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My Background

•
 

1983-1988
 

Ph.D. EE (Robotics), Brown University
–

 

Thesis:  Multiprocessor Control of Robotic Manipulators

•
 

1989-1990
 

Postdoctoral researcher at IBM
–

 

Medical robotics (ROBODOC)

•
 

1990-2002
 

Co-Founder of Integrated Surgical Systems
–

 

Director of Robotics and Software
–

 

Commercial development of ROBODOC®

 

System
–

 

Sales in Europe (CE Mark) and Asia
–

 

Clinical trials in U.S. and Japan

•
 

2002-present
 

Research faculty at JHU
–

 

Research in use of robotics for neurosurgery, cancer research 
and therapy, telesurgery, microsurgery, …
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Outline

•
 

Overview of ROBODOC System

•
 

Medical robotics at JHU

•
 

What are the control challenges?

•
 

Force control in ROBODOC

•
 

Cooperative Control with Virtual Fixtures

•
 

Constrained optimization formulation

•
 

Conclusions
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ROBODOC® System

•
 

Initially developed to assist with Total Hip 
Replacement (THR) surgery
–

 
machine femur for cementless

 
prosthesis (femoral 

stem)
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ROBODOC® System
Conventional procedure 

(mallet and broach)
Computer-assisted 
planning and execution
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ROBODOC Benefits

•
 

Intended benefits:
–

 
Increased dimensional accuracy

–
 

Increased placement accuracy
–

 
More consistent outcome

Broach Robot
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ROBODOC History

1986-1988
 

Feasibility study and proof of 
concept at U.C. Davis and IBM

1988-1990
 

Development of canine system

May 2, 1990
 

First canine surgery
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ROBODOC History

1990-1995
 

Human clinical prototype
Nov 1, 1990

 

Formation of ISS

Nov 7, 1992

 

First human surgery, Sutter General Hospital

Aug 1994

 

First European surgery, BGU Frankfurt
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ROBODOC History
1995-2002

 
ROBODOC in Europe and Asia

March 1996

 

CE Mark
April 1996

 

First 2 installations (Germany) 
Nov 1996

 

ISS initial public offering (NASDAQ)
March 1998

 

First pinless

 

hip surgery
Feb 2000

 

First knee replacement surgery
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ROBODOC History
2003-2007

 
ROBODOC RIP

Oct 2003

 

Class action lawsuit in Germany
June 2005

 

ISS “ceases operations”
June 2006

 

German high court ruling against plaintiff
Sept 2006

 

ISS resumes operations
June 2007

 

ISS sells assets to Novatrix

 

Biomedical

2007-present
 

ROBODOC reborn
Sept 2007

 

Curexo

 

Medical formed (Novatrix)
Sept 2007

 

Curexo

 

files 510(K) with FDA
Feb 2008

 

Company renamed to ROBODOC, a 
Curexo

 

Technology Company
Aug 2008

 

Robodoc

 

receives FDA approval!
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ROBODOC Status

•
 

Approximately 50 systems were installed worldwide

–
 

Europe (Germany, Austria, Switz., France, Spain)

–
 

Asia (Japan, Korea, India)

–
 

U.S. (Clinical trial for FDA approval)

•
 

Over 20,000 hip and knee replacement surgeries

•
 

ROBODOC no longer used in Europe

•
 

One Korean hospital uses system regularly –
 

claim 
2,500 surgeries/year

•
 

FDA approval in Aug 2008
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Medical Robotics at JHU

Retinal surgery Steady hand robot Research daVinci Bimanual manipulation

Snake robot Brachytherapy Neurosurgery SARRP Rodent research

SpectroscopyMR-compatible robot Atlas Stereo visionSmart retractor

Needle steering
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Control Challenges

•
 

Most medical robots are slow (for safety 
reasons)
–

 
Individual joint-level PID control is good enough 
for position/velocity control

•
 

What about surgery on a beating heart?
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HeartLander Robot (CMU)

Miniature mobile robot that adheres to the epicardium and 
travels to any site for cardiac therapy.  

Riviere, Patronik, Zenati

In-vivo testing with beating pig hearts.



Copyright © Peter Kazanzides, CISST ERC, 2008 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Control Challenges

•
 

Robot must work with surgical team
–

 
Man/machine partnership vs. automation

•
 

Robot must sense and adapt to its 
environment
–

 
Force

–
 

Tissue properties
–

 
Vision

–
 

Intraoperative
 

imaging (CT, MR, Ultrasound)

This talk
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ROBODOC Force Control

•
 

Hand guidance
•

 
Tactile search

•
 

Force-controlled 
cutting

•
 

Safety threshold
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ROBODOC Force Control
Linear Gains Nonlinear Gains

P. Kazanzides, J. Zuhars, B. Mittelstadt, R.H. Taylor, “Force Sensing and Control for a Surgical 
Robot,”

 

IEEE Intl. Conf. on Robotics and Auto., Nice, France, May 1992 
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Force-controlled bone cutting

•
 

Problem: ROBODOC uses fixed cutfiles
–

 
Conservative cut speeds (assume hard bone)

–
 

Long cutting times
•

 
Solution:  Modify cutter feed rate based on 
measured force
–

 
Cutfile

 
specifies minimum and maximum feed 

rates, as well as maximum force
–

 
System parameters include tool stiffness
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Force-controlled bone cutting

•
 

Technical approach:  Use “time warping”
 

in 
trajectory generator
–

 
All motions are parameterized by time

–
 

Plan motion at maximum speed, smax

–
 

Use time ti
 

from following equation:
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As f(t) fmax, warp time to reduce speed to smin

As f(t) 0, ti ≈ ti-1 + ΔT (move at smax)
If f(t)

 
> fmax

 

, stop robot and cutter

ti
ti-1
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Cooperative Control and Virtual Fixtures

•
 

Generalization of force-controlled guidance 
and force-controlled cutting

•
 

Steady Hand guidance (JHU)
–

 
Force-controlled guidance for tremor reduction

•
 

Virtual fixtures
–

 
Guidance virtual fixtures: constrain motion along a 
preferred direction

–
 

Boundary virtual fixtures: prevent motion into a 
“forbidden zone”

 
(or stay within “safe zone”)

–
 

Hard vs. soft virtual fixtures
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Handle 
force

Kv

Physical Guidance:  Steady Hand 
Guiding for Microsurgery

R. Taylor & R. Kumar
Free hand motion Steady hand motion 
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Steady Hand Guiding at the Cellular Level

Kumar, Kapoor, Taylor
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Cooperative Control and Virtual Fixtures

•
 

Generalization of force-controlled guidance 
and force-controlled cutting

•
 

Steady Hand guidance (JHU)
–

 
Force-controlled guidance for tremor reduction

•
 

Virtual fixtures
–

 
Guidance virtual fixtures: constrain motion along a 
preferred direction

–
 

Boundary virtual fixtures: prevent motion into a 
“forbidden zone”

 
(or stay within “safe zone”)

–
 

Hard vs. soft virtual fixtures
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Cooperative Control with Virtual Fixtures: 
Acrobot Robot (Imperial College, London)

•

 

Uses virtual fixtures (Active Constraint Control) to enable 
surgeon to execute preoperative plan (machine femur and tibia)

Courtesy of Acrobot Co. Limited, UK



Copyright © Peter Kazanzides, CISST ERC, 2008 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Cooperative Control with Virtual Fixtures: 
Robot for Skull Base Surgery (JHU)

•
 

Uses virtual fixtures to constrain surgeon to remain 
inside “safe zone”

 
during skull base drilling

Kazanzides, Xia, Baird, Jallo



Copyright © Peter Kazanzides, CISST ERC, 2008 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Virtual Fixture Implementation: 
Constrained Optimization

Kapoor

 

& Taylor, 2007
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Composition of Virtual Fixtures

Kapoor

 

& Taylor, 2007
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Virtual Fixture Primitives: 
1) Stay on a point

Constraint:

Polyhedron approximation for 
sphere of radius ε1

 

:

Yields constraint:  A Δx ≤ b
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Conclusions

•
 

Medical robots have distinct differences 
from industrial robots:
–

 
Must work with humans (cooperative)

–
 

Environment (operating room and patient) 
is relatively unstructured

•
 

Control challenges are primarily at the 
higher levels:
–

 
Man/machine interactions

–
 

Sensor-based control
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Conclusions

•
 

Force control widely used:
–

 
“Steady hand”

 
guidance

–
 

Virtual fixtures (mechanical guidance)
–

 
Tactile search

–
 

Safety
•

 
High-performance computers enable 
“real-time”

 
numerical optimization
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