Simple Polynomial Approach
to Nonlinear Control

Mike Grimble and Pawel Majecki

Industrial Control Centre, University of Strathclyde
and Industrial Systems and Control Ltd.,
Glasgow, Scotland

-*._industrial

THE
y NIVERSITY OF
* ® ¢ systems TRATHCLYDE

e+ and control IN GLASGOW




Nonlinear Multivariable CL System

¢y =F.e+ Fu
'J;';';' S

E mor EWI; S i";“-: Control W Disturbance
weighting 3 _C ] _i ',,,,C,,,i weighting | model

A A

1 1

: : Nonlinear

Reference ! Controller | plant d
1 1

w
r + e

— W, > Cy [———> W N
y
Diagonal matrix of delays

Nonlinear plant model.: (Wu ) (t) =é)/\/ku ) (t)

Linear disturbance model: Wd =4 f_lC p

Linear reference model.: W, = Af_l E.

B Advantage of NGMYV is only knowledge of NL plant model required is
ability to compute an output for a given control input sequence.



Nonlinear Plant Model

B Plant model may be given in a very general form, e.g.:

state-space formulation

neural network / neuro-fuzzy model
look-up table

Fortran/C code

u
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fu,y)=0

B Can include linear/NL components, €.g. Hammerstein model with static input NL's

B Only need to compute the output to given input signal
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B Only knowledge of NL plant model required is ability to compute an output

for a given control sequence.



Equivalent Model

B GOAL: Combine all stochastic inputs into one noise signal

Linear models driven by
white noise l
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Reminder: Minimum Variance Control

M First look at the simple MV problem: (Min E[y°(¢)]
u
y@)=Weu(t—k)+Y &)

B Plant model: Yf —F+z"*R
Yt + k) =W, u(t)+ Y, st + )

~ Diophantine equation

=|Fe(t+k)mW, u(t)+ Re(?) L
- ,, £t)=Y,z") " £ (1)
statistically independe/nt terms
My R R
B Optimal control: us ()= _Wkg(t) = W, Y, f@)

B MV control assumptions:

® The plant ¥, has stable inverse (minimum-phase)

® Reference and disturbance models are representative of the actual signals

acting on the system.



Nonlinear Generalised Minimum
Variance Control



NGMV Problem Formulation

B General NGMYV cost function to be minimized:

S vour = E[¢02 ()]

where ¢O(t):Pce(t)+(.7‘ZU)(f)

-1 : C : .
B =F,Fy - linear error weighting (matrix fraction)

(Fu)(t)= A (Au)(t) - control weighting (possibly nonlinear)

C

B Control weighting assumed invertible and potentially nonlinear to
compensate for plant nonlinearities in appropriate cases

B Weighting selection is restricted by closed-loop stability needs



Nonlinear GMV Problem Solution

Split the output into two statistically non-overlapping terms:

Gt +A)=(Fy —PWu(t)+PY,e(t+A)

PY, =F,+z "R

Gt +A) 5 Foe(t+A)+ ((ﬁk —BWu(t)+ Rg(f)) ~ Diophantine equation

s()=Y,(z")" f(2)

|
statistically independent

NGMYV control:

"M (1) = (Fy = PV, (—Re(1))

Need stable causal nonlinear operator inverse




Implementation of the NGMV Controller

"M (1) =[(Fy = FyY; W) RY; e](1)
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B The controller i1s nonlinear but fixed!



Selection of the Dynamic Cost Weightings

B Restriction on choice of weightings: need invertible nonlinear operator
(P = )

B Find a non-zero control weighting is necessary for non-invertible plants
B Admissible and meaningful choice of weightings important.

Erro.r Bode Diagram Eairiial
weighting [T [0 [ TiiiE i weighting

Typically

P, large at low frequencies to

(dB)

guarantee integral action é --------
F, large at high frequencies to g

provide sufficient controller roll-off

Frequency (Hz)



Stable NL Operator Inverse
and Starting Point for Weighting Selection

® Necessary condition for optimality: Operator (P4 — .7, ) must have a
stable inverse and for linear systems be minimum-phase.
B To show this is satisfied for a wide class of systems consider case where .7,

is linear and #, = -F, . Then:
(P + F Ju=F, (|F P+ 1Ju
B

Like return-difference for a feedback system with
a delay-free plant and controller: K, = F} PC

B Consider delay-free plant /¥, and assume PID controller K, exists to
stabilize the closed-loop. Then a starting point for weighting choice that will

ensure operator (P, + F, ) is stably invertible is P =Kpp, F,=1

Provides weightings that lead to a stable inverse for the NL operator.




Predictive Controller For Nonlinear
Processes:
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GPC Criterion

B Typical GPC cost function:

J = E{iep(t+j+ k) e, (t+j+k)+ A u(t+ 5) u,(t+ j))‘ t}

J=0

® Error signal e, = r, —y, may be dynamically weighted
B Prediction and control horizons equal

B Time delay included in the cost

Using vector notation:

J=E{(Ry —Yiuw) Besy = Vi) + UNAUy 1 1]

“sum of squares” criterion



Linear Subsystem Polynomial Matrix Models

The polynomial matrix system models, for the (» x m) multivariable system

Wy may now be introduced.

Controlled Auto-Regressive Moving Average (CARMA) model, representing the
linear subsystem of the plant model in GPC design, defined as:

Az )y(t) = By (2 uy(t — k) + Cy(27)E(2)
W (27 Wy (z )= Az ' [Bu(z™") Cu(z7N]

At)=A" (2B, (2 u,(t — k) + Y}(z‘l)g(t)

0k
Define the right coprime model for the weighted spectral factor:
Pz )Y (z7) =Dy (27 A, (z)

Then the weighted output yp(t) = F.y(t) and the observations signal:
z (t)=F (W (27 Ju, (t — k) + Dfp(z_l)A_l(z_l)g(t)

C 0k i



Diophantine Equations

First Diophantine: E(z A (z7) + 27 H (2) = Dy (27)

This equation may be written in the transfer operator form:
E (") +27"H,()A; (") = D,,

Prediction equation: Substituting the expression for the weighted observations:

z (1) =1F, (W, (27 )u, (t — k) + D, (z A (2" )e(t)

C Ok f

= Pz W (2 Yt = K) + (By(=) + 27 H () A (2 )e(t)

J

Substituting from the innovations: &(t) =Y, 2(t) — D, Byu,(t — k) obtain:

z (1) =F, (YW (2" )u (t—k) + Ej(z_l)g(t)

C Ok 0

b2 H (AP () (Y] (o) - D7 () B2 (- )

The optimal predictor to minimise the estimation error variance follows as:
G,(t+ j+ k| 6) = H(z")D, ()2, (8) + B, (z)By(z (¢ + )]

where (1) = D,/ (2 Ju,(t).



Predicted Weighted Output

A second Diophantine equation 1s required to break up the term:
E(z")B,(z") into a part with a j+/ step delay and a part depending on
D, (2"). For j > 0, introduce the following equation, which has the solution
(G, 5)), of smallest degree for G, :

Second Diophantine:  G,(z7")D,(z7") + 277'S,(27") = E,(z7")B,,(27")

where deg(G,(z")) = j. The prediction equation may now be obtained (for j > 0) as:

;&p(t +j+k|t)= Hj(z_l)D/;l(z_l)zp(t) +(G (z_l)Dj.l(z_l) + z_j_lSj(z_l))u/(t +7)

J

= H.(27)D; (z7")z,(t) + G, (27 Juy(t + 7) + S (7" u,(t - 1)

J

Define the signal: f(tf) in terms of past outputs and inputs, as:
f](t) = Hj(z_l)DE(z_l)zp(t) + Sj(z_1 )uf(t —-1)

Thus, the predicted weighted output may be written, for j > 0, as:

g,(t+ 3+ k[ 1) = G (2 )y, (t+ ) + [,(1)



Matrix Representation of the Prediction Equations

The future weighted outputs are to be predicted in the following section for
inputs computed in the interval: T € [{,£+ N| . The equation may therefore be

used to obtain the following vector equation for the weighted output at future times:

g,t+k[t) ] [g 0 = 0 07 wuyt) f(t)
y,(t+1+Ek|1) 9 9% 0 - 0 u(t+1) fi(t)

= : 9 90 +

g(t+ N+k[t)| |9y Gy - 9o || wo(+N)| | fy(?)



Vector Form of Prediction Equations

Introducing an obvious definition of terms for the matrices in the above

equation the vector form of the predicted weighted outputs may be written as:

A

. 0
Yt+k,N - GNUt,N + E,N

The vector of free response predictions F, , may also be written as:

AT | Ho(z) Sy(27)
A() Hl(z_l) Sl(z_l)
Ft N o= .= f D];(z_l)zp(t) + : uf(t -1)
_fN(t)_ _HN(ZJ)_ _SN(Z%)_




Vector Forms of Future Signals

Future set point knowledge: It is reasonable to assume in many applications that
the future variations of the set-point or reference signal {r(¢)}are predetermined,
at least over a fixed future horizon of N steps. The weighted reference is assumed to
include the stable weighting: r,(t) = F.(2")r(t). The vectors of future weighted

reference, output and input signals may also be defined as:

() ] T, (t) () ]
r(t+1) r(t+1) ug(t +1)
I,y = : By = : Upy = :
r(t+N) n(t+N) ult+N)|




Theorem : Equivalent Minimum Variance Problem

Consider the minimisation of the GPC cost index for the system:

N
J=E{Y e (t++k) e (t+]+k) +A2u(t+ ) u(t+ j))‘ £
=0
where the nonlinear subsystem: )V, = I and the vector of optimal GPC controls is
given by: Ut N = (GTG + A3 )_1 G (RH,{,N - thv) . If the cost index is

redefined to have a multi-step variance form: J(t) = B{®], \®,., | t},

where D, ... N =P, (Rt+k N Y, N) + Fc(z)\e'Ut(fN

and the cost weightings: Py =Y ' Gy and Fo =-Y 'A% Then the vector of

future optimal controls is identical to the vector of GPC controls. [



Nonlinear Predictive GMV Problem

u U _k m
_— ) }/l{k VVOk » - >
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Actual input to the system is the control signal u(¢) rather than input to
the linear subsystem u(?)

Cost function for the nonlinear problem therefore includes an additional
control signal costing term

_.- Nonlinear costing

Oy =P By, + FL UL +H(ZonU )|«

t+k,N cN"—t+k.N

When N = 0, the problem simplifies to the single step non-predictive
NGMYV control

Control design involves specifying the dynamic weightings P., .~ , and
the constant A weighting for the original GPC cost



Theorem: NL Predictive GMV Control

Let error weighting P.(z™') and the input weightings {4,,...,4,} be specified and

assume the control signal weighting: (/u)(t)=(/u)(t—k) where #, is full rank

and invertible. The multi-step cost-function: Jp = E{CI)?f&N(D?%,N |t}

The signal @}, |~ includes the vector of future error, input and control signal costing

terms: |®;,, , = P B, + EU.) .+ (FernU, )| where the effective weightings :

P, =Y TGL|s |FS =-YTA and |7, ;| may be a diagonal control weighting.

CN —

Define the constant matrix factor Y to satisty Y'Y = GG, + A’ then using the

receding horizon philosophy the control law:

Ut.N - _(f;k,N - YM{k,N )_1 PCN(Rt+k,N - FtN)
or eqUivalenﬂy: Ut,N = _f_c‘l_iN ( PCN(RHk,N - FtN) - Y)/l{k,NUt,N)

where the signals: £, = H,,(z")2(t) + Sy, (z " )u,(t —1) and u(l)= D (27 Juy(t).



NPGMYV Controller — Polynomial Form
u(t) = -7 1010( (Rt+kN F;;N)_YM{k,NUtN)

Controller structure Future controls

Future Yo U C L,
reference 2 1k,N-1~ ¢, N o1 t,N v

 EGEEEGEEEEEEEEEEEE CEEEEPEEEE EEEEEE 1 Plant
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_E_’ R o (HNZZP (t) +5 Nz Uy (t 1» Y, W, E Disturbance
: 1 '
: - u |

u, (t=1) = Djuy(t =) :

_______________________________________________ 1 Observations

The solution involves solving two sets of polynomial Diophantine
equations

Equivalent to the state-space version



Robotics Application of Nonlinear
Predictive Control



Robotics Application

Two-link robotic manipulator

After "Applied Nonlinear Control"

/ \ by Slotine and Li, 1991.
S S SIS S S S S S S




Nonlinear model:
|:H11 H12}|:Q1:|+{_hq.z _h(q.1+q.2):|{q.1:|:{71:|
H21 H22 Q2 hql O q.z T2

Separation of the model into the nonlinear and linear subsystems

NL robot
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q(®) x(t]2) gt +k| o)

—»| Kalman : * '
| Filter —» Predictor + b
o) Sfuture reference Riopn
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NPGMYV controller structure for robot control



Position 1 Position 2
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Position Control of the Two-link manipulator. NPGMYV control with
N=0, 1, 3, 5 and Feedback linearization



Position 1 Position 2
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Position Control of the Two-link manipulator. NPGMYV control with
N=0,1, 3,5 and Feedback linearization (close-up views)



Marine Systems
Roll Stabilization Example



Roll and Yaw Control Using Fins and Rudder

Control objective:
Roll reduction and yaw
trajectory tracking subject
to angle and rate limits on

rudder and fins.

Disturbance

G

waves, currents, wind

Ship heading controlled by rudder

Roll motion reduced by both fin and
rudder action

Difficulty: rudder to roll interaction
1s non-minimum phase!
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Roll model
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Controller

174




Ship Roll Stabilisation Problem

(1) Achieve good roll
stabilization

(2) Do not hit rudder
constraints

(3) Keep the vessel on course

<5dB

Magnitude (dB)

HF rejection may cause rudder
slew rate saturation

Y 0dB -

10" 10
Frequency (rad/sec)

LF rejection may cause rudder
angle saturation

m==)> (Compensate roll motion in a well-defined frequency band (0.3-1.2 rad/sec)



Ship GPC Control Results for Varying N

Yaw angle [deg]
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GPC and NPGMV Results

Example
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Concluding Remarks

A practical NL controller must be simple but we need some
mathematical basis to understand behavior.

NGMYV is a candidate and the patriarch for a family of more
complicated and specialist solutions.

The ability to handle black box models is important industrially.

Nonlinear predictive is a model based fixed controller without
uncertainty of linearization around a trajectory - so interesting.

Extendable further to hybrid and/or complex systems.
LabVIEW toolbox including new tools next !

Dual Estimation problems equally interesting.



Nonlinear Book

For new book on nonlinear control, to be published next year:
M. J. Grimble and P. Majecki, Nonlinear Industrial Control,
Springer, Heidelberg, Germany 2009

Dr Pawel Majecki

Industrial Control Centre

University of Strathclyde

Department of Electronic and Electrical Engineering
Graham Hills Building

50 George Street

Glasgow G1 1QE, UK

E-mail: p.majecki@eee.strath.ac.uk

Telephone No: +44 (0)141 552 4400 Extensions: 2378
Direct Line No: +44 (0)141 548 2378

Facsimile No: +44 (0)141 548 4203
http://www.icc.strath.ac.uk
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