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Nonlinear Multivariable CL System 

Linear disturbance model: 1= fd dW A C−

Linear reference model: 1 fr rW A E−=
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Advantage of NGMV is only knowledge of NL plant model  required is    
ability to compute an output for a given control input sequence.



Plant model may be given in a very general form, e.g.:
state-space formulation
neural network / neuro-fuzzy model
look-up table
Fortran/C code

Nonlinear Plant Model

Can include linear/NL components, e.g. Hammerstein model with static input NL's
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Only need to compute the output to given input signal
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Only knowledge of NL plant model             required is ability to compute an output
for a given control sequence.



Equivalent Model
GOAL: Combine all stochastic inputs into one noise signal
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( )tε - zero mean white noise of 
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Reminder:  Minimum Variance Control

First look at the simple MV problem: 2[ ( )]uMin E y t

( ) ( ) ( )k fy t k W u t Y t kε+ = + +

Optimal control: ( ) ( ) ( )MV

k k f

R Ru t t f t
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ε= − = −

k
fY F z R−= +

statistically independent terms

~ Diophantine equation

MV control assumptions:
The plant          has stable inverse (minimum-phase)
Reference and disturbance models are representative of the actual signals      
acting on the system.

Plant model:
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Nonlinear Generalised Minimum 
Variance Control



NGMV Problem Formulation

Control weighting assumed invertible and potentially nonlinear to   
compensate for plant nonlinearities in appropriate cases

Weighting selection is restricted by closed-loop stability needs

2
0[ ( )]NGMVJ E tφ=

( )( ) ( )( )c c ku t z u t−Λ=F F

1
c cn cdP P P−= - linear error weighting (matrix fraction)

General NGMV cost function to be minimized:

where

- control weighting (possibly nonlinear)
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Nonlinear GMV Problem Solution

0c fPY F z R−Λ= +
( )( )0 0( ) ( ) ( ) ( )ck c kt F t P u t R tφ ε ε+ Λ = + Λ + − +F W

statistically independent

1( ) ( ) ( ( ))NGMV
ck c ku t P R tε−= − −F W

Need stable causal nonlinear operator inverse

~ Diophantine equation

Split the output into two statistically non-overlapping terms:

NGMV control:

( )0 ( ) ( ) ( )ck c k c ft P u t P Y tφ ε+ Λ = − + + ΛF W
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Implementation of the NGMV Controller 
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The controller is nonlinear but fixed!



Selection of the Dynamic Cost Weightings
Restriction on choice of weightings: need invertible nonlinear operator

( )c k ckP −W F

Find a non-zero control weighting is necessary for  non-invertible plants
Admissible and meaningful choice of weightings important.

Typically
Pc large at low frequencies to 

guarantee integral action 
Fck large at high frequencies to 

provide sufficient controller roll-off
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Necessary condition for optimality: Operator                        must have a      
stable inverse and for linear systems be minimum-phase.

To show this is satisfied for a wide class of systems consider case where Fck

is linear and Fck = -Fk .   Then: 

( )c k ckP −W F

( ) ( )1
c k k k k c kP F u F F P I u−+ = +W W

1 .c k cK F P−=

Stable NL Operator Inverse 
and Starting Point for Weighting Selection

Like return-difference for a feedback system with
a delay-free plant and controller:

Consider delay-free plant Wk and assume PID controller KPID exists to 
stabilize the closed-loop. Then a starting point for weighting choice that will 
ensure operator ( )c k kP F+W is stably invertible is , 1c PID kP K F= =

Provides weightings that lead to a stable inverse for the NL operator.



Predictive Controller For Nonlinear 
Processes: 



System Model
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GPC Criterion
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Typical GPC cost function:

Error signal ep = rp – yp may be dynamically weighted

Prediction and control horizons equal

Time delay included in the cost
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Using vector notation:

“sum of squares” criterion



Linear Subsystem Polynomial Matrix Models

The polynomial matrix system models, for the (r x m) multivariable system

may now be introduced.

Controlled Auto-Regressive Moving Average (CARMA) model, representing the

linear subsystem of the plant model in GPC design, defined as:

Define the right coprime model for the weighted spectral factor:

Then the weighted output                          and the observations signal:
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Diophantine Equations

First Diophantine:

This equation may be written in the transfer operator form:

Prediction equation: Substituting the expression for the weighted observations:

Substituting from the innovations: obtain:
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The optimal predictor to minimise the estimation error variance follows as:

where                                 .
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Predicted Weighted Output
A second Diophantine equation is required to break up the term:

into a part with a j+1 step delay and a part depending on

. For j ≥ 0, introduce the following equation, which has the solution

, of smallest degree for :

Second Diophantine:

where . The prediction equation may now be obtained (for j ≥ 0) as:

Define the signal: in terms of past outputs and inputs, as:

Thus, the predicted weighted output may be written, for j ≥ 0, as:
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Matrix Representation of the Prediction Equations

The future weighted outputs are to be predicted in the following section for

inputs computed in the interval: . The equation may therefore be

used to obtain the following vector equation for the weighted output at future times:
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Vector Form of Prediction Equations

Introducing an obvious definition of terms for the matrices in the above

equation the vector form of the predicted weighted outputs may be written as:

The vector of free response predictions         may also be written as:
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Vector Forms of Future Signals

Future set point knowledge: It is reasonable to assume in many applications that

the future variations of the set-point or reference signal are predetermined,

at least over a fixed future horizon of N steps. The weighted reference is assumed to

include the stable weighting: The vectors of future weighted

reference, output and input signals may also be defined as:
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Theorem : Equivalent Minimum Variance Problem

Consider the minimisation of the GPC cost index for the system:

where the nonlinear subsystem:                 and the vector of optimal GPC controls is 

given by:                                                                             . If the cost index is 

redefined to have a multi-step variance form:                                                   

where  

and the cost weightings:                        and                         . Then the vector of 

future optimal controls is identical to the vector of GPC controls.               ■
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Nonlinear Predictive GMV Problem

Actual input to the system is the control signal u(t) rather than input to
the linear subsystem u0(t)

Cost function for the nonlinear problem therefore includes an additional
control signal costing term

Nonlinear costing

+ +Φ = + +
, , ,

0 0 0
, ,c( )

CN N CN N NNt k t k t k N tP E F U UF

1kW 0kW kz−u0u m

When N = 0, the problem simplifies to the single step non-predictive
NGMV control

Control design involves specifying the dynamic weightings Pc , Fck , and
the constant Λ weighting for the original GPC cost



Let error weighting             and the input weightings                     be specified and 

assume the control signal weighting: where           is full rank 

and invertible.   The multi-step cost-function:

The signal            includes the vector of future error, input and control signal costing 

terms:                                                                      where the effective weightings :                

,                          and              may be a diagonal control weighting.

Define the constant matrix factor Y to satisfy                                 then using the 

receding horizon philosophy the control law:

or equivalently: 
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Theorem: NL Predictive GMV Control



NPGMV Controller – Polynomial Form
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The solution involves solving two sets of polynomial Diophantine
equations

Equivalent to the state-space version



Robotics Application of Nonlinear 
Predictive Control
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Robotics Application 
Two-link robotic manipulator

After "Applied Nonlinear Control" 
by Slotine and Li, 1991.
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NPGMV controller structure for robot control



Position Control of the Two-link manipulator. NPGMV control with 
N = 0, 1, 3, 5 and Feedback linearization



Position Control of the Two-link manipulator. NPGMV control with 
N = 0, 1, 3, 5 and Feedback linearization (close-up views)



Marine Systems 
Roll Stabilization Example



Roll and Yaw Control Using Fins and Rudder
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Rudder to roll 
interaction Controller

Ship heading controlled by rudder

Roll motion reduced by both fin and
rudder action

Difficulty: rudder to roll interaction
is non-minimum phase!

Control objective:
Roll reduction and yaw

trajectory tracking subject

to angle and rate limits on

rudder and fins.



Ship Roll Stabilisation Problem
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~20 dB

< 5 dB
(1) Achieve good roll 
stabilization
(2) Do not hit rudder 
constraints
(3) Keep the vessel on course

Compensate roll motion in a well-defined frequency band (0.3-1.2 rad/sec)

LF rejection may cause rudder 
angle saturation

HF rejection may cause rudder 
slew rate saturation 



Ship GPC Control Results for Varying N

N



Example: GPC and NPGMV Results

Open Loop

GPC

NPGMV



Concluding Remarks

A practical NL controller must be simple but we need some 
mathematical basis to understand behavior. 
NGMV is a candidate and the patriarch for a family of more 
complicated and specialist solutions.
The ability to handle black box models is important industrially.
Nonlinear predictive is a model based fixed controller without 
uncertainty of linearization around a trajectory - so interesting.
Extendable further to hybrid and/or complex systems.
LabVIEW toolbox including new tools next !
Dual Estimation problems equally interesting.
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Dr Pawel Majecki
Industrial Control Centre
University of Strathclyde
Department of Electronic and Electrical Engineering
Graham Hills Building
50 George Street
Glasgow G1 1QE, UK
E-mail: p.majecki@eee.strath.ac.uk
Telephone No: +44 (0)141 552 4400  Extensions: 2378
Direct Line No: +44 (0)141 548 2378
Facsimile No:    +44 (0)141 548 4203
http://www.icc.strath.ac.uk

For new book on nonlinear control, to be published next year: 
M. J. Grimble and P. Majecki,  Nonlinear Industrial Control, 

Springer, Heidelberg,  Germany 2009


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Nonlinear Generalised Minimum �Variance Control
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	System Model
	GPC Criterion
	Linear Subsystem Polynomial Matrix Models
	Diophantine Equations
	Predicted Weighted Output
	Matrix Representation of the Prediction Equations
	Vector Form of Prediction Equations
	Vector Forms of Future Signals
	Theorem :	Equivalent Minimum Variance Problem
	Nonlinear Predictive GMV Problem
	Slide Number 23
	NPGMV Controller – Polynomial Form
	Robotics Application of Nonlinear Predictive Control
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Roll and Yaw Control Using Fins and Rudder
	Slide Number 33
	Ship GPC Control Results for Varying N
	Example: GPC and NPGMV Results
	Concluding Remarks
	Nonlinear Book

