors y1, . . . , y8, are useful since they are not useless.

Fig. 3. The set of essential vertices of Example 1

D. Sensor classification for Fault Detection and Isolation

To conserve the Fault Detection and Isolation property
in case of sensor failure, the system with the remaining
sensors must be output connected, have no contraction and
satisfy the rank condition. It is clear that a sensor which
is essential for output connection, contraction avoidance or
for the rank condition is essential for FDI property preser-
vation. A sensor which is useless for output connection,
contraction avoidance and for the rank condition is useless
for FDI property preservation. Denote E(Output connection)
(resp. L(Output connection), F(Output connection)) the set
of essential sensors (resp. useless and useful sensors) for
output connection. Denote E(contraction avoidance) (resp.
L(contraction avoidance), F(contraction avoidance)) the set
of essential sensors (resp. useless and useful sensors) for con-
traction avoidance. Denote E(rank condition) (resp. L(rank
condition), F(rank condition)) the set of essential sensors
(resp. useless and useful sensors) for rank condition. We have
then the following result.

Theorem 5: Let ΣΛ be the linear structured system de-
fined by (4). For the problem of FDI preservation, using the
previous notations we have:

• The set of essential sensors is given by E(FDI)=
E(Output connection) ∪ E(contraction avoidance) ∪
E(rank condition).

• The set of useless sensors is given by L(FDI)= L(Output
connection) ∩ L(contraction avoidance) ∩ L(rank con-
dition).

From the previous subsections it follows that
E(FDI)={y1, y2, y9, y10} and L(FDI)= {y11}.
From the results of [5] and [8] it follows that:

Proposition 1: Let ΣΛ be the linear structured system
defined by (4) and for the problem of FDI preservation, using
the previous notations. The determination of the two classes
E and L of sensors for the FDI preservation problem can be
done in a polynomial time.



Fig. 4. Sensor network for Example 1

V. QUANTITATIVE CLASSIFICATION OF SENSORS

In this section we quantify the relative importance of
the sensors relatively to their importance for a property P .
Introduce first the criticity degree.

A. The Criticity Degree

Definition 5: (Criticity Degree) Let K be the set of
admissible sensor sets containing no useless sensor. Let Ky∗

be the set of admissible sensor sets of K containing y∗.
The criticity degree of a sensor y∗ for the property P is
defined as the ratio between the cardinality of Ky∗ and the
the cardinality of K. The criticity degree of y∗ is denoted
D(y∗).
The following Proposition can be proved.

Proposition 2: Let Σ be the linear system defined by 1
with a property P such that P(Y ) = 1.

• The criticity degree of a useless sensor is zero
• The criticity degree of an essential sensor is one
• The criticity degree of a useful sensor is greater than

zero and lower than or equal to one.
Proof: By Definition 5, the criticity degree is greater than or
equal to zero and lower than or equal to one. From Definition
2, when y∗ is useless, the cardinality of Ky∗ is zero, therefore
the criticity degree is zero. From Definition 2, when y∗ is
essential it belongs to any admissible sensor set, then the
sets K and Ky∗ have the same cardinality, therefore the
criticity degree is one. A useful sensor belongs to at least
one admissible sensor set without useless sensor, therefore
the criticity degree is greater than zero.
For two sensors yi 6= yj , if D(yi) > D(yj) it turns out that
the sensor yi is more critical than yj because the number of
remaining admissible sensor sets when yi fails is lower than
in the case where yj fails. In effect, 1−D(yi) < 1−D(yj),
which implies

1− Card(Kyi)/Card(K) < 1− Card(Kyj )/Card(K)

or Card(K)− Card(Kyi) < Card(K)− Card(Kyj )
where Card(K) − Card(Kyi) is the number of remaining
admissible sets when the sensor yi fails.

B. The network of admissible sensor sets

In this subsection we use a network to represent all the
possible situations in case of sensor failure. The nodes are
all the sets of available sensors and an arc corresponds to the
failure of a particular sensor. The top node of the network
is the set of all sensors, the bottom node is an empty set
of sensors. The network is decomposed in (p + 1) levels,
the nodes of a given level having the same cardinality. An
arc starts from a node a of level l and ends in a node b of
level l− 1 and represents the loss of a single sensor. In this
case, node b is called a successor of node a and node a is
called a predecessor of node b. The loss of several sensors
is represented by a path in the sensor network.

For each node on the network, we can check whether the
associated combination of sensors is an admissible sensor set
or not. It should be noted that if a node is not an admissible
sensor set, then none of its successors is an admissible sensor
set. We will now define a reduced sensor network as follows:
we start with the previous sensor network and remove the
nodes corresponding to non admissible sensors sets or sensor
sets containing useless sensors. This reduced sensor network
contains all the relevant information to compute the criticity
degrees. On Example 1 and for the solvability of the bank of
observer based diagonal FDI problem, we obtain the sensor
network of Figure 4.

From Definition 5, the criticity degrees of the sensors are
as follows:
D(y1) = 1 D(y2) = 1 D(y3) = 13/16
D(y4) = 13/16 D(y5) = 13/16 D(y6) = 10/16
D(y7) = 13/16 D(y8) = 10/16 D(y9) = 1
D(y10) = 1 D(y11) = 0

This illustrates the fact that y1, y2, y9, y10 are essential, that
y11 is useless and that y3, y4, y5, y7 are more important for
FDI than y6 and y8 in case of sensor failure.

VI. CONCLUDING REMARKS

In this paper we have classified the sensors with respect
to their importance for the solvability of the observer based
FDI problem. The proposed analysis is mainly based on the
system structure and is parameter independent. This analysis



quantifies the degree of criticity of sensors which can be
useful in order to perform a robust FDI in case of possible
sensor failure. The proposed graph approach uses standard
algorithms. This analysis is very general and can be applied
to other problems of control and diagnosis.
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