
Numerical algorithms for polynomial plus/minus factorization

M.Hromčı́k and M. Šebek

Abstract— Two new algorithms are presented in the paper
for the plus/minus factorization of a scalar discrete-time poly-
nomial. The first method is based on the discrete Fourier
transform theory (DFT) and its relationship to the Z-transform.
Involving DFT computational techniques and the famous fast
Fourier transform routine brings high computational efficiency
and reliability. The method is applied in the case-study of H2-
optimal inverse dynamic filter to an audio equipment. The
second numerical procedure originates in a symmetric spectral
factorization routine, namely the Bauer’s method of the 1950s.
As a by product, a recursive LU factorization procedure for
Toeplitz matrices is devised that is of more general impact and
can be of use in other areas of applied mathematics as well.
Performance of the method is demonstrated by an l1 optimal
controller design example.

I. INTRODUCTION

This paper describes a new method for the plus-minus fac-
torization of a discrete-time polynomial. Given a polynomial
in the z variable,

p(z) = p0 + p1z + p2z
2 + · · ·+ pnzn,

without any roots on the unit circle, its plus/minus factoriza-
tion is defined as

p(z) = p+(z)p−(z) (1)

where p+(z) has all roots inside and p−(z) outside the unit
disc. Clearly, the scalar plus/minus factorization is unique up
to a scaling factor.

Polynomial plus/minus factorization has many applications
in control and signal processing problems. For instance, ef-
ficient algebraic design methods for time-optimal controllers
[1], quadratically optimal filters for mobile phones [13], [14],
and l1 optimal regulators [2], to name just a few, all recall
the +/- factorization as a crucial computational step.

II. EXISTING METHODS

In any case, the plus/minus factors for n ≥ 5 cannot be
achieved by a finite number of algebraic operations. This
conclusion is due to the Galois’s theorem stating that the
roots of a polynomial of degree greater or equal to five
cannot be expressed in a closed form. Therefore all numerical
algorithms for plus/minus factorization are iterative in nature
and give just an approximation to the genuine factors. Some

The work of M. Hromčı́k was supported by the Ministry of Education of
the Czech Republic (MSMT) under contract No. 1M0567. The work of M.
Šebek was supported by the Grant Agency of the Czech Republic grant No.
102/08/0186 and by the Czech Ministry of Education, Grant 1P2008LA300.

M.Hromcik, Center for Applied Cybernetics, Czech Technical University
in Prague, Faculty of Electrical Engineering, Karlovo namesti 13-G, Prague,
Czech Republic xhromcik@control.felk.cvut.cz

M. Šebek, Department of Control Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech Republic

existing approaches to this problem are mentioned in this
section.

The most natural way is based on the computation of poly-
nomial’s roots. Having determined the roots r1, r2, . . . , rn of
p(z) via any standard procedure for polynomial roots [10]
and considering that p(z) 6= 0 for all |z| = 1 by assumption,
one can divide the roots into two groups R+ = {ri :
m?(ri) = 0, |ri| < 1}, R− = {ri : m?(ri) = 0, |ri| > 1}.
Clearly, R+ and R− are the sets of roots of p+(z) and p−(z)
respectively.

Performance of this procedure heavily hinges on the
accuracy of the computed polynomial roots. If these roots are
distinct and separated enough, standard numerical routines
[10] can determine them with good precision. However, it is
well known that the relative accuracy of a computed root
decreases as its multiplicity grows [10], and so does the
accuracy of the spectral factor thus obtained.

In addition, if the degree of the involved polynomial is
high, say over 50, the very computation of the spectral
factor coefficients is problematic due to rounding errors. It
means that even if the desired roots of the spectral factor
are evaluated with good accuracy, its particular coefficients,
which are typically required in applications, are not accurate.

An alternative algorithm relies on polynomial spectral fac-
torization and gratest polynomial divisor computation. If q(z)
is the spectral factor of the symmetric product p(z)p(z−1)
then the greatest common divisor of p(z) and q(z) is
obviously the plus factor of p(z). The minus factor can be
derived similarly from p(z−1) and q(z−1). As opposed to
the previous approach based on direct roots computation
which typically makes problems for higher degrees and/or
roots multiplicities, this procedure relies on numerically
reliable algorithms for polynomial spectral factorization [6],
[4]. Unfortunately, the polynomial greatest common divisor
computation is much more sensitive. As a result, both these
techniques do not work properly for high degrees (say over
50).

In this report we will introduce a completely new approach
to the problem, inspired by our work on efficient algorithms
for polynomial spectral factorization, see [4]. It is based on
the DFT theory and provides both a fruitful view on the
relation between DFT and the Z-transform theory, and a
powerful computational tool in the form of the fast Fourier
transform algorithm.

III. DISCRETE FOURIER TRANSFORM

If p = [p0, p1, . . . , pN] is a vector of complex num-
bers, then its direct DFT is given by the vector y =

[y0, y1, . . . , yN], where

yk =
N∑

i=0

pie
−j 2πk

N+1 i (2)

The vector y is called the image of vector p. Conversely, if
y = [y0, y1, . . . , yN] is given, then its inverse DFT recovers
the original vector p = [p0, p1, . . . , pN], where

pi =
1

N + 1

N∑
k=0

ykej 2πi
N+1 k (3)

DFT is of great interest in various engineering fields. For
its relationship to Fourier series of sampled signals, DFT is
frequently used in signal processing. One of the experimental
identification methods employs DFT as well [11]. The close
relationship of DFT to interpolation is also well known and
was used recently to solve some tasks of the polynomial
control theory [5] and to treat robustness analysis problems
of certain kind [12].

For numerical computation of DFT, the efficient recursive
FFT algorithm was developed by Cooley and Tukey in
1965 [8]. If the length of the input is a power of two,
a faster version of FFT (sometimes called radix-2 FFT)
can be employed [8]. In general, the FFT routine features
a highly beneficial computational complexity and involves
O(N log(N)) multiplications and additions for a vector of
length N .

Thanks to the importance of DFT mentioned above,
the FFT algorithms are naturally available as built-in
functions of many computing packages (MATLABTM,
MATHEMATICATM etc.). This is another good reason for
employing the procedure proposed in this paper.

IV. PLUS/MINUS FACTORIZATION AND DFT

A. Theory

Given a polynomial

p(z) = p0 + p1z + · · ·+ pdz
d ,

nonzero for |z| = 1, we first apply a direct degree shift to
arrive at a two-sided polynomial

p̃(z) = p0z
−δ + · · ·+ pdz

d−δ,

where δ is the number of roots of p(z) lying inside the unit
circle. Now, instead of solving equation (1), we look for
p̃+(z) = p̃+

0 + p̃+
1 z−1 + · · · + p̃+

δ z−δ and p̃−(z) = p̃−0 +
p̃−1 z + · · ·+ p̃−d−δz

d−δ such that

p̃(z) = p̃+(z)p̃−(z) (4)

Relation between the pairs p̃+, p̃− and p+, p− are obvious.
In order to solve the equation (4), logarithm is applied.

As p̃(z), p̃+(z) and p̃−(z) are all analytic and nonzero in
1− ε < |z| < 1+ ε the logarithms exist. Let us denote them
as ln p̃(z) = n(z), ln p̃+(z) = x+(z), ln p̃−(z) = x−(z).
Here n(z), obtained from the given p̃(z), is a Laurent infinite
power series

n(z) = · · ·+ n1z + n0 + n−1z
−1 + · · · .

It can be directly decomposed,

n(z) = x+(z) + x−(z−1)

with power series

x+(z) = x+
0 +x+

1 z−1+· · · = n0

2
+n−1z

−1+· · · , x−(z) = x−0 +x−1 z+· · · = n0

2
+n1z+· · ·

(5)
analytic for 1− ε < |z| and 1 + ε > |z| respectively.

At this time the necessity of the degree shift yielding
the two-sided polynomial p̃ can be explained. According to
the Cauchy’s theorem of argument [26], the curve p(z) for
|z| = 1 encircles the origin in the complex plane as many
times as is the number of roots of p(z) lying in the complex
unit disc. Hence the logarithms cannot be applied directly
as its imaginary part, reading the phase of p(z), would not
be continuous. An easy solution to avoid this situation is to
move the desired number of roots of p(z) from infinity to
zero by performing proper degree shift.

Once x+(z) and x−(z) are computed, the plus/minus
factors p̃+, p̃− are recovered as

p̃+ = ex+(z) = p̃+
0 +p̃+

1 z−1+· · · , p̃− = ex−(z) = p̃−0 +p̃−1 z+· · · .

Since x+(z) is analytic in 1 − ε < |z|, so is p̃+(z) and
hence it can be expanded according to (3). Moreover, as a
result of exponential function, p̃+(z) is nonzero in 1− ε <
|z|. In other words, it has all its zeros inside the unit disc and
is therefore Schur stable. Note also that p̃+(z) has to be a
(finite) polynomial of degree d (due to the uniqueness of the
solution to the problem which is known to be a polynomial)
though n(z) is an infinite power series. Similar reasoning
proves the p̃− factor desired properties.

B. Numerical Algorithm

Numerical implementation follows the ideas considered
above. A polynomial p(z) is represented by its coefficients
pi, i = 0 . . . r or, equivalently, by function values Pk in the
Fourier interpolating points gk, k = −R . . . 0 . . . R, where
R ≥ d, g = ej 2π

2R+1 . Accordingly, a power series can
be approximated by a finite set of its coefficients or by
its values in a finite number of interpolation points on the
unit circle. Some operations of the procedure, namely the
decomposition of n(z) into x+(z) and x−(z), are performed
in the time domain (operations on coefficients), while the
others (evaluation of logarithmic and exponential functions)
are executed in the frequency domain (operations with values
over |z| = 1). Mutual conversion between the two domains
is mediated by the shifted discrete Fourier transform operator
defined as

Xk =
R∑

i=−R

xig
−ki, xi =

1
2R + 1

R∑
k=−R

Xkgki ,

which approximates the Z-transform by dealing with −R ≤
i ≤ +R instead of infinite −∞ < i < +∞, and with z =
gk, −R ≤ k ≤ +R instead of continuum z = ejφ, − π ≤
φ ≤ +π.

The accuracy of results depends on the number of inter-
polation points 2R + 1 involved in the computation. This

number can be considered as a simple tuning knob of the
computational process.

Resulting numerical routine looks then as follows:

Algorithm 1: Scalar discrete-time plus-minus
factorization.

Input: Scalar polynomial
p(z) = p0 + p1z + · · ·+ pdz

d, nonzero for |z| = 1.
Output:Polynomials p+(z) and p−(z), the plus and minus

factors of p(z).
Step 1 - Choice of the number of interpolation points.

Decide about the number R. R approximately 10
to 50 times larger than d is recommended up to our
practical experience.

Step 2 - Degree shift.
Find out the number δ of zeros of p(z) inside
the unit disc. A modification of well known Schur
stability criterion can be employed, see [23] for
instance.
Having δ at hand, construct a two-sided polynomial
p̃(z) as

p̃(z) = p(z)z−δ = p0z
−δ+· · ·+pdz

d−δ = p̃−δz
−δ+· · ·+p̃0+· · ·+p̃d−δz

d−δ

Step 3 - Direct FFT (I):
Using the FFT algorithm, perform direct DFT,
defined by (2), on the vector

p = [p̃0, p̃1, . . . , p̃d−δ, 0, 0, . . . , 0, p̃−δ, . . . , p̃−1︸ ︷︷ ︸
2R+1

]

In this way, the set P = [P0, P1, . . . , P2R] of the
values of p̃(z) at the Fourier points is obtained.

Step 4 - Logarithmization:
Compute the logarithms Ni = ln(Pi) of all
particular Pi’s and form the vector N =
[N0, N1, . . . , N2R] of them. Ni’s thus obtained are
the values of the function n(z) = ln(p̃(z)) at
related Fourier points on the unit complex circle.

Step 5 - Inverse FFT (I):
To get the vector n =
[n0, n1, . . . , nR, n−R, . . . , n−1], containing the
coefficients of the two-sided polynomial n(z) =
n−Rz−R + · · ·+n−1z

−1 +n0 +n1z + · · ·+nRzR

approximating the power series of ln(m(z)) for
the given R, perform inverse DFT, defined by (3),
on the vector N using the FFT algorithm.

Step 6 - Decomposition:
Take the ”causal part” x+ of n:
x+ = [n0/2, n1, . . . , nR]. Similarly, construct x−

as x− = [n0/2, n−1, . . . , n−R].
Step 7 - Direct FFT (II):

Evaluate x+(z) = n0/2 + n1z
−1 + . . . + nRz−R

at the Fourier points by applying direct FFT on
the set x+ and get X+ = [X+

0 , . . . , X+
R]. Proceed

with x−(z) in obvious way.
Step 8 - Exponential function:

To get the plus/minus factors, the exponential func-
tions p̃+(z) = ex+(z) and p̃−(z) = ex−(z) remain

to be evaluated. First we compute the values of
p̃+(z) and p̃−(z) at the Fourier points: P̃

+
=

[eX+
0 , . . . , eX+

R]. Similar steps apply for the minus
part.

Step 9 - Inverse FFT (II):
Finally, the coefficients p̃+ = [p̃+

0 , . . . , p̃+
R] of

p̃+(z) are recovered by inverse FFT performed
on the vector P̃

+
. The resulting approximation

to the plus factor p̃+(z) then equals p̃+(z) =
p̃+
0 + p̃+

−1z
−1 + · · · + p̃+

−δz
−δ. Proceed with the

minus part accordingly.
Step 10- Finalization:

Convert the plus-minus factors p̃+(z) and p̃−(z)
of p̃(z) into the desired factors of p(z) using the
following formulas

p− = p̃−, p+ = (p̃+)?,

where the star stands for discrete-time conjugate,
z → z−1. �

Note that one obtains R coefficients of p̃+ and p̃− in the
step 9. However, p+(z) being the plus factor of p(z) is
known to be of degree δ only and only the first δ + 1
coefficients of p̃+(z) should be significant as a result while
the remaining ones should be negligible. As the number R
increases, these values theoretically converge to zero indeed
since the formulas of DFT become better approximations to
the Z-transform definitions.

V. RADIX-2 MODIFICATION OF THE ALGORITHM

The basic version of the routine proposed above is based
on the shifted dicrete Fourier transform. This modification of
DFT appears useful during the derivation of the Algorithm 1
due to its more transparent relationship to the spectral theory.
It can be easily transformed to the standard DFT as it is
defined in the section 3, simply by reordering related vector
entries (see the steps 2 and 4 of Algorithm 1). However, 2R+
1 interpolation points are used for the FFT algorithm and
unfortunately this number is always odd and cannot equal
any power of two. Therefore the radix-2 fast version of the
FFT routine cannot be addressed. Nevertheless, this slight
drawback can be easily avoided if the periodicity of direct
and inverse DFT formulas is taken into account. Basically,
one can construct the initial set as

[p̃0, p̃1, . . . , p̃d−δ, 0, 0, . . . , 0, p̃−δ, . . . , p̃−1︸ ︷︷ ︸
2R

]

which has a power-of-two entries in total. The Algorithm
1 remains valid also in this case with 2R + 1 replaced by
2R and R + 1 by 2R−1 respectively, up to one point: in the
Step 6, the decomposition reads x+ = [n0/2, n1, . . . , nR/2]
instead of x+ = [n0/2, n1, . . . , nR]. This minor modification
of the proposed method further increases its efficiency since
the powerful radix-2 FFT can be called.

VI. COMPUTATIONAL COMPLEXITY

Thanks to the fact that the fast Fourier transform algo-
rithm is extensively used during the computation, the overall
routine features an expedient computational complexity.

Provided that the above modifications of the computational
procedure are considered, namely if the resulting number
of interpolation points is taken as a power of two, the fast
radix-2 FFT can be employed. In this case, (R log2 R)/2
multiplications and R log2 R additions are needed to evaluate
either direct or inverse DFT of a vector of length R [8].
Let us suppose in addition that computing the logarithm or
exponential of a scalar constant takes at most k multiplica-
tions and l additions. Then the particular steps of the mod-
ified Algorithm 1 involve (R log2 R)/2 multiplications and
R log2 R additions (Steps 3, 5, 7, 9), and kR multiplications
and lR additions (Steps 4, 8) respectively. Hence the overall
procedure consumes

4
R log R

2
+ 2kR = 2R log R + 2lR

complex multiplications, and

4R log R + 2lR

complex additions. By inspecting the above formulas one
can see that asymptotically the proposed method features
O(R log R) complex multiplications and additions.

VII. UPGRADING LOUDSPEAKERS DYNAMICS

An original approach has been published by Sternad
et al. in [15] how to improve performance of an audio
equipment at low additional costs. The authors use the LQG
optimal feedforward compensator technique to receive an
inverse dynamic filter for a moderate quality loudspeaker. By
attaching a signal processor implementing this filter prior to
the loudspeaker, the dynamical imperfections of the original
device are eliminated and the overall equipment behaves as
an aparatus of a much higher class. To learn more about this
research and to get some working examples, visit [16].

Unlike their predecessors, the authors try to modify the
sound over the whole range of frequencies. Such a complex
compensation fully employs the increasing performance of
signal hardware dedicated to CD-quality audio signals, and
at the same time calls for fast and reliable factorization
solvers [15]. We believe our new algorithm will significantly
contribute to this goal.

The loudspeaker dynamics is considered in the form of an
ARX model

y(t) = z−k B(z)
A(z)

u(t).

Since the impulse response is rather long for a high sampling
frequency (CD-quality standard of 44 kHz was used), both
the numerator and denominator of the model are of high
orders, say one to five hundred.

The model has an unstable inverse in general since some
of its zeros may lie outside the unit disc. Hence a stable

approximation has to be calculated to be used in the feed-
forward structure. The authors recall the LQG theory and
seek for a compensating filter

u(t) =
Q(z)
P (z)

w(t)

such that the criterion J = E[|y(t)−w(t− d)|2 + ρ|u(t)|2]
is minimized.

For broadband audio signals, the optimal filter is given in
the form

u(t) =
Q1(z)A(z)

β(z)
w(t)

where β results from the spectral factorization

ββ∗ = BB∗ + ρAA∗

and Q1 is the solution of a subsequent Diophantine equation

zk−dB∗(z) = rβ∗(z)Q1(z−1) + zL∗(z),

see [15].
As for the spectral factor computation, the authors employ

the Newton-Raphson iterative scheme [6] in the cited work
[15]. According to their results and our experience, this
method has been probably the best available procedure for
scalar polynomial spectral factorization so far [15], [7].
This method works quite well also for high degrees of
involved polynomials in contrast to the straightforward way
of computing and distributing the roots of BB∗ + ρAA∗.

Let us perform a benchmark experiment to compare the
existing approach and our newly proposed algorithm for
particular numerical data kindly provided by Mikael Sternad
and colleagues from the University of Uppsala. Up to now,
two models of the loudspeakers dynamics have been sent to
us for testing purposes and the results related to the more
complex one are presented in the following.

The data in concern are given as follows. The numerator
B(z) = B0 + B1z

−1 + · · · + B250z
−250 is an unstable

polynomial of degree 250, A(z) is stable of degree 90, and
k = 160. Taking ρ = 0, the spectral factorization of m(z) =
B(z)B∗(z) = m250z

−250 + . . . + m0 + . . . + m250z
250 is to

be performed. In this special case, the spectral factor x(z)
of m(z) can be effectively constructed as

x(z) = B+(z)
(
B−(z)

)∗
z−k

where B+, B− are the plus and minus factors of B respec-
tively and k is the degree of B−.

All presented experiments were realized on a PC computer
with Pentium III/1.2GHz processor and 512 MB RAM, under
MS Windows 2000 in MATLAB version 6.1.

Results of this experiment for various values of the param-
eters N are summarized and related in the following table.
Namely, the computational time and accuracy of results are
of interest. To obtain the former characteristic, the MATLAB
abilities were employed (the built-in functions tic/toc
). The computational error is defined here as the largest
coefficient of the expression B+B− − B, evaluated in the
MATLAB workspace, divided by the largest coefficient of B
(all in absolute value).

Time [s] Accuracy
FFT(14) 0.23 sec 6.28 · 10−3

FFT(15) 0.45 sec 2.52 · 10−8

FFT(16) 0.89 sec 4.65 · 10−11

FFT(17) 1.75 sec 2.40 · 10−12

TABLE 1: Accuracy and efficiency of compared algorithms.

These tests prove the power of the new algorithm in such
tough examples. Neither of the two procedures described
in section 2 can factor this large polynomial. Direct roots
evaluation method, based on the standard MATLAB function
roots, gives totally meaningless results (accuracy of 1043)
while the routine based on spectral factorization fails due
to numerical problems with greatest common polynomial
divisor evaluation (Polynomial Toolbox function rdiv was
used [7]).

VIII. DISCUSSION
The success in modifying a selected numerical procedure,

originally developed for polynomial spectral factorization,
to handle the non-symmetric plus/minus decomposition sug-
gests that other well known spectral factorization routines
might work well in the non-symmetric context as well.
Actually, we decided to go this way and succeeded in
adapting a classical polynomial spectral factorization routine,
the Bauer’s algorithm [18], for the plus/minus case. Our
results are presented in subsequent paragraphs.

IX. BAUER’S METHOD FOR SPECTRAL
FACTORIZATION

F. I. Bauer published his method for spectral factorization
of a discrete-time scalar polynomial as early as in 1955,
see [18], [19]. The procedure is based on the relation-
ship between polynomials and related infinite Toeplitz-type
Sylvester matrices.

A. Algebra of Sylvester matrices

Given a two-sided polynomial p(z) = p−mz−m + · · · +
p0 + · · · + pnzn, we define its Sylvester companion matrix
TN

p of order N ,
N ≥ max(n, m)

as an N by N square matrix constructed according to the
following scheme:

TN
p =



p0 p1 . . . pn 0 . . . 0

p−1 p0 p1 . . . pn
. . .

...
... p−1

. 0

p−m

...
. . . pn

0 p−m
. . .

...
...

. p1

0 · · · 0 p−m . . . p−1 p0


To show the relation between the polynomial algebra and

the algebra of Sylvester matrices, let us consider two simple
polynomials p1(z) = 3z−1 + 2 + z and p2(z) = z−1 + 3.
Their companion matrices of order four read respectively

T 4
p1 =


2 1 0 0
3 2 1 0
0 3 2 1
0 0 3 2



T 4
p2 =


3 0 0 0
1 3 0 0
0 1 3 0
0 0 1 3


Their sum p3(z) = p1(z) + p2(z) equals

p3(z) = 4z−1 + 5 + z

and its companion matrix can be computed as direct sum of
related companion matrices T 4

p1, T
4
p2:

T 4
p3 =


5 1 0 0
4 5 1 0
0 4 5 1
0 0 4 5


Similarly, their product p4 = p1p2 = 3z−2+11z−1+7+3z

has a companion matrix

T 4
p4 = T 4

p1T
4
p2 =


7 3 0 0
11 7 3 0
3 11 7 3
0 3 11 6


B. Bauer’s method for spectral factorization

As we have illustrated above, finite dimensional matrices
are sufficient to accommodate ”finite” algebraic problems.
On the other hand, if we do not restrict to finite dimension-
ality of related matrices, transcendent problems, including
spectral factorization, involving polynomials can be resolved
by this approach as well.

We will illustrate the Bauer’s spectral factorization method
by means of a simple example. An interested reader can find
detailed description in the original work [18] or, alternatively,
in the survey paper [20].

Given p(z) = 2z−1+5+2z its companion matrix of order
five reads

Tp =


5 2 0 0 0
2 5 2 0 0
0 2 5 2 0
0 0 2 5 2
0 0 0 2 5


As p is symmetric and positive definite on the unit circle

its spectral factor x exists such that

x?x = p

holds and x is stable. The spectral factor coefficients can be
approximated using the Cholesky factorization of Tp:

Tx =


2.236 0.8944 0 0 0
0 2.049 0.9759 0 0
0 0 2.012 0.9941 0
0 0 0 2.003 0.9985
0 0 0 0 2.001



The diagonals of Tx obviously converge to the genuine
spectral factor coefficients: x(z) = 1 + 2z.

An interesting feature of this routine is that particular
columns of Tx can be computed iteratively, using only latest
preceding column and the coefficients of p(z), see [20] for
details. As a result, the final algorithm is favorably memory
efficient. Mainly for this reason the method is still quite
popular in spite of the fact that some later approaches, see
eg. [21], [22], provide a faster rate of convergence.

X. PLUS/MINUS FACTORIZATION VIA BAUER’S
APPROACH

A modification of the Bauer’s method for the non-
symmetric polynomial plus/minus factorization is worked out
in this section.

A. LU factorization

As we have shown in section 9.1, algebra of compan-
ion matrices is not limited to the symmetric case. Also
the matrix theory provides useful factorization techniques
for non-symmetric matrices along with stable and efficient
procedures for their computation.

Bauer’s method calls for the Cholesky factorization to get
the desired spectral factor. This routine assumes the input
matrix to be symmetric and positive definite which is the case
of the spectral factorization problem. However, if we aim at
modifying the method in order to capture the non-symmetric
plus/minus factorization case, we need to leave this concept
and employ another technique since the companion matrix
is no longer symmetric.

The Cholesky factorization decomposes the input matrix
into a product of two matrices basically that are upper and
lower triangular respectively. Considering this observation,
the most natural alternative for the non-symmetric plus/minus
case seems to be the LU-factorization concept.

Definition 4.2 (general LU-factorization): LU factorization
expresses any square matrix A as the product of a permu-
tation of a lower triangular matrix and an upper triangular
matrix,

A = LU

where L is a permutation of a lower triangular matrix with
ones on its diagonal and U is an upper triangular matrix.

The permutations are necessary for theoretical reasons in the
general case. For instance, the matrix(

0 1
1 0

)
cannot be expressed as the product of triangular matrices
without interchanging its two rows. However, the special
band structure of the companion matrices can be exploited
to show that the permutations are not necessary and the
factorization can be expressed simply as a product of a lower
and an upper triangular matrix.

Lemma 4.1: Given a scalar discrete-time two-sided poly-
nomial p(z) with roots not lying on the unit circle, its
companion matrix can be factored in the form Tp = LU

where L and U are lower and upper triangular matrices
respectively.

Proof: If a (possibly two-sided) polynomial p is nonzero at
the unit circle then the principal minors of its companion
matrix are known to be nonzero, see the reasoning in [20].
Further, according to [9], Theorem 3.2.1, a matrix A has the
desired lower-upper triangular factorization if its all principal
minors are nonzero. Combining these two observations, we
arrive at the statement of the lemma.

Following Lemma 4.1, a new algorithm for polynomial
plus/minus factorization is suggested in the next subsection.

B. Plus/minus factorization algorithm

Given a (scalar, one-sided) polynomial

p(z) = p0 + p1z + · · ·+ pdz
d ,

nonzero for |z| = 1, we first apply a direct degree shift to
arrive at a two-sided polynomial

p̃(z) = p0z
−δ + · · ·+ pdz

d−δ,

where δ is the number of roots of p(z) lying inside the unit
circle. Now, instead of solving equation (4.1), we look for
p̃+(z) = p̃+

0 + p̃+
1 z−1 + · · · + p̃+

δ z−δ and p̃−(z) = p̃−0 +
p̃−1 z + · · ·+ p̃−d−δz

d−δ such that

p̃(z) = p̃+(z)p̃−(z) (6)

Relation between the pairs p̃+, p̃− and p+, p− are obvious.
Having composed the companion matrix TN

p̃ of suffi-
ciently high order N , its LU factorization is performed. An
approximation to the plus and minus factors of p̃ can then be
read from the last column of the L and U factors respectively,
similarly to the spectral factorization case.

The degree shift yielding the two-sided polynomial p̃ is
necessary to assure correct decomposition of p̃ into stable
and antistable parts. If the shift were not performed or were
different from δ, the decomposition would still work in
principle , however, the strict stability and antistability of
particular factors would be lost.

Detailed description of the resulting algorithm follows.

Algorithm 4.2: Scalar discrete-time plus/minus
factorization.

Input: Scalar polynomial
p(z) = p0 + p1z + · · ·+ pdz

d, nonzero for |z| = 1.
Output:Polynomials p+(z) and p−(z), the plus and minus

factors of p(z).
Step 1 - Choice of the companion matrix size.

Decide about the number N . N approximately 10
to 50 times larger than d is recommended up to our
practical experience.

Step 2 - Degree shift.
Find out the number δ of zeros of p(z) inside
the unit disc. A modification of well known Schur
stability criterion can be employed, see [23] for
instance.

Having δ at hand, construct a two-sided polynomial
p̃(z) as

p̃(z) = p(z)z−δ = p0z
−δ + · · ·+ pdz

d−δ =

= p̃−δz
−δ + · · ·+ p̃0 + · · ·+ p̃d−δz

d−δ

Step 3 - Construction of TN
p̃ :

Following the section 4.8.1, construct the Sylvester
companion matrix related to p̃ of order N .

Step 4 - LU decomposition of TN
p̃ :

Perform the LU decomposition of TN
p̃ :

TN
p̃ = LU

L and U are lower and upper triangular matrices
respectively.

Step 5 - Construction of polynomial factors:
Columns of the L and U matrices contains a
nonzero vector l, u of length δ+1 and d−δ+1 lying
under and above the main diagonal respectively.
Take the last full column l = [l0, l1, . . . , lδ] to
create the plus factor of p(z) as

p+(z) = l0 + l1z + · · ·+ lδz
δ

The minus factor is constructed in a similar way
using the last vector u. �

XI. EXAMPLE

To illutrate the usefulness of polynomial plus/minus fac-
torization and to demonstrate the power of the proposed
algorithm at the same time, we will discuss the l1 optimal
control problem.

l1 optimization is a modern design technique, see [24]
for a survey. The design goal lies in minimizing the l1
norm of a closed loop transfer function. Such a way, the
magnitude of measured output signal is minimized with
respect to bounded, yet persistent input disturbances. l1
optimal controllers have already found an application in
some irrigation channel regulation problem, see [25] for
instance.

Quite recently a new method has been suggested by Z.
Hurak et al. for the computation of an l1 optimal discrete-
time SISO compensator, see [2]. Unlike their predcessors, the
authors rely on the transfer function description purely and
carefully exploit the algebraic structure of the problem. The
resulting algorithm is given in [2] along with the following
example.

Let us compute a feedback controller the minimizes `1
norm of the sensitivity function for a plant described by

G(z−1) =
b(z)
a(z)

=
−45− 132z−1 + 9z−2

−20− 48z−1 + 5z−2

The solution consists of the following computational steps
1) plus/minus factorization of a(z−1) =

a+(z−1)a−(z−1) and b(z−1) = b+(z−1)b−(z−1)
2) find the minimum degree solution to a(z−1)x0(z−1)+

b(z−1)y0(z−1) = 1

3) find a solution to a−(z−1)b−(z−1)x(z−1)+y(z−1) =
a(z−1)x0(z−1) of given degree of y(z−1) and with
minimum ‖.‖1 norm.

4) the optimal controller is given by

C(z−1) =
a+(z−1)b+(z−1)y0(z−1) + a(z−1)x(z−1)
a+(z−1)b+(z−1)x0(z−1)− b(z−1)x(z−1)

The first step can be efficiently and reliably performed using
Algorithm 4.2. We take small-size Sylvester matrices first
for illustrative purposes, say N equal to 4. Ta and Tb read
respectively

Ta =


−48 5 0 0
−20 −48 5 0

0 −20 −48 5
0 0 −20 −48



Tb =


−132 −45 0 0

9 −132 −45 0
0 9 −132 −45
0 0 9 −132


and their LU factorization gives rise to

T+
a =


1 0 0 0
0.4167 1 0 0
0 0.3993 1 0
0 0 0.4003 1



T−a =


−48 5 0 0

0 −50.083 5 0
0 0 −49.997 5
0 0 0 −50


and

T+
b =


1 0 0 0

−0.06818 1 0 0
0 −0.06663 1 0
0 0 −0.06667 1



T−b =


−132 −45 0 0

0 −135.1 −45 0
0 0 −135 −45
0 0 0 −135


These matrix factors give a fair approximation to

a+, a−, b+, b− polynomials:

a+ = 0.40003z−1 + 1, a− = −49.997z−1 + 5

b+ = −0.067z−1 + 1, b− = −135z−1 − 45

To get more accurate results, N is increased. Taking N =
20 yields perfectly accurate results,

a+ = 2/5z−1 + 1, a− = −50z−1 + 5

b+ = −1/15z−1 + 1, b− = −135z−1 − 45

XII. LU FACTORIZATION OF TOEPLITZ
MATRICES

The LU decomposition can be performed via standard rou-
tines, see [9] for instance, implemented in standard packages
such as LAPACK or commercial MATLAB. Nevertheless,
thanks to the strong structurallity of involved Toeplitz ma-
trices, dedicated efficient routines for their LU factorization
can be developed.

We assume the L and U factors in special forms depicted
in Figure 3. Analyzing the product LU , the procedure given
in the figure in the form of a MATLAB pseudocode can be
developed to receive subsequent iterations of l and u vectors.

XIII. CONCLUSION

A new method for the discrete-time plus/minus factor-
ization problem in the scalar case has been proposed. The
new method relies on numerically stable and efficient FFT
algorithm. Besides its good numerical properties, the deriva-
tion of the routine also provides an interesting look into the
related mathematics, combining the results of the theory of
functions of complex variable, the theory of sampled signals,
and the discrete Fourier transform techniques. The suggested
method is employed in a practical application of improving
the quality of a hi-fi system.

Encouraged by the success in modifying a spectral fac-
torization algorithm for the plus/minus factorization case,
we decided to re-visit another classical spectral factorization
routine, namely the Bauer’s method of the 1950s. This
idea has proved fruitful and our efforts resulted in another
plus/minus factorization routine. As a by product, a recursive
LU factorization procedure for Toeplitz matrices has been
developed that is of more general impact and can be of use
in other areas of applied mathematics as well. Performance
of the method was demonstrated by an l1 optimal control
system design example.

XIV. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of
National Research Organization and reviewers’ comments.

References are important to the reader; therefore, each
citation must be complete and correct. If at all possible,
references should be commonly available publications.

REFERENCES

[1] Kučera V., Analysis and Design of Discrete Linear Control Systems,
Academia Prague (1991).

[2] Hurák, Z., Böttcher, A., Šebek, M., Minimum distance to the range of
a lower triangular Toeplitz operator in l1 norm and application in l1
optimal control, SIAM Journal on Control and Optimization, Vol. 45,
No. 1, pp. 107-122, 2006.

[3] Kwakernaak H., Šebek M, Polynomial J-Spectral Factorization, IEEE
Trans. Automatic Control, Vol. 39, No.2, pp. 315-328 (1994).

[4] M. Hromcik, J. Jezek, M. Sebek, New Algorithm for Spectral Fac-
torization and its Practical Application, Proceedings of the European
Control Conference ECC’2001, Porto, Portugal, September 1-5, 2001.

[5] Hromčı́k M., Šebek M., Numerical and Symbolic Computation of
Polynomial Matrix Determinant, Proceedings of the 38th Conference
on Decision and Control CDC’99, Phoenix AZ, USA, December 7-10,
1999.

[6] Ježek J. and Kučera V., Efficient Algorithm for Matrix Spectral
Factorization,Automatica, vol. 29, pp. 663-669, 1985.

[7] Kwakernaak H., Šebek M., PolyX Home Page,
http://www.polyx.cz/, http://www.polyx.com/.

[8] Bini D., Pan V., Polynomial and Matrix Computations, Volume 1:
Fundamental algorithms, Birkhäuser, Boston (1994).

[9] Golub G. H., Van Loan C. F., “Matrix Computations”, The Johns
Hopkins University Press, Baltimore and London, 1990.

[10] Higham N. J., Accuracy and Stability of Numerical Algorithms,
S.I.A.M., Philadelphia (1996).

[11] Ljung L., System Identification: Theory for the User, Prentice-Hall
Information and Systems Sciences Series. Englewood Cliffs, Prentice-
Hall (1987).

[12] Hromčı́k M., Šebek M, Fast Fourier Transform and Robustness
Analysis with Respect to Parametric Uncertainties, Proceedings of
the 3rd IFAC Symposium on Robust Control Design ROCOND 2000,
Prague, CZ, June 21-23, 2000.

[13] M. Sternad and A. Ahleén, Robust Filtering and Feedforward Control
Based on Probabilistic Descriptions of Model Errors, Automatica, 29,
pp. 661-679.

[14] K. Ohrn, A. Ahleén and M. Sternad, A Probabilistic Approach to Mul-
tivariable Robust Filtering and Open-loop Control, IEEE Transactions
on Automatic Control, 40, pp. 405-417.

[15] M. Sternad, M. Johansson, J. Rutstrom, Inversion of Loudspeaker
Dynamics by Polynomial LQ Feedforward Control, Proceedings of
the 3rd IFAC Symposium on Robust Control Design ROCOND 2000,
Prague, CZ, June 21-23, 2000.

[16] University of Uppsala, Signals and Systems Department, Adaptive Sig-
nal Processing, Course Homepage, http://www.signal.uu.se/Courses/
CourseDirs/AdaptSignTF/Adapt00.html

[17] The Mathworks, Using MATLAB 5.3, The Matrhworks, 1999.
[18] Bauer, F. L.: Ein direktes iterations verfahren zur Hurwitz-zerlegung

eines polynoms (in German), Arch. Elektr. Uebertragung, vol. 9, pp.
285290, 1955.

[19] Bauer, F. L.: Beitrage zur entwicklung numerischer verfahren fur
programmgesteuerte rechenanlagen, II. Direkte faktorisierung eines
polynoms (in German), Sitz. Ber. Bayer. Akad. Wiss., pp. 163203,
1956.

[20] Wu, S.P., Boyd, S. and Vandenberghe, L.: FIR Filter Design via Spec-
tral Factorization and Convex Optimization, Applied Computational
Control, Signal and Communications, Biswa Datta editor, Birkhauser,
1997.

[21] Ježek, J. and Kučera, V.: Efficient Algorithm for Matrix Spectral
Factorization, Automatica, vol. 29, pp. 663-669, 1985.

[22] Hromčı́k, M., Ježek, J. and Šebek, M.: New Algorithm for Spectral
Factorization and its Practical Application. 6th European Control
Conference ECC 2001, Porto, Portugal, September 4-7, 2001, pp.
3104-3109

[23] Barnett, S.: Polynomials and Linear Control. Marcel Dekker, New
York and Basel (1983).

[24] Dahleh, M.A. and Diaz-Bobillo, I.J.: Control of Uncertain Systems:
A Linear Programming Approach, Prentice Hall, New Jersey, 1995.

[25] Malaterre, P.-O., Khammash, M.: l-1 Controller Design for a High-
Order 5-pool Irrigation Canal System, IEEE-CDC conference, Decem-
ber, 2000, in Sydney, Australia.

[26] Needham, T.: Visual Complex Analysis, Oxford University Press,
1997.

