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Polynomial plus-minus factorization

Given: Discrete-time polynomial

that is nonzero on the unit circle: |Z| =1 = p(z) =0,

Find: stable polynomial p*(z) and unstable p~(z) such that

Motivation: - cancellation of stable zeros in classical control
- time-optimal control (deadbeat, FIFO)
- exact model matching
- quadratic optimal filters
- algebraic approach to |, optimal control

Special case - symmetric:  p(z)= p(z ™) (p*(z) = p(z_l))

- less general but more popular (H,,LQG
- many algorithms a programs
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+ /- factorization & polynomial roots

stable & unstable
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- not useful for high degrees for rounding errors
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+ /- factorization via symmetric factorization & GCD

Given: P(2)

Compute: P(2) = p(2)-p (2), p (2)=p(z™")

Spectral factorization of P(z):P(2) =q (2)q(z), q(z) stable
Get p*(2) as greatest common divisor of ((z) and p(2)

Weak point:

polynomial greatest common divisor computation - numerically
demanding, unreliable for high degrees
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Discrete Fourier transform (DFT)

direct DFT

inverse DFT

Relation
to Z-transform:
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Discrete Fourier transform (DFT)

direct DFT
L@
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Discrete Fourier transform (DFT)

| /’ \
) Re
direct DFT
inverse DFT
m - -

Relation to Z-transform

For n high enough, DFT approaches Z-Transform C——>
> switch between time and freq.domains by DFT
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Fast Fourier transform algorithm

* developed for practical computation of DFT

« Cooley & Tukey, 1970°s

« numerically attractive - high effectivity - - numerical stability

* principle: DFT of a vector of length n is recursively decomposed into 2
DFT's of half sizes; thanks to periodicity of - a lot of
computations are saved

* frequently used algorithm - DFT defines the spectrum of a finite or
periodic discrete-time signal - often required in signal processing

* FFT algorithm(s) naturally available in many computing packages as
fast built-in functions (MATLAB, Mathematica, ...)
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DFT & polynomial spectral factorization

p(z) = z7? p(z) sum decomposition - straightforward
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DFT & polynomial spectral factorization

p(z) = z7? p(z) sum decomposition - straightforward

For n high enough, DFT approaches Z-Transform —— >
—— > switch between time and freq.domains by DFT
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DFT & polynomial spectral factorization

sum decomposion - straightforward

given p (2) n(z) MR ¥ (2) find b (2)

" N(@2) =log M(2) | | X'(2) [—exp

Im Im Im

Sy M 1 A
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DFT & polynomial spectral factorization

sum decomposion - straightforward

'

given p (2) n(z)

A

v

" N(2) = log M(z) X" (2) 5T P (2)

"""" FFT algorithm
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Upgradin

Inverse dynamics filter for moderate quality loudspeaker

loudspeakers dynamics

proposed and tested by Mikael Sternad and colleagues (U. of Uppsala)
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Upgrading loudspeakers dynamics

Identification: in an anechoic chamber

High sampling frequency (44 kHz) —>
—> models of high orders (200, 500, 1000)
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Upgrading loudspeakers dynamics

Bode plots

uncompensated compensated
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Sound examples
http://www.signal.uu.se/Courses/Descr9899/sigproject.ntml
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Bauer-type Algorithm for Polynomial
plus-minus Factorization
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Bauer's method for spectral factorisation

- symmetric
- positive definite at |z|=1

Cholesky factorization

Q

e
‘m, m, m_ 0] =F'F
ml rnO
. ml mn
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0 m, m, mg |

(n+r) by (n+r), symmetric, pos.def.

li=1E=1= A «<—{columns) converge to the spectral factor
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Modification for + /- factorisation

* relax the symmetry condition

« substitute LU non-symmetric factorisation
for symmetric Cholesky decomposition

Necessary preliminary step:

perform degree shift - construct |BEEIAN P2 SIPIA e LaNT.

prior to LU factorisation, where ¢ is the number of stable roots
(given e.g. by the Schur stability test).
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Resulting algorithm for + /- factorisation

columns converge to the plus factor
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Resulting algorithm - example

i1
File Edit Yiew ‘Web Window Help
>> P j
b =
12 + 31z + 15272 + 2z+3 |~—lo=d
>> T = toeplitz([31,15,2,0,0,0,0,0], [31,12,0,0,0,0,0,0])
T s
31 12 0 0 0 0 0 0
15 31 12 0 0 0 0 0
2 15 31 12 0 0 0 0
0 2 15 31 12 0 0 0
0 0 2 15 31 12 0 0
0 0 0 2 15 31 12 0
0 0 0 0 2 15 31 12
0 0 0 0 0 2 15 31
>> [L,U] = 1u(T)
Y | il

... to be continued
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Resulting algorithm - example

ol
File Edit Wew Web ‘Window Help
[, = B
Columns 1 through 5o
1.0000 0 0 0
0.4839 1.0000 0 0
0.0645 0.5647 1.0000 0
0 0.0794 0.5799 1.0000
0 0 0.0826 0.5827
0 0 0 0.0832
0 0 0 0 J
0 0 0 0
Columns & through 8 .
1| E | _JJ_J

Ready
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Resulting algorithm - example

) Command Window

File Edit Wiew Web ‘Window Help

1T =
Columns 1 through 2
31.0000 12.0000 0
0 25.1935 12.0000
0 0 24.2241
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Columns o Through 8
J

0
0
12.0000
24.0413
0

0
0
0

Feady
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Resulting algorithm - example

-} Figure No. 1: Zero-pole map of fraction p-numerator, pminus-denominator N [m] 3]
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<) Command Window

File Edit Wiew ‘Web Window Help
>> res = norm(pplus*pminus-p)/norm(p)
res =
1.7148e-004
« I

Feady

"l
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LU iterative scheme for indefinite Toeplitz matrix

length (b) ;
length (a) ;

= toeplitz(a,b);
lastCol = X(1l:n-1,m);
lastRow = X(n, :);

for i=l:iter number,
[1;a(2:end) ./a(l)];
b;

= [X(2:n,2:m) lastCol;lastRow];

_krat u = 1*u;
X(l:n-1,1:m-1)=X(1:n-1,1:m-1)-1 krat u(2:n,2:m);

a X(:,1);
b X(1,:);
end;
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