Simple Polynomial Approach to Nonlinear Control

Mike Grimble and Pawel Majecki

Industrial Control Centre, University of Strathclyde and Industrial Systems and Control Ltd., Glasgow, Scotland

Nonlinear Multivariable CL System

■ Advantage of NGMV is only knowledge of NL plant model required is *ability to compute an output* for a given control input sequence.

Nonlinear Plant Model

Plant model may be given in a very general form, e.g.:

- \bullet state-space formulation
- \bullet neural network / neuro-fuzzy model
- \bullet look-up table
- \bullet Fortran/C code

- Only need to compute the output to given input signal $f(u, y) = 0$
- Can include linear/NL components, e.g. Hammerstein model with static input NL's

Only knowledge of NL plant model for a given control sequence.

required is *ability to compute an output*

Equivalent Model

GOAL: Combine all stochastic inputs into one noise signal

Reminder: *Minimum Variance Control*

MV control assumptions:

- \bullet • The plant W_k has stable inverse (minimum-phase)
- \bullet Reference and disturbance models are representative of the actual signals acting on the system.

Nonlinear Generalised Minimum Variance Control

NGMV Problem Formulation

General NGMV cost function to be minimized:

where
$$
J_{NGMV} = E[\phi_0^2(t)]
$$

where
$$
\phi_0(t) = P_c e(t) + (\mathcal{F}_c u)(t)
$$

 $P_c = P_{cn} P_{cd}^{-1}$ **P** linear error weighting (matrix fraction)

 $\left(\mathcal{F}_{c} u\right) (t) = z^{-\Lambda} \left(\mathcal{F}_{c k} u\right) (t)$ control weighting (possibly nonlinear)

 Control weighting assumed invertible and potentially nonlinear to compensate for plant nonlinearities in appropriate cases

 \mathbb{R}^3 Weighting selection is restricted by closed-loop stability needs

Nonlinear GMV Problem Solution

Split the output into two statistically non-overlapping terms:

$$
\phi_0(t+\Lambda) = (\mathcal{F}_{ck} - P_c \mathcal{W}_k)u(t) + P_c Y_f \varepsilon(t+\Lambda)
$$

 $P_cY_f = F_0 + z^{-\Lambda}R$ $\phi_0(t+\Lambda) = F_0 \varepsilon(t+\Lambda) + \left(\left(\mathcal{F}_{ck} - P_c \mathcal{W}_k \right) u(t) + R \varepsilon(t) \right)$ statistically independent 100×10^{12} $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\left(\mathcal{F}_{ck} - P_c \mathcal{W}_k\right)^{-1}$ $\left(-R\varepsilon(t)\right)^{-1}$ *Need stable causal nonlinear operator inverse* \sim Diophantine equation $\mathcal{E}(t) = Y_f (z^{-1})^{-1} f(t)$

Implementation of the NGMV Controller

$$
u^{NGMV}(t) = -[(\mathcal{F}_{ck} - F_0 Y_f^{-1} \mathcal{W}_k)^{-1} R Y_f^{-1} e](t)
$$

Disturbance

The controller is nonlinear but fixed!

Selection of the Dynamic Cost Weightings

Restriction on choice of weightings: need invertible nonlinear operator

$$
(P_c \mathcal{W}_k - \mathcal{F}_{ck})
$$

Find a non-zero control weighting is necessary for non-invertible plants Admissible and meaningful choice of weightings important.

Typically

• P_c large at low frequencies to guarantee integral action

 \bullet \mathcal{F}_{ck} large at high frequencies to provide sufficient controller roll-off

Stable NL Operator Inverse *and Starting Point for Weighting Selection*

Necessary condition for optimality: Operator $(P_c \mathcal{W}_k - \mathcal{F}_{ck})$ must have a stable inverse and for linear systems be minimum-phase.

 \blacksquare To show this is satisfied for a wide class of systems consider case where \mathcal{F}_{ck} is linear and $\mathcal{F}_{ck} = -F_k$. Then:

$$
(P_c \mathcal{W}_k + F_k)u = F_k \left(\underbrace{F_k^{-1} P_c \mathcal{W}_k + I}_{\text{max}}\right)u
$$

a delay-free plant and controller: $K_c = F_k^{-1} P_c$. Like return-difference for a feedback system with

Consider delay-free plant W_k and assume PID controller K_{PID} exists to stabilize the closed-loop. Then a starting point for weighting choice that will ensure operator $(P_c \mathcal{W}_k + F_k)$ is stably invertible is $\frac{P_c}{P_c} = \frac{K_{PID}}{F_k}$, $F_k = 1$

Provides weightings that lead to a stable inverse for the NL operator.

Predictive Controller For Nonlinear Processes:

System Model

GPC Criterion

Typical GPC cost function:

$$
J = E\left\{\sum_{j=0}^{N} e_p (t+j+k)^T e_p (t+j+k) + \lambda_j^2 u_0 (t+j)^T u_0 (t+j)) \middle| t \right\}
$$

- $\overline{}$ Error signal $e_p = r_p - y_p$ may be dynamically weighted
- $\overline{}$ Prediction and control horizons equal
- $\overline{}$ Time delay included in the cost

Using vector notation:

$$
J = E\left\{ \left(R_{t+k,N} - Y_{t+k,N}\right)^T \left(R_{t+k,N} - Y_{t+k,N}\right) + U_{t,N}^{0T} \Lambda_N^2 U_{t,N}^0 \mid t \right\}
$$

"sum of squares" criterion

Linear Subsystem Polynomial Matrix Models

The polynomial matrix system models, for the (*^r ^x m)* multivariable system W_0 may now be introduced.

Controlled Auto-Regressive Moving Average (CARMA) model, representing the linear subsystem of the plant model in *GP*C design, defined as:

$$
A(z^{-1})y(t) = B_{0k}(z^{-1})u_0(t - k) + C_d(z^{-1})\xi(t)
$$

$$
[W_{0k}(z^{-1}) \ W_d(z^{-1})] = A(z^{-1})^{-1}[B_{0k}(z^{-1}) \ C_d(z^{-1})]
$$

$$
z(t) = A^{-1}(z^{-1})B_{0k}(z^{-1})u_0(t - k) + Y_f(z^{-1})\varepsilon(t)
$$

Define the right coprime model for the *weighted spectral factor:*

$$
P_{\mathbf{c}}(z^{-1})Y_f(z^{-1}) = D_{fp}(z^{-1})A_f^{-1}(z^{-1})
$$

Then the weighted output $y_p(t) = P_c y(t)$ and the observations signal: ε $z_{_{p}}(t)=P_{\rm c}\,(z^{-1})W_{\rm 0k}(z^{-1})u_{\rm 0}(t-k)+D_{\rm fp}(z^{-1})A_{\rm f}^{-1}(z^{-1})\bm{\varepsilon}(t)$

Diophantine Equations

First Diophantine: $E_j(z^{-1})A_j(z^{-1}) + z^{-j-k}H_j(z^{-1}) = D_{fp}(z^{-1})$

This equation may be written in the transfer operator form:

 $E_{j}(z^{-1})+z^{-j-k}H_{j}(z^{-1})A_{f}^{-1}(z^{-1})=D_{fp}(z^{-1})A_{f}^{-1}(z^{-1})$

Prediction equation: Substituting the expression for the weighted observations:

$$
z_p(t) = P_c(z^{-1})W_{0k}(z^{-1})u_0(t-k) + D_{fp}(z^{-1})A_f^{-1}(z^{-1})\varepsilon(t)
$$

= $P_c(z^{-1})W_{0k}(z^{-1})u_0(t-k) + (E_j(z^{-1}) + z^{-j-k}H_j(z^{-1})A_f^{-1}(z^{-1}))\varepsilon(t)$

Substituting from the innovations: $\varepsilon(t) = Y_f^{-1}z(t) - D_f^{-1}B_{0k}u_0(t - k)$ obtain: ε $z_p(t) = P_c(z^{-1})W_{0k}(z^{-1})u_0(t-k) + E_j(z^{-1})\varepsilon(t)$ $+\left. z^{-j-k}H_j(z^{-1})A_f^{-1}(z^{-1})\Big(Y_f^{-1}(z^{-1})z(t)-D_f^{-1}(z^{-1})B_{0\mathrm{k}}(z^{-1})u_{0}(t-k)\Big)\right.$ −

The optimal predictor to minimise the estimation error variance follows as:

$$
\hat{y}_p(t+j+k \mid t) = \left[\, H_j(z^{-1}) D_{\textit{fp}}^{-1}(z^{-1}) z_p(t) + E_j(z^{-1}) B_{\textit{lk}}(z^{-1}) u_f(t+j) \, \right]
$$

where $u_t(t) = D_{t_1}^{-1}(z^{-1})u_0(t)$. $u_f(t) = D_{f1}^{-1}(z^{-1})u_0(t)$

Predicted Weighted Output

A second Diophantine equation is required to break up the term: $E_j(z^{-1})B_{1k}(z^{-1})$ into a part with a $j+1$ step delay and a part depending on $D_{f_1}(z^{-1})$. For $j \ge 0$, introduce the following equation, which has the solution (G_j, S_j) , of smallest degree for $|G_j|$:

Second Diophantine: $G_j(z^{-1})D_{f1}(z^{-1}) + z^{-j-1}S_j(z^{-1}) = E_j(z^{-1})B_{1k}(z^{-1})$

where $deg(G_i(z^{-1})) = j$. The prediction equation may now be obtained (for $j \ge 0$) as:

$$
\hat{y}_p(t+j+k|t) = H_j(z^{-1})D_{fp}^{-1}(z^{-1})z_p(t) + (G_j(z^{-1})D_{f1}(z^{-1}) + z^{-j-1}S_j(z^{-1}))u_f(t+j)
$$

=
$$
H_j(z^{-1})D_{fp}^{-1}(z^{-1})z_p(t) + G_j(z^{-1})u_0(t+j) + S_j(z^{-1})u_f(t-1)
$$

Define the signal: $f_j(t)$ in terms of past outputs and inputs, as:

$$
f_j(t) = H_j(z^{-1})D_{fp}^{-1}(z^{-1})z_p(t) + S_j(z^{-1})u_f(t-1)
$$

Thus, the *predicted weighted output* may be written, for $j \ge 0$, as: $\hat{y}_p(t + j + k \mid t) = G_j(z^{-1})u_0(t + j) + f_j(t)$

Matrix Representation of the Prediction Equations

The future weighted outputs are to be predicted in the following section for inputs computed in the interval: $\tau \in [t, t + N]$. The equation may therefore be used to obtain the following vector equation for the weighted output at future times:

$$
\begin{bmatrix}\n\hat{y}_p(t+k \mid t) \\
\hat{y}_p(t+1+k \mid t) \\
\vdots \\
\hat{y}_p(t+N+k \mid t)\n\end{bmatrix} = \begin{bmatrix}\ng_0 & 0 & \cdots & 0 & 0 \\
g_1 & g_0 & 0 & \cdots & 0 \\
\vdots & & g_1 & g_0 & \vdots \\
\vdots & & & \ddots & \\
g_N & g_{N-1} & \cdots & g_0\n\end{bmatrix} \begin{bmatrix}\nu_0(t) \\
u_0(t+1) \\
\vdots \\
u_0(t+N)\n\end{bmatrix} + \begin{bmatrix}\nf_0(t) \\
f_1(t) \\
\vdots \\
f_N(t)\n\end{bmatrix}
$$

Vector Form of Prediction Equations

Introducing an obvious definition of terms for the matrices in the above equation the vector form of the predicted weighted outputs may be written as:

$$
\hat{Y}_{t+k,N} = G_N U_{t,N}^0 + F_{t,N}
$$

The vector of free response predictions $F_{t,N}$ may also be written as:

$$
F_{t,N} = \begin{bmatrix} f_0(t) \\ f_1(t) \\ \vdots \\ f_N(t) \end{bmatrix} = \begin{bmatrix} H_0(z^{-1}) \\ H_1(z^{-1}) \\ \vdots \\ H_N(z^{-1}) \end{bmatrix} D_{fp}^{-1}(z^{-1}) z_p(t) + \begin{bmatrix} S_0(z^{-1}) \\ S_1(z^{-1}) \\ \vdots \\ S_N(z^{-1}) \end{bmatrix} u_f(t-1)
$$

= $H_{NZ}(z^{-1}) z_p(t) + S_{NZ}(z^{-1}) u_f(t-1)$

Vector Forms of Future Signals

Future set point knowledge: It is reasonable to assume in many applications that the future variations of the set-point or reference signal $\{r(t)\}$ are predetermined, at least over ^a fixed future horizon of *N* steps. The weighted reference is assumed to include the stable weighting: $r_p(t) = P_c(z^{-1})r(t)$. The vectors of *future* weighted reference, output and input signals may also be defined as:

$$
R_{t,N} = \begin{bmatrix} r_p(t) \\ r_p(t+1) \\ \vdots \\ r_p(t+N) \end{bmatrix} \qquad R_{t,N} = \begin{bmatrix} r_p(t) \\ r_p(t+1) \\ \vdots \\ r_p(t+N) \end{bmatrix} \qquad U_{t,N}^0 = \begin{bmatrix} u_0(t) \\ u_0(t+1) \\ \vdots \\ u_0(t+N) \end{bmatrix}
$$

Theorem : Equivalent Minimum Variance Problem

Consider the minimisation of the *GPC* cost index for the system:

$$
J = E\{\sum_{j=0}^{N} e_p(t+j+k)^{T} e_p(t+j+k) + \lambda_j^{2} u_0(t+j)^{T} u_0(t+j)) | t \}
$$

where the nonlinear subsystem: $W_{1k} = I$ and the vector of optimal *GPC* controls is

given by:
$$
U_{t,N}^0 = (G_N^T G_N + \Lambda_N^2)^{-1} G_N^T (R_{t+k,N} - F_{t,N})
$$
. If the cost index is

redefined to have a multi-step variance form: $\tilde{J}(t) = E\{\Phi_{t+k,N}^T \Phi_{t+k,N} | t\},\$ where and the cost weightings: $P_{\text{CN}} = Y^{-T} G_N^T$ and $F_{\text{CN}}^0 = -Y^{-T} \Lambda_N^2$. Then the vector of *future optimal controls is identical to the vector of GPC controls.* $\Phi_{t+k,N} = P_{_{CN}}(R_{t+k,N} - Y_{t+k,N}) + F_{_{CN}}^0 {U}_{t,N}^0$ $P_{CN} = Y^{-T}$ $P_{_{CN}} = Y^{\text{-}T}G_N^T$

Nonlinear Predictive GMV Problem

$$
u \longrightarrow \mathcal{W}_{1k} \longrightarrow \mathcal{W}_{0k} \longrightarrow \mathcal{Z}^{-k} \longrightarrow \mathcal{W}
$$

- Actual input to the system is the control signal $u(t)$ rather than input to the linear subsystem $u_0(t)$
- Cost function for the nonlinear problem therefore includes an additional control signal costing term

$$
\Phi^{\scriptscriptstyle{0}}_{\scriptscriptstyle{t+k,N}} = P_{\scriptscriptstyle{\text{CN}}} E_{\scriptscriptstyle{t+k,N}} + F^{\scriptscriptstyle{0}}_{\scriptscriptstyle{\text{CN}}} U^{\scriptscriptstyle{0}}_{\scriptscriptstyle{t,N}} + \boxed{(\mathscr{F}_{\scriptscriptstyle{\text{C}k,N}} U_{\scriptscriptstyle{t,N}})} \Big| {\scriptscriptstyle{A}}^{\scriptscriptstyle{-}}.
$$

Nonlinear costing

- **Now** When $N = 0$, the problem simplifies to the single step non-predictive NGMV control
- \mathbb{R}^3 **Control design involves specifying the dynamic weightings** P_c **,** \mathcal{F}_{ck} **, and** the constant Λ weighting for the original GPC cost

Theorem: NL Predictive GMV Control

Let error weighting $P_c(z^{-1})$ and the input weightings $\{\lambda_0, ..., \lambda_N\}$ be specified and assume the *control signal weighting*: $(\mathcal{F}_{\alpha}u)(t) = (\mathcal{F}_{\alpha}u)(t - k)$ where $\mathcal{F}_{\alpha k}$ is full rank and invertible. The *multi-step* cost-function: $J_p = E\{\Phi_{t+k,N}^{0T} \Phi_{t+k,N}^0 \mid t\}$ The signal $\Phi_{t+k,N}^0$ includes the vector of future error, input and control signal costing terms: $\left| \Phi_{t+k,N}^{\circ} \right| = P_{\text{CN}} E_{t+k,N} + F_{\text{CN}}^{\circ} U_{t,N}^{\circ} + \left(\mathcal{F}_{\text{c},k,N} U_{t,N} \right)$ where the effective weightings : $P_{CN} = Y^{-T} G_N^T$, $F_{CN}^0 = -Y^{-T} \Lambda_N^2$ and $\mathcal{F}_{Ck,N}$ may be a diagonal control weighting. Define the constant matrix factor Y to satisfy $Y^T Y = G_N^T G_N + \Lambda_N^2$ then using the *receding horizon philosophy the* control law: − $P_c (z^{-1})$ $\Phi^{\scriptscriptstyle{0}}_{\scriptscriptstyle{t+k,N}} = P_{\scriptscriptstyle{\text{CN}}} E_{\scriptscriptstyle{t+k,N}} + F^{\scriptscriptstyle{0}}_{\scriptscriptstyle{\text{CN}}} \, U^{\scriptscriptstyle{0}}_{\scriptscriptstyle{t,N}} + (\mathscr{F}_{\scriptscriptstyle{\text{C}}\scriptscriptstyle{k,N}} U_{\scriptscriptstyle{t,N}})$ $P_{_{CN}} = Y^{~\scriptscriptstyle T} G_N^T$ $F_{CN}^0 = -Y^{-T} \Lambda_N^2$ and $\mathcal{F}_{ck,N}$ $Y^T Y = G_N^T G_N + \Lambda_N^2$

$$
U_{t,N} = -(\mathcal{F}_{c,k,N} - Y\mathcal{W}_{1k,N})^{-1} P_{cN} (R_{t+k,N} - F_{t,N})
$$

or equivalently:

$$
U_{_{t,N}} = - \mathcal{F}^{-1}_{\mathrm{c}\, k,N} \left(\; P_{_{CN}} (R_{_{t+k,N}} - F_{_{t,N}}) - Y \mathcal{W}_{\!1\mathrm{k},\mathrm{N}} U_{_{t,N}} \right)
$$

where the signals: $F_{t,N} = H_{NZ}(z^{-1})z(t) + S_{NZ}(z^{-1})u_f(t-1)$ and $u_f(t) = D_{f_1}^{-1}(z^{-1})u_f(t)$ $u_f(t) = D_{f1}^{-1}(z^{-1})u_0(t).$

NPGMV Controller – Polynomial Form

$$
u(t) = -\mathcal{F}_{ck}^{-1}C_{I0}\left(P_{cN}(R_{t+k,N} - F_{t,N}) - Y\mathcal{W}_{1k,N}U_{t,N}\right)
$$

- The solution involves solving two sets of polynomial Diophantine equations
- Equivalent to the state-space version

Robotics Application of Nonlinear Predictive Control

Robotics Application

Two-link robotic manipulator

After "Applied Nonlinear Control" by Slotine and Li, 1991.

Nonlinear model:

$$
\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} -h\dot{q}_2 & -h(\dot{q}_1 + \dot{q}_2) \\ h\dot{q}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}
$$

Separation of the model into the nonlinear and linear subsystems

NPGMV controller structure for robot control

Position Control of the Two-link manipulator. NPGMV control with *N* = 0, 1, 3, 5 and Feedback linearization

Position Control of the Two-link manipulator. NPGMV control with *N* = 0, 1, 3, 5 and Feedback linearization (close-up views)

Marine Systems Roll Stabilization Example

Roll and Yaw Control Using Fins and Rudder

- \mathbb{R}^3 Ship heading controlled by rudder
- \mathbb{R}^3 Roll motion reduced by both fin and rudder action
- \mathbb{R}^3 Difficulty: rudder to roll interaction is non-minimum phase!

Control objective:

Roll reduction and yaw trajectory tracking subject to angle and rate limits on rudder and fins.

Ship Roll Stabilisation Problem

Compensate roll motion in a well-defined frequency band (0.3-1.2 rad/sec)

Ship GPC Control Results for Varying *N*

Example: GPC and NPGMV Results

Concluding Remarks

- Т, *A practical NL controller must be simple but we need some mathematical basis to understand behavior.*
- *NGMV is a candidate and the patriarch for a family of more complicated and specialist solutions.*
- Т, *The ability to handle black box models is important industrially.*
- T. *Nonlinear predictive is a model based fixed controller without uncertainty of linearization around a trajectory - so interesting.*
- T. *Extendable further to hybrid and/or complex systems.*
- Т, *LabVIEW toolbox including new tools next !*
- *Dual Estimation problems equally interesting.*

Nonlinear Book

For new book on nonlinear control, to be published next year: M. J. Grimble and P. Majecki, *Nonlinear Industrial Control,* **Springer, Heidelberg, Germany 2009**

> Dr Pawel Majecki Industrial Control CentreUniversity of Strathclyde Department of Electronic and Electrical Engineering Graham Hills Building 50 George Street Glasgow G1 1QE, UK E-mail: p.majecki@eee.strath.ac.uk Telephone No: +44 (0)141 552 4400 Extensions: 2378 Direct Line No: +44 (0)141 548 2378 Facsimile No: +44 (0)141 548 4203 http://www.icc.strath.ac.uk