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Introduction

A typical linear control strategy

in discrete-time systems,

deadbeat control produces transients
that vanish in finite time.

On the other hand,
the linear-quadratic control stabilizes the system
and minimizes the |, norm of its transient response.

Quite surprisingly,
it is shown that deadbeat systems are |, optimal,
at least for reachable systems.
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Deadbeat Control

Given a linear system (A, B)
Xk+1 ZAXk + Buk, kZO, 1, )

where U, €S "and X, €S ".

The objective of deadbeat regulation is to determine
a linear state feedback of the form

that drives each initial state X, to the origin

in a least number of steps.
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Reachability and Controllability

We define the reachability subspaces by
Ry =0,
R, =range[B AB ... A“'B], k=1,2,....

When R, =S ", the system (A, B) is said to be reachable.

The system (A, B) is said to be controllable
if there exists a basis in which

A Ax| R_|B
A__O A | B__O_

where (A, B,) is reachable and A, is nilpotent. @
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Reachability Indices

For eachk=1, 2, ...
let S, S,, ..., S, be a sequence of matrices
such that

range[BS, ABS, .. A“'BS, |=rangeR,

Therefore S,, S,, ..., S, serve to select a basis for R,.

The reachability indices ry, I',, ..., I', are defined by

I, = cardinality {S;, ] =1,2,...:rank S; > 1}
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Theorem 1

There exists a deadbeat control law
if and only if the system (A, B) is controllable.
Let

L, =0,

L =L ,+L (A- BLk_l)k, k=1,2,..

where L, satisfies
L [BS, ABS, ... A“'BS,]=[0 ... 0 S,].

Then L =L is a deadbeat regulator gain.

The closed-loop system matrix A — BL is nilpotent.
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Linear Quadratic Regulator

Given a linear system (A, B)

X, =Ax +Bu, k=0,1,..
whereu, €S "and X, €S ".
The objective of LQ regulation
is to find a linear state feedback of the form

u =-LXx,

that stabilizes the closed-loop system
and, for every initial state X,, minimizes the |, norm
of a specified output Y, €S ” of the form

Y, =CXx, +Du,
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Stabilizability and Invertibility

The system (A, B) is said to be stabilizable
if there exists a basis in which

[A A g[B
A 0
where (A, B)) is reachable and A, is stable.

The system (A, B, C, D)

X., =Ax, +Bu,y =Cx +Du, k=01,..
is said to be left invertible
if its transfer function has full column normal rank.
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Invariant Zeros

We further define the system matrix
as the polynomial matrix

zZl —A —-B
S(2) :[ ”C D }
and say that a complex number
is an Invariant zero of the system (A, B, C, D)
if the rank of S({) is strictly less
than the normal rank of S(z).
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Theorem 2

Suppose that the system (A, B) is stabilizable.
Suppose that the system (A, B, C, D) is left invertible
and also has no invariant zeros on the unit circle |z| = 1.

Then, there exists a unigue LQ regulator gain given by
L=(D'D+B'XB)"'(B'XA+D'C),

where X is the largest nonnegative definite solution

of the algebraic Riccati equation

X = ATXA+C'C
~(B"XA+D'C)"(D'D+B"XB)'(B"XA+D'C)
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Reachability Standard Form

Let the system (A, B) be reachable,
with reachability indices I, I, ..., I'.
Then there exists a similarity transformation T
that brings the matrices A and B
to the reachability standard form,
A=TAT', B'=TB
where A’ is a top-companion matrix
with nonzero entries in rows r;, 1 =1, 2, ..., m
and B’ has nonzero entries

only in rows r; and columns | >1,1=1, 2, ..., m.
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Theorem 3

Suppose that the system (A, B) is reachable,
with reachability indices r; =21, > ... 21,

and with the matrix B having rank m.

Let T be a similarity transformation
that brings A and B to the reachability standard form.

Then, the feedback gain L

that is LQ optimal with respecttoC=T and D=0
is a deadbeat gain.
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Proof: Existence

We first show that an LQ regulator gain exists
that is optimal with respecttoC =T and D = 0.
Indeed, the system (A, B) is reachable hence stabilizable.
The system (A, B, T, 0) has a transfer function
whose normal rank is m, so it is left invertible.

S(2) = [zInT— A —OB}

has rank n + m for all complex numbers z,

The system matrix

hence (A, B, T, 0) has no invariant zeros at all.
The assumptions of Theorem 2 are all satisfied.
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Proof: Polynomial Matrix Fractions

Write the transfer function of the system (A, B)
in the polynomial matrix fraction form

(zl,-A)"'B=Q(2)P ' (2)
For any feedback applied to the system, one obtains
21, - (A-BL)]"B=Q(2)[P(2)+ LQ)]"
The system (A, B) being reachable,
these polynomial matrix fractions are coprime.
Thus the matrices zlI, — (A - BL) and P(z) + LQ(2)
have the same Invariant factors.
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Proof: Matrix Identity

Using the polynomial fraction matrices P and Q,
the algebraic Riccati equation yields the identity

[P(z)+LQ(z ™)' (D'D+B'XB)[P(2)+ LQ(2)]
=[CQ(z™")+DP(z )]'[CQ(2) + DP(2)]

Define a polynomial matrix F by the equation
F'(z)F(2)=[CQ(z ")+ DP(z )I'[CQ(2) + DP(2)]

in such a way that F -1 is analytic in the domain |z| > 1.
This matrix F is referred to as the spectral factor.
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Proof: Reachability Standard Form

Bring (A, B) to the reachability standard form
using the similarity transformation matrix T.
The corresponding polynomial fraction matrices
are related by
P(z2)=P(2), Q'(2)=TQ(2)
and by Structure Theorem, Q' has the block-diagonal

form " 17r 17 1
Q'(z)=block-diag[| * [,| % [,.| & |1
_Zr;—l_ _Zrz.—l_ _Zrn;—l_
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Proof: Spectral Factorization

The spectral factorization reads

F'(zHF(2)=Q'(zHT'TQ(2)
— Q’T (Z_I)Q’(Z) — dlag [r19 Iy 9 oo rm]
so that

F(z) =diag[\/r,z",\/1,2", ceey /T 2" ].
The matrices P(z) + LQ(z) and zl ,— (A - BL)
share the same invariant factors z",z%,...,z".
Therefore, A — BL is nilpotent with Jordan structure

comprising m nilpotent blocks of sizes ry, I'y, ..., I'.
This proves that L is a deadbeat gain.
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Conclusions

+ Deadbeat control and LQ regulation,
two strategies different in nature, are in fact related.

+ A deadbeat control law can be obtained
by solving a particular LQ regulator problem,
at least for reachable systems.

+» The LQ optimal regulator gain is unique,
whereas the deadbeat feedback gains are not.
Only one deadbeat gain is LQ optimal.

+ An alternative construction of such a gain
is thus available, solving the Riccati equation.
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