Medical Robots and their Control Paradigms

Peter Kazanzides

Associate Research Professor Dept. of Computer Science The Johns Hopkins University

Copyright © Peter Kazanzides, CISST ERC, 2008

My Background

- 1983-1988 Ph.D. EE (Robotics), Brown University
 - Thesis: Multiprocessor Control of Robotic Manipulators
- 1989-1990 Postdoctoral researcher at IBM
 - Medical robotics (ROBODOC)
- 1990-2002 Co-Founder of Integrated Surgical Systems
 - Director of Robotics and Software
 - Commercial development of ROBODOC® System
 - Sales in Europe (CE Mark) and Asia
 - Clinical trials in U.S. and Japan
- 2002-present Research faculty at JHU
 - Research in use of robotics for neurosurgery, cancer research and therapy, telesurgery, microsurgery, …

Outline

- Overview of ROBODOC System
- Medical robotics at JHU
- What are the control challenges?
- Force control in ROBODOC
- Cooperative Control with Virtual Fixtures
- Constrained optimization formulation
- Conclusions

ROBODOC® System

- Initially developed to assist with Total Hip Replacement (THR) surgery
 - machine femur for cementless prosthesis (femoral stem)

ROBODOC® System

Conventional procedure (mallet and broach)

Computer-assisted planning and execution

Copyright © Peter Kazanzides, CISST ERC, 2008

ROBODOC Benefits

- Intended benefits:
 - Increased dimensional accuracy
 - Increased placement accuracy
 - More consistent outcome

Robot

Broach

1986-1988

Feasibility study and proof of concept at U.C. Davis and IBM

1988-1990 Development of canine system May 2, 1990 First canine surgery

1990-1995 Human clinical prototype

- Nov 1, 1990 Formation of ISS
- Nov 7, 1992 First human surgery, Sutter General Hospital
- Aug 1994 First European surgery, BGU Frankfurt

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Copyright © Peter Kazanzides, CISST ERC, 2008

1995-2002 ROBODOC in Europe and Asia

March 1996	CE Mark
April 1996	First 2 installations (Germany)
Nov 1996	ISS initial public offering (NASDAQ)
March 1998	First pinless hip surgery
Feb 2000	First knee replacement surgery

Copyright © Peter Kazanzides, CISST ERC, 2008

2003-2007	ROBODOC RIP
Oct 2003 June 2005 June 2006 Sept 2006 June 2007	Class action lawsuit in Germany ISS "ceases operations" German high court ruling against plaintiff ISS resumes operations ISS sells assets to Novatrix Biomedical
2007-present	ROBODOC reborn
Sept 2007	Curexo Medical formed (Novatrix)
Sept 2007	Curexo files 510(K) with FDA
Feb 2008	Company renamed to ROBODOC, a Curexo Technology Company
Aug 2008	Robodoc receives FDA approval!

8

ROBODOC Status

- Approximately 50 systems were installed worldwide
 - Europe (Germany, Austria, Switz., France, Spain)
 - Asia (Japan, Korea, India)
 - U.S. (Clinical trial for FDA approval)
- Over 20,000 hip and knee replacement surgeries
- ROBODOC no longer used in Europe
- One Korean hospital uses system regularly claim 2,500 surgeries/year
- FDA approval in Aug 2008

Ś

Medical Robotics at JHU

Steady hand robot Research daVinci

Needle steering

Bimanual manipulation

Snake robot

Brachytherapy

Neurosurgery

SARRP

Rodent research

MR-compatible robot

Spectroscopy

Smart retractor

Atlas

Stereo vision

Copyright © Peter Kazanzides, CISST ERC, 2008

Control Challenges

- Most medical robots are slow (for safety reasons)
 - Individual joint-level PID control is good enough for position/velocity control

• What about surgery on a beating heart?

HeartLander Robot (CMU)

Miniature mobile robot that adheres to the epicardium and travels to any site for cardiac therapy.

In-vivo testing with beating pig hearts.

Riviere, Patronik, Zenati

Copyright © Peter Kazanzides, CISST ERC, 2008

Control Challenges

- Robot must work with surgical team
 - Man/machine partnership vs. automation
- Robot must sense and adapt to its environment
 - Force This talk
 - Tissue properties
 - Vision
 - Intraoperative imaging (CT, MR, Ultrasound)

ROBODOC Force Control

- Hand guidance
- Tactile search
- Force-controlled cutting
- Safety threshold

ROBODOC Force Control

P. Kazanzides, J. Zuhars, B. Mittelstadt, R.H. Taylor, "Force Sensing and Control for a Surgical Robot," *IEEE Intl. Conf. on Robotics and Auto.*, Nice, France, May 1992

Copyright © Peter Kazanzides, CISST ERC, 2008 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Force-controlled bone cutting

- Problem: ROBODOC uses fixed cutfiles
 - Conservative cut speeds (assume hard bone)
 - Long cutting times
- Solution: Modify cutter feed rate based on measured force
 - Cutfile specifies minimum and maximum feed rates, as well as maximum force
 - System parameters include tool stiffness

Force-controlled bone cutting

- Technical approach: Use "time warping" in trajectory generator
 - All motions are parameterized by time
 - Plan motion at maximum speed, s_{max}
 - Use time t_i from following equation:

$$t_i = t_{i-1} + \Delta t \cdot \arg \max \left(1 - e^{-R(f_{\max} - f(t))}, \frac{S_{\min}}{S_{\max}} \right) \qquad f(t) \le f_{\max}$$

As $f(t) \rightarrow f_{max}$, warp time to reduce speed to s_{min} As $f(t) \rightarrow 0$, $t_i \approx t_{i-1} + \Delta T$ (move at s_{max}) If $f(t) > f_{max}$, stop robot and cutter

Cooperative Control and Virtual Fixtures

- Generalization of force-controlled guidance
 and force-controlled cutting
- Steady Hand guidance (JHU)
 - Force-controlled guidance for tremor reduction
- Virtual fixtures
 - Guidance virtual fixtures: constrain motion along a preferred direction
 - Boundary virtual fixtures: prevent motion into a "forbidden zone" (or stay within "safe zone")
 - Hard vs. soft virtual fixtures

Physical Guidance: Steady Hand Guiding for Microsurgery

Steady hand motion

R. Taylor & R. Kumar

Copyright © Peter Kazanzides, CISST ERC, 2008

Steady Hand Guiding at the Cellular Level

Kumar, Kapoor, Taylor

Copyright © Peter Kazanzides, CISST ERC, 2008

Cooperative Control and Virtual Fixtures

- Generalization of force-controlled guidance
 and force-controlled cutting
- Steady Hand guidance (JHU)
 Force-controlled guidance for tremor reduction
- Virtual fixtures
 - Guidance virtual fixtures: constrain motion along a preferred direction
 - Boundary virtual fixtures: prevent motion into a "forbidden zone" (or stay within "safe zone")
 - Hard vs. soft virtual fixtures

Cooperative Control with Virtual Fixtures: Acrobot Robot (Imperial College, London)

• Uses virtual fixtures (Active Constraint Control) to enable surgeon to execute preoperative plan (machine femur and tibia)

Courtesy of Acrobot Co. Limited, UK

Cooperative Control with Virtual Fixtures: Robot for Skull Base Surgery (JHU)

 Uses virtual fixtures to constrain surgeon to remain inside "safe zone" during skull base drilling

Kazanzides, Xia, Baird, Jallo

Virtual Fixture Implementation: Constrained Optimization

Kapoor & Taylor, 2007

Composition of Virtual Fixtures

Kapoor & Taylor, 2007

Copyright © Peter Kazanzides, CISST ERC, 2008

Virtual Fixture Primitives: 1) Stay on a point

Constraint:

$$\|\pmb{\delta}_p + \Delta \mathbf{x}_p\| \leq \epsilon_1$$

Polyhedron approximation for sphere of radius ε_1 :

$$\begin{bmatrix} c_{\alpha_{1i}}c_{\beta_{1j}} & c_{\alpha_{1i}}s_{\beta_{1j}} & s_{\alpha_{1i}} & 0 & 0 \end{bmatrix} \cdot (\boldsymbol{\delta} + \Delta \mathbf{x}) \leq \epsilon_1,$$

$$c_{\alpha_{1i}} = \cos\frac{i2\pi}{n}; \quad s_{\alpha_{1i}} = \sin\frac{i2\pi}{n}; \quad c_{\beta_{1j}} = \cos\frac{j2\pi}{m}; \quad s_{\beta_{1j}} = \sin\frac{j2\pi}{m}$$

$$i = 0, \cdots, n-1; \quad j = 0, \cdots, m-1.$$

Yields constraint: $A \cdot \Delta x \leq b$

Conclusions

- Medical robots have distinct differences from industrial robots:
 - Must work with humans (cooperative)
 - Environment (operating room and patient) is relatively unstructured
- Control challenges are primarily at the higher levels:
 - Man/machine interactions
 - Sensor-based control

Conclusions

- Force control widely used:
 - "Steady hand" guidance
 - Virtual fixtures (mechanical guidance)
 - Tactile search
 - Safety
- High-performance computers enable "real-time" numerical optimization

Acknowledgements

- Faculty
 - Russell Taylor
 - Greg Hager
 - Allison Okamura
 - Gabor Fichtinger
 - Emad Boctor
 - Noah Cowan
 - Cam Riviere
 - Iulian Iordachita
- Numerous Staff and Students
- All my colleagues at Integrated Surgical Systems (ISS)

- Clinicians
 - Paul Flint
 - Michael Choti
 - Daniel Song
 - Ted DeWeese
 - Li-Ming Su
 - David Yuh
 - George Jallo
- Funding

