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Abstract—A typical linear control strategy in discrete-time 
systems, deadbeat control produces transients that vanish in 
finite time. On the other hand, the linear-quadratic control 
stabilizes the system and minimizes the l2 norm of its transient 
response. Quite surprisingly, it is shown that deadbeat systems 
are l2 optimal, at least for reachable systems. 

The proof makes use of polynomial matrix fractions and 
structure theorem for linear time-invariant multivariable 
systems, the notions introduced by W.A. Wolovich in the early 
seventies.  

The result demonstrates the flexibility offered by the linear-
quadratic regulator design and is an exercise in inverse 
optimality. The linear-quadratic regulator gain is unique, 
whereas the deadbeat feedback gains are not. Only one deadbeat 
gain is linear-quadratic optimal. An alternative construction of 
such a gain, based on solving an algebraic Riccati equation, is 
thus available. 
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I.  DEADBEAT REGULATOR 
We consider a linear system (A, B) described by the state 

equation                         

 ...,1,0,1 =+=+ kBuAxx kkk  (1) 

where m
k RIu ∈ and .n

k RIx ∈  The objective of deadbeat 
regulation is to determine a linear state feedback of the form 

 kk Lxu −=  (2) 

that drives each initial state x0 to the origin in a least number of 
steps. 

We define the reachability subspaces of system (1) by 
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Hence Rk is the set of states of (1) that can be reached from the 

origin in k steps by applying an input sequence u0, u1, ..., uk – 1. 
When ,n

n RIR =  the system (A, B) of (1) is said to be 
reachable. 

Define the integers  

1dimension  dimension −−= kkk RRq  

and for k = 1, 2, ..., m let 
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The integers r1 ≥ r2 ≥ ... ≥ rm are the reachability indices of 
system (1). 

We further define the controllability subspaces for (1) by 
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Thus Ck is the set of all states of (1) that can be steered to the 
origin in k steps by an appropriate control sequence u0, u1, ..., 
uk – 1. When ,n

n RIC =  the system (A, B) of (1) is said to be 
controllable. It follows from the definitions that reachability 
implies controllability and the converse is true whenever A is 
nonsingular. 

The existence and construction of deadbeat control laws is 
described below. For each k = 1, 2, ... let S1, S2, ..., Sk be a 
sequence of kqmqmqm ××× ...,,, 21  matrices such that 

. range ]...[ range 1
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Therefore S1, S2, ..., Sk serve to select a basis for Rk. 

Theorem 1. [1] There exists a deadbeat control law (2) if 
and only if the system (A, B) of (1) is controllable. Let 
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where kL′  satisfies 
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21 kk

k
k SBSAABSBSL =′ −  

Then L = Ln is a deadbeat regulator gain. <                   

The theorem identifies all deadbeat control laws via the 
recursive procedure (3). Actually the procedure can be 
terminated in q steps, where }.C:{min 1 kkCkq == +  The 
resulting closed-loop system matrix is nilpotent with index q, 

 .0)( =− qBLA  (4) 

If A is nonsingular, the recursive procedure (3) can be shortcut 
by setting Lq – 1 = 0. Then, the Jordan structure of A – BL 
comprises m nilpotent blocks [3] of sizes r1, r2, ..., rm and the 
index of nilpotency equals q = r1. In fact, this is the least size 
of Jordan blocks that can be achieved [4] in a reachable system 
(1) by applying state feedback (2). 

II. LINEAR QUADRATIC REGULATOR 
We consider a linear system described by the state equation 

(1), 

...,1,0,1 =+=+ kBuAxx kkk  

where m
k RIu ∈ and .n

k RIx ∈  The objective of LQ regulation 
is to find a linear state feedback of the form (2), 

kk Lxu −=   

that stabilizes the closed-loop system 

kk xBLAx )(1 −=+  

and, for every initial state x0, minimizes the l2 norm 
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of a specified output p
k RIy ∈ of the form 

 .kkk DuCxy +=  (5) 

The existence and construction of an LQ control law is 
described below. We say that the system (A, B) of (1) is 
stabilizable if the system matrices can be transformed to the 
following form using an appropriate basis: 
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where the subsystem defined by the pair of matrices (A11, B1) is 
reachable and A22 is a stable matrix. We say that the system (A, 

B, C, D) defined by the state equation (1) and the output 
equation (5) is left invertible if its transfer function 

DBAzIC n +− −1)(  has full column normal rank. We further 
define the system matrix as the polynomial matrix 
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and say that a complex number ζ is an invariant zero of the 
system (A, B, C, D) if the rank of S(ζ) is strictly less than the 
normal rank of S(z). 

Theorem 2. [2] Suppose that the system (A, B) of (1) is 
stabilizable. Suppose that the system (A, B, C, D) defined by 
(1) and (5) is left invertible and also has no invariant zeros on 
the unit circle | z | = 1. Then, there exists a unique LQ regulator 
gain given by 

 ),()( 1 CDXABXBBDDL TTTT ++= −  (6) 

where X  is the largest symmetric nonnegative definite solution 
of the algebraic Riccati equation 
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The assumption of left invertibility for (A, B, C, D) is 
required in order for the matrix DTD + BTXB to be nonsingular 
while the remaining assumptions are required for the existence 
of the requisite solution X of the algebraic Riccati equation. 

III. THE DEADBEAT REGULATOR AS AN LQ REGULATOR 
The aim of this section is to show that deadbeat control 

laws in reachable systems are LQ optimal. This will be done 
by constructing an output (5) of the system (1) so that the 
resulting LQ regulator gain is a deadbeat gain. 

Let the system (A, B) of (1) be reachable with reachability 
indices r1, r2, ..., rm. Then there exists a similarity 
transformation T that brings the matrices A and B to the 
standard reachability form [3], 

 TBBTATA =′=′ − ,1  (8) 

where A′ is a top-companion matrix with nonzero entries in 
rows ri, i = 1, 2, ..., m and B′ has nonzero entries only in rows 
ri and columns j ≥ i, i = 1, 2, ..., m. 

Theorem 3. Suppose that the system (A, B) of (1) is 
reachable, with reachability indices r1 ≥ r2 ≥ ... ≥ rm  and with 
the matrix B having rank m. Let T be a similarity 
transformation that brings A and B to the standard reachability 
form. Then, the feedback gain L that is LQ optimal with 
respect to C = T and D = 0 in (5) is a deadbeat gain. 

Proof. Consider the transfer function of system (1) in 
polynomial matrix fraction form 



 )()()( 11 zPzQBAzIn
−− =−  (9) 

where P and Q are right coprime polynomial matrices in z of 
respective size , and mnmm ×× with P column reduced and 
column-degree ordered with column degrees r1 ≥ r2 ≥ ... ≥ rm. 
These integers are the reachability indices of (1). 

The system (1) being reachable, the matrices zIn – A and B 
are left coprime. It follows from (9) that the denominator 
matrices zIn – A and P(z) have the same determinant (in fact, 
the same invariant polynomials). 

For any feedback (2) applied to system (1), one obtains 
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Then (9) implies that  

 .)]()()[()]([ 11 −− +=−− zLQzPzQBBLAzIn  (10) 

Thus the closed-loop system transfer function matrices zIn – (A 
– BL) and B are left coprime while P(z) + LQ(z) and Q(z) are 
right coprime. It follows from (10) that the polynomial 
matrices zIn – (A – BL) and P(z) + LQ(z) have the same 
determinant (in fact, the same invariant polynomials). 

Now we show that an LQ regulator gain exists that is 
optimal with respect to C = T and D = 0. Indeed, the pair (A, 
B) is reachable, hence stabilizable. The quadruple (A, B, T, 0) 
corresponds to the transfer function BAzIT n

1)( −−  whose 
column normal rank is m, hence the system is left invertible. 
The system matrix  
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has rank n + m for all complex numbers z, which implies that 
(A, B, T, 0) has no invariant zeros at all. Consequently, the 
assumptions of Theorem 2 are all satisfied, which shows the 
existence of an LQ optimal regulator gain (6). 

Consider the associated algebraic Riccati equation (7). Add  
zXAXAXAXAz T1 )()( −+−−  to the right-hand side of the 

equation in order to introduce polynomial matrix factorizations, 
then use (6) and (9) to get the following identity [3] 
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Define a polynomial mm ×  matrix F, which is column reduced 

and column-degree ordered with column degrees r1 ≥ r2 ≥ ... ≥ 
rm, by the equation 

  )]()([)]()([)()( T111T zDPzCQzDPzCQzFzF ++= −−− (12) 

in such a way that its inverse F–1 is analytic in the domain | z | ≥ 
1. This matrix is referred to as the spectral factor and it is 
determined uniquely by (12) up to multiplication on the left by 
a constant orthogonal matrix. 

The pair (A, B) being reachable, the matrices A and B can 
be brought to the reachability standard form (8) using the 
similarity transformation matrix T. The corresponding right 
coprime polynomial fraction matrices are related by 
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and by the Structure Theorem of Wolovich [5], Q′  has the 
block-diagonal form 
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The spectral factorization (12) reads 
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so that 
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It follows from (11) that the LQ regulator that is optimal 
with respect to C = T and D = 0 induces the closed-loop right 
denominator matrix P(z) + LQ(z) with invariant factors 

.,...,,, 21 mrrr zzz  The same factors are shared by the closed-
loop left denominator matrix zIn – (A – BL). Therefore, A – BL 
is nilpotent with Jordan structure comprising m nilpotent 
blocks of sizes r1, r2, ..., rm. The nilpotency index of A – BL is 
r1, the largest reachability index.                                     Q.E.D. 

The restriction of Theorem 3 to reachable systems, while 
technically important, is actually a mild restriction as it covers 
the case of main practical interest. Controllable systems (1) that 
are not reachable possess a singular matrix A with nilpotent 
dynamics. Such systems are inherently discrete. In particular, 
the periodically sampled continuous time systems, considered 
in the discrete instants of time, have a nonsingular matrix A. 

The other restriction applied in Theorem 3, namely B 
having full column rank m, is needed to guarantee the 
solvability of the LQ regulator. It represents no practical 
constraint, either. Indeed, if the rank of B is less than m, then 
the components of the control vector u are linearly dependent. 



IV. EXAMPLE 
To illustrate, let us consider a system (1) described by the 

matrices 
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Since 
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the system is reachable with reachability indices r1 = 2, r2 = 1. 
Since 
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the system is controllable and q = 2. 

Deadbeat gains can be calculated using Theorem 1. One 
can take 
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thus obtaining, recursively, 
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for any real numbers α and β. Any and all deadbeat gains are 
given as 
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The closed-loop system (1), (2) is described by 
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which is a nilpotent matrix with index q = 2. Any initial state is 
driven to the controllability subspace C1 in one step and then to 
the origin in the second step. 

Let us now transform (1) to the reachability standard form. 
An appropriate similarity transformation T is found to be 
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It allows calculating a deadbeat gain as the LQ regulator gain 
that is optimal with respect to C = T and D = 0. 

Since rank B = 2, the conditions of Theorem 2 are all 
satisfied. The algebraic Riccati equation (7) has a unique 
symmetric non-negative definite solution 
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The resulting LQ regulator gain (6), 
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is indeed a deadbeat gain, corresponding to α = 0. The other 
deadbeat gains, however, cannot be obtained using this 
approach. 

V. CONCLUSION 
Deadbeat control and LQ regulation in discrete-time 

systems, two control strategies that are so different in nature, 
are in fact related. It has been shown that a deadbeat control 
law can be obtained by solving a particular LQ regulator 
problem, at least for reachable systems. This demonstrates the 
flexibility offered by the LQ regulator design. 

The LQ optimal regulator gain is unique, whereas the 
deadbeat feedback gains are not. Only one deadbeat gain is LQ 
optimal. An alternative construction of such a gain, based on 
solving an algebraic Riccati equation, is thus available. 
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