Rotational motion with almost global stability

at Symposium for Bill Wolovich, December 2008

José Vasconcelos¹ **, Anders Rantzer**² **, Carlos Silvestre**¹ **, Paulo Oliveira**¹

¹ Instituto Superior Técnico, Lisbon, Portugal

² Automatic Control LTH, Lund University, Sweden

The estimated attitude relative to the true attitude of a rigid body can be described by a matrix *R*(*t*) which is orthogonal: $R(t)^T R(t) = I$. The estimate is correct when $R(t) = I$.

Consider an observer with error dynamics

$$
\dot{R}(t) = kR(t)[R(t)^T - R(t)] + R(t)E(t)
$$

where *E*(*t*) represents measurement noise. The condition $E(t) = -E(t)^T$ guarantees that $R(t)$ stays orthogonal.

Today's Theorem

If $\|E(t)\| \leq \epsilon < \sqrt{6}k$ then almost all solutions to

$$
\dot{R}(t) = kR(t)[R(t)^T - R(t)] + R(t)E(t)
$$

converge towards a ball around the identity matrix *I* with radius

$$
\sqrt{4-4\sqrt{1-\epsilon^2/(8k^2)}}
$$

Remark: For $\epsilon = 0$, this proves almost global stability of $R = I$.

Why "almost all"?

For topological reasons, there will always be some trajectories that do not converge:

Outline

- Introduction and main result
- **Lyapunov analysis of the attitude observer**
- Review of density functions
- Deriving the main result using density functions

The Lyapunov function $V(R) = \frac{1}{2} ||R - I||^2$ satisfies $V \in [0, 4]$

$$
\frac{d}{dt}V(R(t)) = -\frac{k}{2}||R(t) - R(t)^{T}||^{2}
$$

An orthogonal 3×3 matrix $R(t) \neq I$ can be symmetric only if it has two eigenvalues at -1 , that is when $V(R)$ takes its maximal value 4.

Hence the Lyapunov function is strictly decreasing once $V < 4$. This proves almost global stability of the equilibrium $R = I$.

A Lyapunov Argument with Measurement Noise

For $||E(t)|| < \epsilon$ the Lyapunov function satisfies

$$
\frac{d}{dt}V(R(t)) \leq -\frac{1}{2}||R(t) - R(t)^{T}||\left(k||R(t) - R(t)^{T}|| - \epsilon\right)
$$

so *V* is decreasing except in intervals near $V = 0$ and $V = 4$, where $\|R - R^T\|$ is small.

Those intervals shrink as ϵ tends to zero.

A Lyapunov Argument with Measurement Noise

For $||E(t)|| \leq \epsilon$ the Lyapunov function satisfies

$$
\frac{d}{dt}V(R(t)) \leq -\frac{1}{2}||R(t) - R(t)^{T}||\left(k||R(t) - R(t)^{T}|| - \epsilon\right)
$$

so *V* is decreasing except in intervals near $V = 0$ and $V = 4$, where $\|R - R^T\|$ is small.

Those intervals shrink as ϵ tends to zero.

Anders Rantzer [Rotational motion with almost global stability](#page-0-0)

A Lyapunov Argument with Measurement Noise

For $||E(t)|| \leq \epsilon$ the Lyapunov function satisfies

$$
\frac{d}{dt}V(R(t)) \leq -\frac{1}{2}||R(t) - R(t)^{T}||\left(k||R(t) - R(t)^{T}|| - \epsilon\right)
$$

so *V* is decreasing except in intervals near $V = 0$ and $V = 4$, where $\|R - R^T\|$ is small.

Those intervals shrink as ϵ tends to zero.

Stability by Cayley Parametrization

It is straightforward to verify that the transformation

$$
R = (I + S)(I - S)^{-1}
$$

$$
S = (R + I)^{-1}(R - I)
$$

maps orthogonal *R* into skew-symmetric *S* and vice versa. Using this transformation, the noise free observer dynamics

$$
\dot{R}=kR(R^T-R)
$$

can equivalently be written

$$
\dot{S}=-kS
$$

This proves $\lim_{t\to\infty} R(t) = I$ except when $R(0) + I$ is singular.

Outline

- Introduction and main result
- Lyapunov analysis of the attitude observer
- **Review of density functions**
- Deriving the main result using density functions

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Let $f \in \mathbf{C}^1(M, TM)$ while $x = f(x)$ has a stable equilibrium in $x = 0$ and solutions exist for $t \in [0, \infty]$. Suppose there exists a non-negative $\rho \in \mathbf{C}^1(M \setminus \{0\},\mathbf{R})$, integrable outside a neighborhood of zero, and

 $[\nabla \cdot (\rho f)](x) > 0$ for almost all $x \neq 0$.

Weakly almost input-to-state stability

Consider $\dot{x} = f(x, u)$ with stable equilibrium in $x = 0$ for $u = 0$ and solutions for $t \in [0, \infty]$. Suppose ρ non-negative, integrable outside a neighborhood of zero, and

 $|x| > \gamma(|u|) \Rightarrow \nabla \cdot [\rho(x) f(x, u)] \ge Q(x)$

with $Q(x) > 0$ for almost all $x \neq 0$. Then

```
lim inf
\min_{t\to\infty} |x(t, x_0, u)| \leq \gamma(||u||_{\infty})
```
for almost all initial states x_0 .

[David Angeli 2004]

Outline

- Introduction and main result
- Lyapunov analysis of the attitude observer
- Review of density functions
- **Deriving the main result using density functions**

Density functions for observer dynamics

Analyzing $R = f(R)$ with the density function ρ where

$$
f(R) = kR(R^T - R)
$$
 $\rho(R) = \frac{1}{\|I - R\|^4}$

gives

$$
\nabla \cdot (\rho f) = \frac{2k}{\|I - R\|^4} > 0
$$

so

$$
\lim_{t\to\infty}R(t)=I
$$

for almost all initial states *R*(0).

Notice: Strict inequality gives robustness to measurement noise

Density functions with measurement noise

$$
f(R, E) = kR(RT - R) + RE \qquad \rho(R) = \frac{1}{\|I - R\|^4}
$$

gives

$$
\nabla \cdot [\rho(R) f(R, E)] = \frac{2}{\|I - R\|^6} (k \|I - R\|^2 + \text{tr}[(R^T - R)E])
$$

If $||E|| \leq \epsilon$, the divergence test with $\gamma(x) = 8x^2/(2k^2 + x^2)$ gives

$$
\liminf_{t \to \infty} \|R(t) - I\|^2 < \frac{8\epsilon^2}{2k^2 + \epsilon^2}
$$

for almost all initial states $R(0)$. This brings the trajectory within a domain where the Lyapunov argument can be applied.

A picture summarizes the argument

If $\Vert E(t)\Vert\leq \epsilon<\sqrt{6}k$, the density function argument proves that $\sqrt{4 + 4\sqrt{1 - \epsilon^2/(8k)}}$ almost all trajectories must enter the ball around *I* with radius (below the orange dashed line) Once there, the Lyapunov argument proves convergence to the ball with radius $\sqrt{4 - 4 \sqrt{1 - \epsilon^2/(8 k^2)}}$ (below the blue line)

Anders Rantzer [Rotational motion with almost global stability](#page-0-0)

Conclusions

- Due to topological constraints in rigid body dynamics, every stability proof of Lyapunov type must involve nonstrict inequalities. Hence, a Lyapunov argument is not robust.
- • On the contrary, we have shown for a rigid body attitude observer that a density function argument can quantify the robustness to measurement noise.