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Attitude observer for a rigid body

The estimated attitude relative to the true attitude of a rigid
body can be described by a matrix R(t) which is orthogonal:
R(t)TR(t) = I. The estimate is correct when R(t) = I.

Consider an observer with error dynamics

Ṙ(t) = kR(t)[R(t)T − R(t)] + R(t)E(t)

where E(t) represents measurement noise. The condition
E(t) = −E(t)T guarantees that R(t) stays orthogonal.
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Today’s Theorem

If qE(t)q ≤ ǫ <
√
6k then almost all solutions to

Ṙ(t) = kR(t)[R(t)T − R(t)] + R(t)E(t)

converge towards a ball around the identity matrix I with radius
√

4− 4
√

1− ǫ
2/(8k2)

Remark: For ǫ = 0, this proves almost global stability of R = I.
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Why “almost all”?

For topological reasons, there will always be some trajectories
that do not converge:

Anders Rantzer Rotational motion with almost global stabil ity



Outline

○ Introduction and main result

• Lyapunov analysis of the attitude observer

○ Review of density functions

○ Deriving the main result using density functions
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A Lyapunov Argument for Exact Measurements

The Lyapunov function V (R) = 1
2
qR − Iq2 satisfies V ∈ [0, 4]

d

dt
V (R(t)) = −k

2
qR(t) − R(t)Tq2

An orthogonal 3$ 3 matrix R(t) ,= I can be symmetric only if it
has two eigenvalues at −1, that is when V (R) takes its
maximal value 4.

Hence the Lyapunov function is strictly decreasing once V < 4.
This proves almost global stability of the equilibrium R = I.
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A Lyapunov Argument with Measurement Noise

For qE(t)q ≤ ǫ the Lyapunov function satisfies

d

dt
V (R(t)) ≤ −1

2
qR(t) − R(t)Tq

(

kqR(t) − R(t)Tq − ǫ

)

so V is decreasing except in intervals near V = 0 and V = 4,
where qR − RTq is small.

Those intervals shrink as ǫ tends to zero.
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Stability by Cayley Parametrization

It is straightforward to verify that the transformation

R = (I + S)(I − S)−1 S = (R + I)−1(R − I)

maps orthogonal R into skew-symmetric S and vice versa.

Using this transformation, the noise free observer dynamics

Ṙ = kR(RT − R)

can equivalently be written

Ṡ = −kS

This proves limt→∞ R(t) = I except when R(0) + I is singular.
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A criterion for almost global attractivity

Let f ∈ C1(M ,TM) while ẋ = f (x) has a stable equilibrium in
x = 0 and solutions exist for t ∈ [0,∞]. Suppose there exists a
non-negative ρ ∈ C1(M \ {0},R), integrable outside a
neighborhood of zero, and

[∇ ⋅ (ρ f )](x) > 0 for almost all x ,= 0.

Then limt→∞ x(t) = 0 for almost all initial states x(0).
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Weakly almost input-to-state stability

Consider ẋ = f (x,u) with stable equilibrium in x = 0 for u = 0
and solutions for t ∈ [0,∞]. Suppose ρ non-negative,
integrable outside a neighborhood of zero, and

pxp ≥ γ (pup) [ ∇ ⋅ [ρ(x) f (x,u))] ≥ Q(x)

with Q(x) > 0 for almost all x ,= 0. Then

lim inf
t→∞

px(t, x0,u)p ≤ γ (quq∞)

for almost all initial states x0.

[David Angeli 2004]
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Density functions for observer dynamics

Analyzing Ṙ = f (R) with the density function ρ where

f (R) = kR(RT − R) ρ(R) = 1

qI − Rq4

gives

∇ ⋅ (ρ f ) = 2k

qI − Rq4 > 0

so

lim
t→∞
R(t) = I

for almost all initial states R(0).

Notice: Strict inequality gives robustness to measurement noise
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Density functions with measurement noise

f (R, E) = kR(RT − R) + RE ρ(R) = 1

qI − Rq4

gives

∇ ⋅ [ρ(R) f (R, E)] = 2

qI − Rq6
(

kqI − Rq2 + tr[(RT − R)E]
)

If qEq ≤ ǫ, the divergence test with γ (x) = 8x2/(2k2 + x2) gives

lim inf
t→∞

qR(t) − Iq2 < 8ǫ2

2k2 + ǫ
2

for almost all initial states R(0). This brings the trajectory within
a domain where the Lyapunov argument can be applied.
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A picture summarizes the argument

If qE(t)q ≤ ǫ <
√
6k, the density function argument proves that

almost all trajectories must enter the ball around I with radius
√

4+ 4
√

1− ǫ
2/(8k2) (below the orange dashed line)

Once there, the Lyapunov argument proves convergence to the

ball with radius
√

4− 4
√

1− ǫ
2/(8k2) (below the blue line)
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Conclusions

Due to topological constraints in rigid body dynamics,
every stability proof of Lyapunov type must involve nonstrict
inequalities. Hence, a Lyapunov argument is not robust.

On the contrary, we have shown for a rigid body attitude
observer that a density function argument can quantify the
robustness to measurement noise.
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