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Polynomial plus-minus factorization

Given: Discrete-time polynomial

that is nonzero on the unit circle:

0( ) ... n

np z p p z  

( ) ( ) ( )p z p z p z 

Find: stable polynomial           and unstable such that( )p z

1 ( ) 0,z p z  

( )p z

Motivation: - cancellation of stable zeros in classical control

- time-optimal control (deadbeat, FIFO)

- exact model matching

- quadratic optimal filters

- algebraic approach to l1 optimal control 

Special case - symmetric:

- less general but more popular (H2,LQG

- many algorithms a programs

 1 * 1( ) ( ) ( ) ( )p z p z p z p z  
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+/- factorization & polynomial roots

( ) ( ) ( )p z p z p z  

stable roots

unstable roots

Example:

all roots

stable & unstable

- not useful for high degrees for rounding errors
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+/- factorization via symmetric factorization & GCD

( )p zGiven:

* * 1( ) ( ) ( ), ( ) ( )P z p z p z p z p z  Compute:

Get   ( )p z

Spectral factorization of    
*( ) : ( ) ( ) ( ), ( )P z P z q z q z q z stable

as greatest common divisor of           and   ( ) ( )q z p z

Weak point:

polynomial greatest common divisor computation - numerically 

demanding, unreliable for high degrees   
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Discrete Fourier transform (DFT)
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direct DFT

inverse DFT

Relation
to Z-transform:
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infinite sum => finite sum
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direct DFT

inverse DFT

Relation
to Z-transform

 0 1, ,..., ,...np p p ( )P z integral =>
=> finite sum
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Discrete Fourier transform (DFT)
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direct DFT

inverse DFT

time domain frequency domain

Relation to Z-transform

For n high enough, DFT approaches Z-Transform

switch between time and freq.domains by DFT

Discrete Fourier transform (DFT)
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Fast Fourier transform algorithm

• developed for practical computation of DFT

• Cooley & Tukey, 1970‘s

• numerically attractive - high effectivity - , numerical stability

• principle: DFT of a vector of length n is recursively decomposed into 2

DFT‘s of half sizes; thanks to periodicity of                  , a lot of  

computations are saved  

• frequently used algorithm - DFT defines the spectrum of a finite or 

periodic discrete-time signal - often required in signal processing

• FFT algorithm(s) naturally available in many computing packages as 

fast built-in functions (MATLAB, Mathematica, …)
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( ) ( ) ( )p z p z p z    log ( ) log ( ) log ( )p z p z p z    

sum decomposition - straightforward

( )( ) x zp z e
 

( )x z

DFT & polynomial spectral factorization

= +

-nonzero

-analytical
-analytical -analytical

-analytical
-nonzero

powers of z and z -1

freq. domain
computations

time domain
computation

nn

( ) ( )p z z p z
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For n high enough, DFT approaches Z-Transform

switch between time and freq.domains by DFT

DFT & polynomial spectral factorization

( ) ( ) ( )p z p z p z    log ( ) log ( ) log ( )p z p z p z    

sum decomposition - straightforward

( )( ) x zp z e
 

( ) ( )p z z p z
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time domain

(coeffs.)

freq.domain

(values at |z|=1)

( ) ( ) ( )p z p z p z    log ( ) log ( ) log ( )p z p z p z    

sum decomposion - straightforward

given p
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DFT & polynomial spectral factorization
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time domain
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(values at |z|=1)
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DFT & polynomial spectral factorization

direct DFT direct DFT
inverse DFT inverse DFT

FFT algorithm
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Inverse dynamics filter for moderate quality loudspeaker

proposed and tested by Mikael Sternad and colleagues (U. of Uppsala)

http://www.signal.uu.se/Courses/Descr9899/sigproject.html

Upgrading loudspeakers dynamics
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Upgrading loudspeakers dynamics

Identification: in an anechoic chamber

High sampling frequency (44 kHz) 

models of high orders (200, 500, 1000)
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Upgrading loudspeakers dynamics

Bode plots

Sound examples

http://www.signal.uu.se/Courses/Descr9899/sigproject.html

uncompensated compensated
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Bauer-type Algorithm for Polynomial 
plus-minus Factorization

Martin Hromčík, Michael Šebek

Centre for Applied Cybernetics
Czech Technical University in Prague, CZ
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Bauer‘s method for spectral factorisation
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TF F

Cholesky factorization

(n+r) by (n+r), symmetric, pos.def.

columns converge to the spectral factorcomputed iteratively

- symmetric
- positive definite at |z|=1
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Modification for +/- factorisation

• relax the symmetry condition

• substitute LU non-symmetric factorisation

for symmetric Cholesky decomposition

Necessary preliminary step:

perform degree shift - construct  

prior to LU factorisation, where     is the number of stable roots

(given e.g. by the Schur stability test).

0( ) ( ) ... n

np z z p z p z p z       
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Resulting algorithm for +/- factorisation
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LU

Cholesky LU factorization

columns converge to the plus factor

0( ) ( ) n
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Resulting algorithm - example

… to be continued 

1 
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Resulting algorithm - example

2( ) 1 + 0.5832z + 0.083zp z 
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Resulting algorithm - example

( ) 12+24.0074zp z 
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Resulting algorithm - example

( ) 12+24.0074zp z 

2( ) 1 + 0.5832z + 0.083zp z 
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LU iterative scheme for indefinite Toeplitz matrix
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m = length(b);

n = length(a);

X = toeplitz(a,b);

lastCol = X(1:n-1,m);

lastRow = X(n,:);

for i=1:iter_number,

l = [1;a(2:end)./a(1)];

u = b;

X = [X(2:n,2:m) lastCol;lastRow];

l_krat_u = l*u;

X(1:n-1,1:m-1)=X(1:n-1,1:m-1)-l_krat_u(2:n,2:m);

a = X(:,1);

b = X(1,:);

end;


