
 

 

 

  

Abstract— In this paper is presented new online adaptive 

control scheme, for partially unknown nonlinear systems, which 

converges to the optimal state-feedback control solution for 

affine in the input nonlinear systems. The main features of the 

algorithm map on the characteristics of the rewards-based 

decision making process in the mammal brain.  

The derivation of the optimal adaptive control algorithm is 

presented in a continuous-time framework. The optimal control 

solution will be obtained in a direct fashion, without system 

identification. The algorithm is an online approach to policy 

iterations based on an adaptive critic structure to find an 

approximate solution to the state feedback, infinite-horizon, 

optimal control problem. 

I. INTRODUCTION 

t is well known that solving the optimal control problem is 
generally difficult even in the presence of complete and 
correct knowledge of the system dynamics, as Bellman’s 

dynamic programming approach suffers from the so called 
“curse of dimensionality” [16]. This motivated several 
advances in solving the optimal control problem using dual 
adaptive control techniques [8], surveyed in [9], [29], which 
would simultaneously improve the estimated system model 
parameters and improve on the suboptimal controller. 
Nonetheless, another difficulty appeared, posed by dual 
control theory, known as the exploration-exploitation 
dilemma [24]. 

In order to adaptively solve optimal control problems a 
new methodology, namely Reinforcement Learning (RL), 
was developed in the computational intelligence community 
and then gradually adapted to fit the control engineering 
requirements. Reinforcement learning means finding a 
control policy, i.e. learning the parameters of a controller 
mapping between the system states and the control signal, 
such that to maximize a numerical reward signal [24]. 
Reinforcement learning is defined by characterizing a 
learning problem which is in fact the adaptive optimal 
control problem. Thus, from a control engineering 
perspective, RL algorithms can be viewed as a class of 
adaptive controllers which solve the optimal control problem 
based on reward information which characterizes the 
performance of a given controller.  
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In this paper we will focus our attention on a class of 
reinforcement learning algorithms, namely policy iteration. 
The goal of the paper is to present a new policy iteration 
algorithm which, without making use of complete knowledge 
of a system’s dynamics, will learn to approximate, in an 
online fashion and with arbitrary small accuracy, the optimal 
control solution for a general nonlinear affine in the input 
continuous-time system. 

In order to solve the optimal control problem, instead of 
directly solving the Hamilton-Jacobi-Bellman (HJB) 
equation [16] for the optimal cost and then finding the 
optimal control policy (i.e. the feedback gain for linear 
systems), the policy iteration method starts with the 
evaluation of the cost associated with an initial stabilizing 
control policy and then uses this information to obtain a new 
policy which will result in improved control performances. 
The algorithm can be viewed as a directed search for the 
optimal controller in the space of admissible control policies. 

Policy iteration algorithm was first formulated in [13]. For 
continuous state linear systems policy iteration algorithms 
were developed in [5], [19] and [25] used to find the optimal 
Linear Quadratic Regulator (LQR) [16]. Convergence 
guarantees were given in [11] and [14]. In [5] policy 
iteration was formulated to solve the discrete-time LQR 
problem using Q-functions [26], [27], thus the resulting 
algorithm is model free. For continuous-time systems, in 
[19], the model free quality of the approach was achieved 
either by evaluating online the infinite horizon cost 
associated with an admissible control policy or by using 
measurements of the state derivatives. The policy iteration 
algorithm in [25] is an online technique which solves the 
LQR problem along a single state trajectory, using only 
partial knowledge about the system dynamics and without 
requiring measurements of the state derivative.  

In the case on nonlinear systems policy iteration is in fact 
the method of successive approximations developed in [21]. 
This method iterates on a sequence of Lyapunov equations 
which are somewhat easier to solve than the HJB equation. 
In [2], [3] the solution for these Lyapunov equations was 
obtained using the Galerkin spectral approximation method 
and in [1] they were solved, in the presence of saturation 
restrictions on the control input, using neural network 
approximator structures. Neural network-based structures for 
learning the optimal control solution via the HJB equation, 
namely Adaptive Critics, were first proposed in [18]. 
Adaptive Critics and neural network training algorithms were 
presented both in discrete-time, [20], and continuous-time, 
[10], framework. 

The policy iteration methods developed in [2], [3] and [1] 
are generally applied offline as they require complete 
knowledge on the dynamics of the system to be controlled. 
Stabilizing adaptive controllers that are inverse optimal, with 
respect to some relevant cost not specified by the designer, 
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have also been derived [17]. Due to their offline character 
imposed by the system model requirement these methods are 
not sensitive to changes in the system dynamics. The 
algorithm that we present in this paper is a policy iteration 
algorithm which uses the Bellman optimality equation as a 
consistence relation when solving for the value associated 
with a given policy, and not the regular, Hamiltonian-based, 
Lyapunov equation. This determines in the model free 
property of the proposed algorithm and grants its online 
implementation feature. 

In the next section the continuous-time optimal control 
problem for nonlinear systems is formulated. The new online 
policy iteration algorithm is then presented followed by its 
neural network based online implementation, on an Actor-
Critic structure. The relation of the algorithm with certain 
learning mechanisms in the mammal brain is then discussed 
followed by concluding remarks. 

II. THE OPTIMAL CONTROL PROBLEM 

Consider the time-invariant affine in the input dynamical 
system given by 

( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +� ; 0(0)x x=  (1) 

with ( ) n
x t ∈R , ( ( )) n

f x t ∈R , ( ( )) n m
g x t

×∈R  and the input 

( ) m
u t U∈ ⊂ R . We assume that ( ) ( )f x g x u+  is Lipschitz 

continuous on a set 
nΩ⊆R  that contains the origin and that 

the dynamical system is stabilizable on Ω , i.e. there exists a 
continuous control function ( )u t U∈  such that the system is 

asymptotically stable on Ω .  

Define the infinite horizon integral cost 

0

0

( ) ( ( ), ( ))V x r x u dτ τ τ
∞

= ∫  (2) 

where ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 

0, ( ) 0x Q x∀ ≠ >  and 0 ( ) 0x Q x= ⇒ = , and m mR ×∈R  is a 

positive definite matrix. 

Definition 1 (Admissible policy) A control policy ( )xµ  is 

defined as admissible with respect to (2) on Ω , denoted by 

( )µ∈Ψ Ω , if ( )xµ  is continuous on Ω , (0) 0µ = , ( )xµ  

stabilizes (1) on Ω  and 0( )V x  is finite 0x∀ ∈Ω .  

For any admissible control policy ( )µ∈Ψ Ω  if the 

associated cost function  

0

0

( ) ( ( ), ( ( )))V x r x x d
µ τ µ τ τ

∞

= ∫  (3) 

is 1
C then a infinitesimal version of (3) is 

0 ( , ( )) ( ( ) ( ) ( )), (0) 0T
xr x x V f x g x x Vµ µµ µ= + + =  (4) 

where xV µ  denotes the partial derivative of the value 

function V
µ  with respect to x , as the value function does 

not depend explicitly on time. Equation (4) is a Lyapunov 
equation for nonlinear systems which, given the controller 

( ) ( )xµ ∈Ψ Ω , can be solved for the value function ( )V xµ  

associated with it. Given that ( )xµ  is an admissible control 

policy, if ( )V xµ  satisfies (4), with ( , ( )) 0r x xµ ≥ , then 

( )V xµ  is a Lyapunov function for the system (1) with 

control policy ( )xµ .  

The optimal control problem can now be formulated: 

Given the continuous-time system (1), the set ( )u∈Ψ Ω  of 

admissible control policies and the infinite horizon cost 
functional (2), find an admissible control policy such that the 
cost index (2) associated with the system (1) is minimized.  

Defining the Hamiltonian of the problem  

* *( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))T
x xH x u V r x t u t V f x t g x t u t= + +  (5) 

the optimal cost function *( )V x  satisfies the HJB equation  

*

( )
0 min [ ( , , )]x

u
H x u V

∈Ψ Ω
=  (6) 

Assuming that the minimum on the right hand side of the 
equation (6) exists and is unique then the optimal control 
function for the given problem is  

* 1 *( ) ( ) ( )T
xu x R g x V x

−=−  (7) 

Inserting this optimal control in the Hamiltonian we obtain 

the HJB equation in terms of *
xV  

* * 1 *

*

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

4

(0) 0

T T T
x x xQ x V x f x V x g x R g x V x

V

−= + −

=

 (8) 

This is a necessary and sufficient condition for the optimal 
value function [16]. For the linear system case, considering a 
quadratic cost functional, the equivalent of this HJB equation 
is the well known Riccati equation. 

In order to find the optimal control solution for the 
problem one only needs to solve the HJB equation (8) for the 
value function and then substitute the solution in (7) to 
obtain the optimal control. However, solving the HJB 
equation is generally difficult as it is a nonlinear differential 
equation, quadratic in the cost function, which also requires 
complete knowledge of the system dynamics (i.e. the system 

dynamics described by the functions ( ), ( )f x g x  need to be 

known). 

III. THE POLICY ITERATION ALGORITHM  

In order to solve the optimal control problem, instead of 
directly solving the HJB equation (8) for the optimal cost 
and then finding the optimal control policy given by (7), the 
policy iteration method starts by evaluating the cost of a 
given initial admissible policy and then makes use of this 
information to improve the control policy. The two steps are 
repeated until the policy improvement step no longer 
changes the actual policy. The following online 
reinforcement learning algorithm will solve the infinite 
horizon optimal control problem without using knowledge 
regarding the system internal dynamics (i.e. the system 

function ( )f x ). 

First note that given an admissible policy for (1), ( )xµ , 

such that the closed loop system is asymptotically stable on 

Ω , then the infinite horizon cost for any ( )x t ∈Ω  is given by 



 

 

 

(3) and ( ( ))V x tµ  serves as a Lyapunov function for (1). The 

cost function (3) can thus be written as 

( ( )) ( ( ), ( ( ))) ( ( ))
t T

t

V x t r x x d V x t T
µ µτ µ τ τ

+

= + +∫ . (9) 

Based on (9) and (6), considering an initial admissible 

control policy (0) ( )xµ , the following policy iteration scheme 

can be derived: 

1. solve for 
( )

( )
i

V xµ  using 

( ) ( )

( )

( )( ( )) ( ( ), ( ( ))) ( ( )),

(0) 0

i i

i

t T
i

t

V x t r x x d V x t T

V

µ µ

µ

τ µ τ τ
+

= + +

=

∫  (10) 

2. update the control policy using 
( )( 1)

( ) arg min{ ( , , )}
i

i
xx H x V
µ

µ

µ µ+ =  (11) 

which in this case is  
( )( 1) 1( ) ( ) ( )
i

i T
xx R g x V xµµ + −=−  (12) 

Equations (10) and (12) formulate a new policy iteration 
algorithm to solve for the optimal control without making 

use of any knowledge of the system internal dynamics ( )f x . 

The online implementation of the algorithm will be discussed 
in next section. This algorithm is an online version of the 
offline algorithms proposed in [2], [3], [1], algorithm 
inspired by the online adaptive critic techniques proposed by 
computational intelligence researchers [4], [20], [28]. 

The convergence of the algorithm is now discussed. 

Lemma 1 Solving for 
( )i

V
µ

 in equation (10) is equivalent 

with finding the solution of the Lyapunov equation 

( )

( )

( ) ( )0 ( , ( )) ( ( ) ( ) ( ))

(0) 0

i

i

i T i
xr x x V f x g x x

V

µ

µ

µ µ= + +

=

 (13) 

The proof is based on the fact that the solution of the 

Lyapunov equation (13), 
( )i

V
µ

, satisfies also equation (10), 

and that equation (10) has a unique solution.  

Remark 1 Note that although the same solution is 
obtained whether solving the equation (10) or (13), solving 
equation (10) does not require any knowledge on the system 

dynamics ( )f x . 

From Lemma 1 it follows that the algorithm (10) and (12) 
is equivalent to iterating between (13) and (12), without 
using knowledge of the system internal dynamics. 

Theorem 1 (convergence) The policy iteration algorithm 
(10) and (12) converges to the optimal control solution on 

the trajectories having initial state 0x ∈Ω . 

Proof: In [2], [3], [1] it was shown that using policy 

iteration conditioned by an initial admissible policy (0) ( )xµ , 

all the subsequent control policies will be admissible and the 
iteration (13) and (12) will converge to the solution of the 
HJB equation. Based on the proven equivalence between the 
equations (10) and (13) we can conclude that the proposed 
online adaptive optimal control algorithm will converge to 
the solution of the optimal control problem (2) without using 

knowledge on the internal dynamics of the controlled system 
(1).▐ 

IV. ONLINE NEURAL NETWORK-BASED APPROXIMATE 

OPTIMAL CONTROL SOLUTION ON AN ACTOR-CRITIC 

STRUCTURE 

For the implementation of the iteration scheme given by 
(10) and (12) one only needs to have knowledge of the input 

to state dynamics, i.e. the function ( )g x , which is required 

for the policy update in equation (12); however no 
knowledge on the internal state dynamics, described by 

( )f x , is required.  

In order to solve for the cost function 
( )

( )
i

V x
µ  in equation 

(10) we will use a neural network, which is a universal 
approximator [12], to obtain an approximation of the value 
function for any given initial state x∈Ω . The cost function 

( )

( ( ))
i

V x t
µ  will be approximated by 

( ) ( ) ( )

1

( ) ( ) ( ) ( )
i i i

L
T

j j L L
j

V x w x x
µ µ µφ

=

= =∑ w φ  (14) 

a neural network with L neurons on the hidden layer and 

activation functions 1( ) ( ), (0) 0j jx Cφ φ∈ Ω = . 
( )i

jw
µ  denote 

the weights of the neural network, ( )L xφ  is the vector of 

activation functions and 
( )i

L
µw  is the weight vector. The 

issues related with the neural network approximation error 
will be addressed in a future paper while we continue the 
following derivations assuming that the neural network is an 
exact description of the cost function. 

Using the neural network description for the value 
function, equation (14), equation (10) can be written as  

( ) ( )( )
( ( )) ( , ( )) ( ( )).

i i
t T

T i T
L L L L

t

x t r x x d x t T
µ µµ τ

+

= + +∫w φ w φ

 (15) 
As the cost function was replaced with the neural network 
approximation, equation (15) will have the residual error  

( )

( )( ( ), ) ( , ( ))

[ ( ( )) ( ( ))].
i

t T
i i
L

t

T
L L L

x t T r x x d

x t T x tµ

δ µ τ
+

= +

+ + −

∫

w φ φ

 (16) 

From the perspective of temporal difference learning 
methods, e.g. [7], this error can be viewed as temporal 
difference residual error.  

To determine the parameters of the neural network 
approximating the cost function, in the least-squares sense, 
we use the method of weighted residuals. Thus we seek to 
minimize the objective  

( , ) ( , )i i
L LS x T x T dxδ δ

Ω
= ∫  (17) 

Using the inner product notation for the Lebesgue integral 

one can write 

( )

( , )
, ( , ) 0

i

i
iL
L

L

d x T
x T

d
µ

δ
δ

Ω

=
w

. (18) 



 

 

 

Thus, conditioned by 

[ ( ( )) ( ( ))],[ ( ( )) ( ( ))]TL L L Lx t T x t x t T x t
Ω

Φ = + − + −φ φ φ φ  

invertible, we obtain the solution 

( ) 1 ( )
[ ( ( )) ( ( ))], ( ( ), ( ( )))

i
t T

i
L L L

t

x t T x t r x s x s ds
µ µ

+
−

Ω

=−Φ + − ∫w φ φ

. (18) 
To show that Φ  is invertible the following technical results 
are needed. 

Lemma 2 If the set { }
1

N

jφ is linearly independent and 

( )u∈Ψ Ω  then the set { }
1

( )
N

T
j f guφ∇ + is also linearly 

independent. 

For the proof see [2]. 

We now introduce a lemma proving that Φ can be 
inverted. 

Lemma 3 Let ( ) ( )xµ ∈Ψ Ω  such that ( ) ( ) ( )f x g x xµ+  is 

asymptotically stable. If the set { }
1

N

jφ  is linearly 

independent then 0T∃ >  such that ( )x t∀ ∈Ω  the set 

{ }
1

( ( ), ) ( ( )) ( ( ))
N

j j jx t T x t T x tφ φ φ= + −  is also linearly 

independent.  

The proof is by contradiction with the result in lemma 2. 

Based on the result of Lemma 3, conditioned by an 
excitation requirement related to the selection of the sample 

time T, the parameters iW  of the cost function can be 

calculated using only online measurements of the state vector 
and the integrated reward over a finite time interval. The 
control policy is updated at time t+T, after observing the 
state x(t+T) and it will be used for controlling the system 
during the time interval [ , 2 ]t T t T+ + ; thus the algorithm is 

suitable for online implementation from the control theory 
point of view. Figure 1 presents the structure of the system 
with optimal adaptive controller. 

 
It is observed that the update of both the actor and the 

critic is performed at discrete moments in time. However, the 
control action is a full fledged continuous-time control, with 
its constant gain updated at discrete moments in time, since 
the critic update is based on the observations of the 
continuous-time cost over a finite sample interval. As a 
result, the algorithm converges to the solution of the 
continuous-time optimal control problem. 

The flowchart of the online algorithm is presented in Fig. 
1. 

 
Subsequent to the calculation of the solution of equation 

(15), given by (18), the control policy is updated according 
to the equation (12), written explicitly as 

( )( 1) 11
2

( ) ( )( ) ( )
i

i T T
L x Lx R g x x

µµ + −=− φ w . (19) 

V. RELATION OF THE PROPOSED ALGORITHM WITH REWARD-

BASED LEARNING MECHANISMS IN THE MAMMAL BRAIN 

The adaptive algorithm based on policy iteration is 
implemented on an actor-critic structure [18], [28]. The way 
in which the actor-critic structure performs continuous-time 
closed loop control while searching for optimal control 
policies points out the existence of two time scales for the 
mechanisms involved: a fast time scale which characterizes 
the continuous time control process, and a slower time scale 
which characterizes the learning processes at the levels of the 
critic and the actor. 

Thus the actor and critic structures perform tasks at 
different operation frequencies in relation with the nature of 
the task to be performed. The fact that is not surprising given 
that the actor-critic structure was inspired by the way in 
which the reward based learning takes place in the mammal 
brain. Different oscillation frequencies are connected with 
the way in which different areas of the brain perform their 
functions of processing the information received from the 
sensors [15]. Low level control structures must quickly react 
to new information received from the environment while 
higher level structures slowly evaluate the results associated 
with the present behavior policy. 

Another feature of the online policy iteration algorithm 
presented in this paper is related with the nature of 
information, i.e. a computed temporal difference (TD) error 
signal, required for the learning process to take place at the 
critic level. In relation to this there exist a number of reports, 
e.g. [22], [23], which argue that the dopamine signal 
produced by basal ganglia structures in the mammal brain 
encodes the TD error between the received and the expected 
rewards and the fact that this dopamine signal favors the 
learning process by increasing the synaptic plasticity of 
certain groups of neurons.  

A third, and most distinctive, attribute of the adaptive 
optimal control algorithm concerns the value of the sample 
time used for obtaining the reward information for the Critic 
learning process. Lemma 3 indicates that the learning 
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Figure 1. Flowchart of the online algorithm 
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Figure 1. Structure of the system with adaptive controller 



 

 

 

process at the Critic level is conditioned by certain values of 
the reward signal sampling. Choosing the value of the 
sample time is generally considered to be a technical 
requirement of online algorithms and is related with the well 
known persistency of excitation requirement which grants 
asymptotic convergence for the learning process. It was thus 
even more surprising to learn that there exists in the brain a 
mechanism, described in [6] and verified against 
experimental data, which supports the existence of a variable 
sample time for the reward signal. 

The connection between the learning mechanisms in the 
mammal brain and the learning structures and algorithms 
developed for control engineering purposes provides a strong 
argument in favor of a desired collaboration between the 
engineering fields of computational intelligence and control, 
and cognitive science. 

VI. CONCLUSION 

In this paper we presented a new adaptive controller based 
on a reinforcement learning algorithm, namely policy 
iteration, to solve on-line the continuous time optimal control 
problem without using knowledge about the system’s internal 
dynamics. Several remarks relating the proposed algorithm 
with reinforcement learning mechanisms in the mammal 
brain have been included. 
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