# Simple Polynomial Approach to Nonlinear Control

Mike Grimble and Pawel Majecki

Industrial Control Centre, University of Strathclyde and Industrial Systems and Control Ltd., Glasgow, Scotland





# **Nonlinear Multivariable CL System**



Advantage of NGMV is only knowledge of NL plant model required is ability to compute an output for a given control input sequence.

# **Nonlinear Plant Model**

Plant model may be given in a very general form, e.g.:

- state-space formulation
- neural network / neuro-fuzzy model
- look-up table
- Fortran/C code



- Only need to compute the output to given input signal
- Can include linear/NL components, e.g. Hammerstein model with static input NL's



Only knowledge of NL plant model for a given control sequence.

required is ability to compute an output

# **Equivalent Model**

GOAL: Combine all stochastic inputs into one noise signal



# **Reminder:** Minimum Variance Control

First look at the simple *MV* problem:
$$y(t) = W_k u(t-k) + Y_f \varepsilon(t)$$
Plant model:
$$y(t+k) = W_k u(t) + Y_f \varepsilon(t+k)$$

$$= F\varepsilon(t+k) + W_k u(t) + R\varepsilon(t)$$

$$\varepsilon(t) = Y_f (z^{-1})^{-1} f(t)$$
Statistically independent terms
$$\varepsilon(t) = -\frac{R}{W_k} \varepsilon(t) = -\frac{R}{W_k} F_f (t)$$

MV control assumptions:

- The plant  $W_k$  has stable inverse (minimum-phase)
- Reference and disturbance models are representative of the actual signals acting on the system.

# Nonlinear Generalised Minimum Variance Control

# **NGMV Problem Formulation**

General NGMV cost function to be minimized:

where 
$$J_{NGMV} = E[\phi_0^2(t)]$$

 $P_c = P_{cn} P_{cd}^{-1}$  - linear error weighting (matrix fraction)

 $(\mathcal{F}_{c}u)(t) = z^{-\Lambda} (\mathcal{F}_{ck}u)(t)$  - control weighting (possibly nonlinear)

Control weighting assumed invertible and potentially nonlinear to compensate for plant nonlinearities in appropriate cases

Weighting selection is restricted by closed-loop stability needs

### **Nonlinear GMV Problem Solution**

Split the output into two statistically non-overlapping terms:

 $\phi_0(t+\Lambda) = (\mathcal{F}_{ck} - P_c \mathcal{W}_k)u(t) + P_c Y_f \varepsilon(t+\Lambda)$ 

 $P_c Y_f = F_0 + z^{-\Lambda} R$  $\phi_0(t+\Lambda) = F_0\varepsilon(t+\Lambda) + \left( (\mathcal{F}_{ck} - P_c\mathcal{W}_k)u(t) + R\varepsilon(t) \right)$ ~ Diophantine equation  $\mathcal{E}(t) = Y_f(z^{-1})^{-1} f(t)$ statistically independent NGMV control:  $u^{NGMV}(t) = (\mathcal{F}_{ck} - P_c \mathcal{W}_k)^{-1} (-R\varepsilon(t))$ Need stable causal nonlinear operator inverse

## **Implementation of the NGMV Controller**

$$u^{NGMV}(t) = -[(\mathcal{F}_{ck} - F_0 Y_f^{-1} \mathcal{W}_k)^{-1} R Y_f^{-1} e](t)$$





The controller is nonlinear but fixed!

# **Selection of the Dynamic Cost Weightings**

Restriction on choice of weightings: need invertible nonlinear operator

$$\left(P_{c}\mathcal{W}_{k}-\mathcal{F}_{ck}\right)$$

Find a non-zero control weighting is necessary for non-invertible plants
Admissible and meaningful choice of weightings important.

Typically

•  $P_c$  large at low frequencies to guarantee integral action

•  $\mathcal{F}_{ck}$  large at high frequencies to provide sufficient controller roll-off



### **Stable NL Operator Inverse** and Starting Point for Weighting Selection

**Necessary condition for optimality:** Operator  $(P_c \mathcal{W}_k - \mathcal{F}_{ck})$  must have a stable inverse and for linear systems be minimum-phase.

To show this is satisfied for a wide class of systems consider case where  $\mathcal{F}_{ck}$  is linear and  $\mathcal{F}_{ck} = -F_k$ . Then:

$$\left(P_{c}\mathcal{W}_{k}+F_{k}\right)u=F_{k}\left(F_{k}^{-1}P_{c}\mathcal{W}_{k}+I\right)u$$

Like return-difference for a feedback system with a delay-free plant and controller:  $K_c = F_k^{-1} P_c$ .

Consider delay-free plant  $W_k$  and assume PID controller  $K_{PID}$  exists to stabilize the closed-loop. Then a starting point for weighting choice that will ensure operator  $(P_c \mathcal{W}_k + F_k)$  is stably invertible is  $P_c = K_{PID}$ ,  $F_k = 1$ 

**Provides weightings that lead to a stable inverse for the NL operator.** 

# Predictive Controller For Nonlinear Processes:

# **System Model**



# **GPC Criterion**

#### **Typical GPC cost function:**

$$J = E\left\{\sum_{j=0}^{N} e_{p}(t+j+k)^{T} e_{p}(t+j+k) + \lambda_{j}^{2} u_{0}(t+j)^{T} u_{0}(t+j)\right| t\right\}$$

- Error signal  $e_p = r_p y_p$  may be dynamically weighted
- Prediction and control horizons equal
- Time delay included in the cost

Using vector notation:

$$J = E\left\{ (R_{t+k,N} - Y_{t+k,N})^T (R_{t+k,N} - Y_{t+k,N}) + U_{t,N}^{0T} \Lambda_N^2 U_{t,N}^0 \mid t \right\}$$

"sum of squares" criterion

### **Linear Subsystem Polynomial Matrix Models**

The polynomial matrix system models, for the  $(r \ x \ m)$  multivariable system  $W_0$  may now be introduced.

*Controlled Auto-Regressive Moving Average (CARMA)* model, representing the linear subsystem of the plant model in *GP*C design, defined as:

$$\begin{aligned} A(z^{-1})y(t) &= B_{0k}(z^{-1})u_0(t-k) + C_d(z^{-1})\xi(t) \\ &[W_{0k}(z^{-1}) \ W_d(z^{-1})] = A(z^{-1})^{-1}[B_{0k}(z^{-1}) \ C_d(z^{-1})] \\ &z(t) = A^{-1}(z^{-1})B_{0k}(z^{-1})u_0(t-k) + Y_f(z^{-1})\varepsilon(t) \end{aligned}$$

Define the right coprime model for the weighted spectral factor:

$$P_{c}(z^{-1})Y_{f}(z^{-1}) = D_{fp}(z^{-1})A_{f}^{-1}(z^{-1})$$

Then the weighted output  $y_p(t) = P_c y(t)$  and the observations signal:  $z_p(t) = P_c (z^{-1}) W_{0k}(z^{-1}) u_0(t-k) + D_{fp}(z^{-1}) A_f^{-1}(z^{-1}) \varepsilon(t)$ 

### **Diophantine Equations**

*First Diophantine:*  $E_j(z^{-1})A_f(z^{-1}) + z^{-j-k}H_j(z^{-1}) = D_{fp}(z^{-1})$ 

This equation may be written in the transfer operator form:

$$E_{j}(z^{-1}) + z^{-j-k}H_{j}(z^{-1})A_{f}^{-1}(z^{-1}) = D_{fp}(z^{-1})A_{f}^{-1}(z^{-1})$$

*Prediction equation:* Substituting the expression for the weighted observations:

$$\begin{split} z_p(t) &= P_{\rm c} \, (z^{-1}) W_{0\rm k}(z^{-1}) u_0(t-k) + D_{fp}(z^{-1}) A_f^{-1}(z^{-1}) \varepsilon(t) \\ &= P_{\rm c}(z^{-1}) W_{0\rm k}(z^{-1}) u_0(t-k) + (E_j(z^{-1}) + z^{-j-k} H_j(z^{-1}) A_f^{-1}(z^{-1})) \varepsilon(t) \end{split}$$

Substituting from the innovations:  $\varepsilon(t) = Y_f^{-1}z(t) - D_f^{-1}B_{0k}u_0(t-k)$  obtain:

$$\begin{aligned} z_{p}(t) &= P_{c}(z^{-1})W_{0k}(z^{-1})u_{0}(t-k) + E_{j}(z^{-1})\varepsilon(t) \\ &+ z^{-j-k}H_{j}(z^{-1})A_{f}^{-1}(z^{-1})\left(Y_{f}^{-1}(z^{-1})z(t) - D_{f}^{-1}(z^{-1})B_{0k}(z^{-1})u_{0}(t-k)\right) \end{aligned}$$

The optimal predictor to minimise the estimation error variance follows as:

$$\hat{y}_{p}(t+j+k \mid t) = \left[H_{j}(z^{-1})D_{fp}^{-1}(z^{-1})z_{p}(t) + E_{j}(z^{-1})B_{1k}(z^{-1})u_{f}(t+j)\right]$$

where  $u_f(t) = D_{f1}^{-1}(z^{-1})u_0(t)$ .

### **Predicted Weighted Output**

A second Diophantine equation is required to break up the term:  $E_j(z^{-1})B_{1k}(z^{-1})$  into a part with a j+1 step delay and a part depending on  $D_{f1}(z^{-1})$ . For  $j \ge 0$ , introduce the following equation, which has the solution  $(G_j, S_j)$ , of *smallest degree* for  $G_j$ :

**Second Diophantine:**  $G_j(z^{-1})D_{f_1}(z^{-1}) + z^{-j-1}S_j(z^{-1}) = E_j(z^{-1})B_{1k}(z^{-1})$ 

where  $\deg(G_j(z^{-1})) = j$ . The prediction equation may now be obtained (for  $j \ge 0$ ) as:

$$\begin{split} \hat{y}_{p}(t+j+k\mid t) &= H_{j}(z^{-1})D_{fp}^{-1}(z^{-1})z_{p}(t) + (G_{j}(z^{-1})D_{f1}(z^{-1}) + z^{-j-1}S_{j}(z^{-1}))u_{f}(t+j) \\ &= H_{j}(z^{-1})D_{fp}^{-1}(z^{-1})z_{p}(t) + G_{j}(z^{-1})u_{0}(t+j) + S_{j}(z^{-1})u_{f}(t-1) \end{split}$$

Define the signal:  $f_j(t)$  in terms of past outputs and inputs, as:

$$f_{j}(t) = H_{j}(z^{-1})D_{fp}^{-1}(z^{-1})z_{p}(t) + S_{j}(z^{-1})u_{f}(t-1)$$

Thus, the *predicted weighted output* may be written, for  $j \ge 0$ , as:  $\hat{y}_p(t + j + k \mid t) = G_j(z^{-1})u_0(t + j) + f_j(t)$ 

#### Matrix Representation of the Prediction Equations

The future weighted outputs are to be predicted in the following section for inputs computed in the interval:  $\tau \in [t, t + N]$ . The equation may therefore be used to obtain the following vector equation for the weighted output at future times:

$$\begin{bmatrix} \hat{y}_{p}(t+k \mid t) \\ \hat{y}_{p}(t+1+k \mid t) \\ \vdots \\ \hat{y}_{p}(t+N+k \mid t) \end{bmatrix} = \begin{bmatrix} g_{0} & 0 & \cdots & 0 & 0 \\ g_{1} & g_{0} & 0 & \cdots & 0 \\ \vdots & g_{1} & g_{0} & & \vdots \\ \vdots & & \ddots & \\ g_{N} & g_{N-1} & \cdots & g_{0} \end{bmatrix} \begin{bmatrix} u_{0}(t) \\ u_{0}(t+1) \\ \vdots \\ u_{0}(t+N) \end{bmatrix} + \begin{bmatrix} f_{0}(t) \\ f_{1}(t) \\ \vdots \\ f_{N}(t) \end{bmatrix}$$

### **Vector Form of Prediction Equations**

Introducing an obvious definition of terms for the matrices in the above equation the vector form of the predicted weighted outputs may be written as:

$$\hat{Y}_{t+k,N} = G_N U_{t,N}^0 + F_{t,N}$$

The vector of free response predictions  $F_{t,N}$  may also be written as:

$$\begin{split} F_{t,N} &= \begin{bmatrix} f_0(t) \\ f_1(t) \\ \vdots \\ f_N(t) \end{bmatrix} = \begin{bmatrix} H_0(z^{-1}) \\ H_1(z^{-1}) \\ \vdots \\ H_N(z^{-1}) \end{bmatrix} D_{fp}^{-1}(z^{-1})z_p(t) + \begin{bmatrix} S_0(z^{-1}) \\ S_1(z^{-1}) \\ \vdots \\ S_N(z^{-1}) \end{bmatrix} u_f(t-1) \\ &= H_{NZ}(z^{-1})z_p(t) + S_{NZ}(z^{-1})u_f(t-1) \end{split}$$

#### **Vector Forms of Future Signals**

*Future set point knowledge:* It is reasonable to assume in many applications that the future variations of the set-point or reference signal  $\{r(t)\}$  are predetermined, at least over a fixed future horizon of *N* steps. The weighted reference is assumed to include the stable weighting:  $r_p(t) = P_c(z^{-1})r(t)$ . The vectors of *future weighted* reference, output and input signals may also be defined as:

$$R_{t,N} = \begin{bmatrix} r_{p}(t) \\ r_{p}(t+1) \\ \vdots \\ r_{p}(t+N) \end{bmatrix} \qquad R_{t,N} = \begin{bmatrix} r_{p}(t) \\ r_{p}(t+1) \\ \vdots \\ r_{p}(t+N) \end{bmatrix} \qquad U_{t,N}^{0} = \begin{bmatrix} u_{0}(t) \\ u_{0}(t+1) \\ \vdots \\ u_{0}(t+N) \end{bmatrix}$$

#### **Theorem : Equivalent Minimum Variance Problem**

Consider the minimisation of the GPC cost index for the system:

$$J = E\{\sum_{j=0}^{N} e_{p}(t+j+k)^{T} e_{p}(t+j+k) + \lambda_{j}^{2} u_{0}(t+j)^{T} u_{0}(t+j)) | t\}$$

where the nonlinear subsystem:  $\mathcal{W}_{lk} = I$  and the vector of optimal GPC controls is

given by: 
$$U_{t,N}^0 = \left(G_N^T G_N + \Lambda_N^2\right)^{-1} G_N^T \left(R_{t+k,N} - F_{t,N}\right)$$
. If the cost index is

redefined to have a multi-step variance form:  $\tilde{J}(t) = E\{\Phi_{t+k,N}^T \Phi_{t+k,N} \mid t\},\$ where  $\Phi_{t+k,N} = P_{cN}(R_{t+k,N} - Y_{t+k,N}) + F_{cN}^0 U_{t,N}^0$ and the cost weightings:  $P_{cN} = Y^{-T} G_N^T$  and  $F_{cN}^0 = -Y^{-T} \Lambda_N^2$ . Then the vector of *future optimal controls is identical to the vector of GPC controls.* 

## **Nonlinear Predictive GMV Problem**

$$\xrightarrow{u} \mathcal{W}_{1k} \xrightarrow{u_0} W_{0k} \xrightarrow{m} z^{-k} \xrightarrow{m}$$

- Actual input to the system is the control signal u(t) rather than input to the linear subsystem  $u_0(t)$
- Cost function for the nonlinear problem therefore includes an additional control signal costing term

$$\Phi^{0}_{t+k,N} = P_{CN}E_{t+k,N} + F^{0}_{CN}U^{0}_{t,N} + \left(\mathcal{F}_{c\,k,N}U_{t,N}\right) \not \leq 1$$

- Nonlinear costing

- When N = 0, the problem simplifies to the single step non-predictive NGMV control
- Control design involves specifying the dynamic weightings  $P_c$ ,  $\mathcal{F}_{ck}$ , and the constant  $\Lambda$  weighting for the original GPC cost

# **Theorem: NL Predictive GMV Control**

Let error weighting  $P_c(z^{-1})$  and the input weightings  $\{\lambda_0, ..., \lambda_N\}$  be specified and assume the *control signal weighting*:  $(\mathcal{F}_c u)(t) = (\mathcal{F}_{ck} u)(t-k)$  where  $\mathcal{F}_{ck}$  is full rank and invertible. The *multi-step* cost-function:  $J_p = E\{\Phi_{t+k,N}^{0T} \Phi_{t+k,N}^0 \mid t\}$ The signal  $\Phi_{t+k,N}^0$  includes the vector of future error, input and control signal costing terms:  $\Phi_{t+k,N}^0 = P_{cN}E_{t+k,N} + F_{cN}^0U_{t,N}^0 + (\mathcal{F}_{ck,N}U_{t,N})$  where the effective weightings :  $P_{cN} = Y^{-T}G_N^T$ ,  $F_{cN}^0 = -Y^{-T}\Lambda_N^2$  and  $\mathcal{F}_{ck,N}$  may be a diagonal control weighting. Define the constant matrix factor *Y* to satisfy  $Y^TY = G_N^TG_N + \Lambda_N^2$  then using the *receding horizon philosophy the* control law:

$$U_{t,N} = -(\mathcal{F}_{c\,k,N} - Y\mathcal{W}_{1k,N})^{-1} P_{CN}(R_{t+k,N} - F_{t,N})$$

or equivalently:

$$U_{t,N} = -\mathcal{F}_{c\,k,N}^{-1} \left( P_{cN}(R_{t+k,N} - F_{t,N}) - Y\mathcal{W}_{1k,N}U_{t,N} \right)$$

where the signals:  $F_{t,N} = H_{NZ}(z^{-1})z(t) + S_{NZ}(z^{-1})u_f(t-1)$  and  $u_f(t) = D_{f1}^{-1}(z^{-1})u_0(t)$ .

# **NPGMV Controller – Polynomial Form**

$$u(t) = -\mathcal{F}_{\scriptscriptstyle Ck}^{\scriptscriptstyle -1} C_{\scriptscriptstyle I0} \left( P_{\scriptscriptstyle CN}(R_{t+k,N}-F_{t,N}) - Y\mathcal{W}_{
m 1k,N} U_{t,N} 
ight)$$



- The solution involves solving two sets of polynomial Diophantine equations
- Equivalent to the state-space version

# Robotics Application of Nonlinear Predictive Control

# **Robotics Application**

#### **Two-link robotic manipulator**







*After "Applied Nonlinear Control" by Slotine and Li, 1991.* 

#### Nonlinear model:

$$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} -h\dot{q}_2 & -h(\dot{q}_1 + \dot{q}_2) \\ h\dot{q}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$

#### Separation of the model into the nonlinear and linear subsystems







**NPGMV controller structure for robot control** 



Position Control of the Two-link manipulator. NPGMV control with N = 0, 1, 3, 5 and Feedback linearization



Position Control of the Two-link manipulator. NPGMV control with N = 0, 1, 3, 5 and Feedback linearization (close-up views)

# Marine Systems Roll Stabilization Example

# **Roll and Yaw Control Using Fins and Rudder**



- Ship heading controlled by rudder
- Roll motion reduced by both fin and rudder action
- Difficulty: rudder to roll interaction is non-minimum phase!

#### **Control objective:**

Roll reduction and yaw trajectory tracking subject to angle and rate limits on rudder and fins.



# **Ship Roll Stabilisation Problem**



Compensate roll motion in a well-defined frequency band (0.3-1.2 rad/sec)

# **Ship GPC Control Results for Varying** *N*



# **Example: GPC and NPGMV Results**









# **Concluding Remarks**

- A practical NL controller must be simple but we need some mathematical basis to understand behavior.
- NGMV is a candidate and the patriarch for a family of more complicated and specialist solutions.
- *The ability to handle black box models is important industrially.*
- Nonlinear predictive is a model based fixed controller without uncertainty of linearization around a trajectory so interesting.
- *Extendable further to hybrid and/or complex systems.*
- LabVIEW toolbox including new tools next !
- Dual Estimation problems equally interesting.

### **Nonlinear Book**

For new book on nonlinear control, to be published next year: M. J. Grimble and P. Majecki, *Nonlinear Industrial Control*, Springer, Heidelberg, Germany 2009

> Dr Pawel Majecki Industrial Control Centre University of Strathclyde Department of Electronic and Electrical Engineering Graham Hills Building 50 George Street Glasgow G1 1QE, UK E-mail: p.majecki@eee.strath.ac.uk Telephone No: +44 (0)141 552 4400 Extensions: 2378 Direct Line No: +44 (0)141 548 2378 Facsimile No: +44 (0)141 548 4203 http://www.icc.strath.ac.uk