Universal Inputs for Identifiability and Observability

Symposium to Honor Bill Wolovich 7 December 2008

Eduardo D. Sontag (with Y. Wang, A. Megretski)

Introduction

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

The Setting

what classes of input signals are sufficient to completely identify the i/o behavior of a system?

The Setting

what classes of input signals are sufficient to completely identify the i/o behavior of a system?

we look for classes ${\mathcal U}$ of inputs and classes of systems s.t.:

if system σ stimulated with inputs from the set \mathcal{U} and corresponding time record of outputs is recorded,

possible theoretically to uniquely (i/o) identify system in class

The Setting

what classes of input signals are sufficient to completely identify the i/o behavior of a system?

we look for classes ${\mathcal U}$ of inputs and classes of systems s.t.:

if system σ stimulated with inputs from the set \mathcal{U} and corresponding time record of outputs is recorded,

possible theoretically to uniquely (i/o) identify system in class

Problem(s) 1: is a single input sufficient?

Problem(s) 1: is a single input sufficient?

if so, does this input need to be very special? (genericity)

Problem(s) 2: what about "simple" inputs?

restricted class of experiments

esp. in systems biology, no experiments w/arbitrary input profiles sometimes only steps, pulses

or, at the other extreme: a "random" input (observed, but originating from a "black box" subsystem)

restricted class of experiments

esp. in systems biology, no experiments w/arbitrary input profiles sometimes only steps, pulses

or, at the other extreme: a "random" input (observed, but originating from a "black box" subsystem)

note: for *linear* (0 initial state), any single \neq 0 input OK (steps, pulses)

e.g. for
$$m=p=1$$
 just do $W(s)=rac{\hat{y}(s)}{\hat{u}(s)}$

[no noise; also, not talking about *steady-state* ID]

(1) generic \mathcal{C}^∞ inputs enough for class of all analytic systems

(1) generic \mathcal{C}^∞ inputs enough for class of all analytic systems

(2) results for bilinear systems, steps and pulses

- a class of nonlinear systems
- theoretically, approximate fading-memory
- enzymatic signaling cascades far from saturation

(1) generic \mathcal{C}^∞ inputs enough for class of all analytic systems

(2) results for bilinear systems, steps and pulses

- a class of nonlinear systems
- theoretically, approximate fading-memory ...
- enzymatic signaling cascades far from saturation
- no regard to computational effort
- deterministic
- finite-time (no stability assumed)

Outline

Introduction

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

universal inputs for observability of bilinear systems:

```
system observable \Rightarrow
```

 \exists inputs that distinguish any pair

(or any state from zero)

idea: construct descending sequence of spaces

 $K_1 \supset K_2 \supset \ldots \supset K_n = \{0\}$

of states indistinguishable from zero

EDS'78: polynomial d.t., analytic c.t. on compacts

Sussmann'79: general theorem for c.t. analytic; and genericity

can be interpreted as *parameter identifiability* (params as constant states)

here:

- universal (and generic) over all possible (analytic) systems
- back to bilinear: very concrete classes of inputs (motivated by biological applications)

(with Yuan Wang, and with YW & Sasha Megretski)

Introduction Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

$$\dot{x} = f(x) + g(x)u, \quad x(0) = x_o, \quad y = h(x)$$

$$\dot{x} = f(x) + g(x)u, \quad x(0) = x_o, \quad y = h(x)$$

• there is a C^{∞} input that serves to distinguish any two C^{ω} systems (independently of the pair, truly universal)

$$\dot{x} = f(x) + g(x)u, \quad x(0) = x_o, \quad y = h(x)$$

• there is a C^{∞} input that serves to distinguish any two C^{ω} systems (independently of the pair, truly universal)

 \bullet in fact, a generic \mathcal{C}^∞ input works

$$\dot{x} = f(x) + g(x)u, \quad x(0) = x_o, \quad y = h(x)$$

• there is a C^{∞} input that serves to distinguish any two C^{ω} systems (independently of the pair, truly universal)

 \bullet in fact, a generic \mathcal{C}^∞ input works

• no possible \mathcal{C}^{ω} input can work

$$\dot{x} = Ax + uNx$$
, $x(0) = x_o$, $y(t) = cx(t)$,

$$\dot{x} = Ax + u Nx$$
, $x(0) = x_o$, $y(t) = cx(t)$,

• step inputs not enough for identifying bilinear systems

$$\dot{x} = Ax + u Nx$$
, $x(0) = x_o$, $y(t) = cx(t)$,

- step inputs not enough for identifying bilinear systems
- nor single pulses

$$\dot{x} = Ax + u Nx$$
, $x(0) = x_o$, $y(t) = cx(t)$,

step inputs not enough for identifying bilinear systems

- nor single pulses
- {pulses of a fixed amplitude (but varying widths)} OK

$$\dot{x} = Ax + uNx$$
, $x(0) = x_o$, $y(t) = cx(t)$,

- step inputs not enough for identifying bilinear systems
- nor single pulses
- {pulses of a fixed amplitude (but varying widths)} OK

to be precise: under non-degeneracy conditions \sim controllability/observability

Systems & distinguishability

single-input single-output initialized σ and $\widehat{\sigma} :$

$$\sigma: \dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad x(0) = x_o, \quad y = h(x(t))$$

and

$$\widehat{\sigma}:\dot{x}(t)=\widehat{f}(x(t))+\widehat{g}(x(t))u(t),\quad x(0)=\widehat{x}_{o},\quad y=\widehat{h}(x(t))$$

(all analytic)

Systems & distinguishability

single-input single-output initialized σ and $\widehat{\sigma}$:

$$\sigma: \dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad x(0) = x_o, \quad y = h(x(t))$$

and

$$\widehat{\sigma}:\dot{x}(t)=\widehat{f}(x(t))+\widehat{g}(x(t))u(t),\quad x(0)=\widehat{x}_{o},\quad y=\widehat{h}(x(t))$$

(all analytic)

 $\Omega := \text{all (m.e.b.) inputs } u : [0, T_u] \to \mathbb{R}$ given two systems σ , $\hat{\sigma}$, input u, solutions defined for $t \in [0, T_u]$,

$$\varphi(t, u) = x(t), \quad y(t) = h(\varphi(t, u))$$

 σ , $\hat{\sigma}$ indistinguishable under u if

$$h(\varphi(t,u)) = \widehat{h}(\widehat{\varphi}(t,u)) \quad \forall t \in [0, T_u]$$

I/O Equivalence

$$\sigma, \widehat{\sigma} \text{ i/o equivalent } (\sigma \equiv \widehat{\sigma}) \text{ w.r.t. all inputs } \mathcal{U} \subseteq \Omega$$

if no input in \mathcal{U} distinguishes:

$$h(\varphi(t, u)) = \widehat{h}(\widehat{\varphi}(t, u)) \quad \forall \ u \in \mathcal{U}, \ t \in [0, T_u]$$

when $\mathcal{U} = \Omega$, just write $\sigma \equiv \widehat{\sigma}$, or "systems i/o equivalent":

cannot be distinguished at all based on "black box" i/o behavior

I/O Equivalence

$$\sigma, \widehat{\sigma} i / o equivalent (\sigma \equiv \widehat{\sigma}) w.r.t. all inputs $\mathcal{U} \subseteq \Omega$
if no input in \mathcal{U} distinguishes:$$

$$h(\varphi(t, u)) = \widehat{h}(\widehat{\varphi}(t, u)) \quad \forall \ u \in \mathcal{U}, \ t \in [0, T_u]$$

when $\mathcal{U} = \Omega$, just write $\sigma \equiv \widehat{\sigma}$, or "systems i/o equivalent":

cannot be distinguished at all based on "black box" i/o behavior

subset $\mathcal{U} \subseteq \Omega$ of inputs sufficient for identifying system class Σ if: for each pair $\sigma, \hat{\sigma}$ in Σ ,

$$\sigma \mathop{\scriptstyle \equiv}\limits_{\mathcal{U}} \widehat{\sigma} \quad \Rightarrow \quad \sigma \mathop{\scriptstyle \equiv}\limits_{\sigma} \widehat{\sigma}$$

i.e., not i/o equivalent $\Rightarrow \exists$ input in set \mathcal{U} which distinguishes

linear systems (finite-dimensional, continuous-time)

$$\dot{x} = Ax + bu$$
, $x(0) = 0$, $y = cx$

$$(A \in \mathbb{R}^{n imes n}, \ b \in \mathbb{R}^{n imes 1}, \ c \in \mathbb{R}^{1 imes n})$$

identifiable by any single nonzero input on a nontrivial interval e.g. constant function (step) or pulse

linear systems (finite-dimensional, continuous-time)

$$\dot{x} = Ax + bu$$
, $x(0) = 0$, $y = cx$

$$(A \in \mathbb{R}^{n imes n}, \ b \in \mathbb{R}^{n imes 1}, \ c \in \mathbb{R}^{1 imes n})$$

identifiable by any single nonzero input on a nontrivial interval e.g. constant function (step) or pulse

what about interesting classes of nonlinear systems?

Introduction

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

Bilinear systems

we consider two different classes of bilinear systems $S_n^I := n$ -dimensional *bilinear systems of type I*: f_0 linear, f_1 affine, $x_0 = 0$, *h* linear:

$$\dot{x} = (A + uN)x + bu, \quad x(0) = 0 y = cx$$

(A, N, b, c) where $A, N \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$ write " $\sigma^o = (A, N, b, c)$ "

Bilinear systems

we consider two different classes of bilinear systems $S_n^I := n$ -dimensional *bilinear systems of type I*: f_0 linear, f_1 affine, $x_0 = 0$, *h* linear:

$$\dot{x} = (A + uN)x + bu, \quad x(0) = 0 y = cx$$

(A, N, b, c) where $A, N \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$ write " $\sigma^o = (A, N, b, c)$ " (linear systems: just N = 0)

Bilinear systems

we consider two different classes of bilinear systems $S_n^I := n$ -dimensional *bilinear systems of type I*: f_0 linear, f_1 affine, $x_0 = 0$, h linear:

$$\dot{x} = (A + uN)x + bu, \quad x(0) = 0 y = cx$$

(A, N, b, c) where $A, N \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$ write " $\sigma^o = (A, N, b, c)$ " (linear systems: just N = 0)

 $S_n^{II} := n$ -dimensional *bilinear systems of type II*: f_0 , f_2 , h all linear, x(0) allowed nonzero:

$$\dot{x} = (A + uN)x, \quad x(0) = b$$

 $y = cx$

```
recall (Isidori, Fliess, 1970s):
```

no need to test all possible inputs

 σ and $\widehat{\sigma}$ (both type I or type II) i/o equivalent iff

$$cA_{i_1}\ldots A_{i_k}b = \widehat{c}\widehat{A}_{i_1}\ldots \widehat{A}_{i_k}\widehat{b}$$

for all sequences of matrices A_j picked out of A and N

```
recall (Isidori, Fliess, 1970s):
```

no need to test all possible inputs

 σ and $\widehat{\sigma}$ (both type I or type II) i/o equivalent iff

$$cA_{i_1}\ldots A_{i_k}b = \widehat{c}\widehat{A}_{i_1}\ldots \widehat{A}_{i_k}\widehat{b}$$

for all sequences of matrices A_j picked out of A and N(enough check sequences of length $n + \hat{n}$) **Theorem:** \exists generic subset $S \subseteq S'_n$ s.t.:

Theorem: \exists generic subset $S \subseteq S'_n$ s.t.: $\forall \sigma^o \in S \exists \widehat{\sigma^o} \in S$ so that:

Theorem: \exists generic subset $S \subseteq S'_n$ s.t.:

 $\forall \ \sigma^o \in \mathcal{S} \ \exists \ \widehat{\sigma^o} \in \mathcal{S} \text{ so that:}$

• σ^o and $\widehat{\sigma^o}$ are i/o equivalent under all constant inputs (steps)

Theorem: \exists generic subset $S \subseteq S'_n$ s.t.:

 $\forall \ \sigma^{o} \in \mathcal{S} \ \exists \ \widehat{\sigma^{o}} \in \mathcal{S} \text{ so that:}$

• σ^o and $\widehat{\sigma^o}$ are i/o equivalent under all constant inputs (steps)

• but σ^o and $\widehat{\sigma^o}$ are not i/o equivalent

Theorem: \exists generic subset $S \subseteq S_n^I$ s.t.:

 $\forall \ \sigma^{o} \in \mathcal{S} \ \exists \ \widehat{\sigma^{o}} \in \mathcal{S} \text{ so that:}$

• σ^o and $\widehat{\sigma^o}$ are i/o equivalent under all constant inputs (steps)

• but σ^o and $\widehat{\sigma^o}$ are not i/o equivalent

Theorem: same for class-II.

("generic":= set of 4-tuples $S \subseteq \mathbb{R}^{2n^2+2n}$ w/full measure & open dense)

 $\mathbf{u}_{ au,lpha}(t)$

Theorem: $\forall \tau \geq 0, \ \alpha \in \mathbb{R}, \exists \text{ generic subset } S \subseteq S'_n \text{ s.t.:}$ $\forall \sigma^o \in S \exists \widehat{\sigma^o} \in S \text{ so that:}$

 $\mathbf{u}_{ au,lpha}(t)$

Theorem: $\forall \tau \geq 0, \alpha \in \mathbb{R}$, \exists generic subset $S \subseteq S'_n$ s.t.: $\forall \sigma^o \in S \exists \widehat{\sigma^o} \in S$ so that:

▶ σ^o and $\widehat{\sigma^o}$ are i/o equivalent under the pulse function $\mathbf{u}_{\tau,\alpha}$

 $\mathbf{u}_{ au,lpha}(t)$

Theorem: $\forall \tau \geq 0, \alpha \in \mathbb{R}$, \exists generic subset $S \subseteq S'_n$ s.t.: $\forall \sigma^o \in S \exists \widehat{\sigma^o} \in S$ so that:

σ° and σ̂° are i/o equivalent under the pulse function u_{τ,α}
 but σ° and ô° are not i/o equivalent

 $\mathbf{u}_{ au,lpha}(t)$

Theorem: $\forall \tau \geq 0, \alpha \in \mathbb{R}$, \exists generic subset $S \subseteq S'_n$ s.t.: $\forall \sigma^o \in S \exists \widehat{\sigma^o} \in S$ so that:

σ° and σ̂° are i/o equivalent under the pulse function u_{τ,α}
 but σ° and ô° are not i/o equivalent

Theorem: same for class-II systems.

for any fixed $\alpha \in \mathbb{R}$, $\mathcal{V}_{\alpha} :=$ set of pulses of magnitude α :

$$\mathcal{V}_{\alpha} := \{ \mathbf{u}_{\tau, \alpha} | \ \tau \ge \mathbf{0} \}$$

Theorem: for each $\alpha \neq 0$, \exists generic $\mathcal{M} \subseteq \mathcal{S}'_n$ s.t.,

for every pair of systems σ_1^o , $\sigma_2^o \in \mathcal{M}$,

$$\sigma^{o} \underset{\mathcal{V}_{\alpha}}{\equiv} \widehat{\sigma^{o}} \iff \sigma^{o} \equiv \widehat{\sigma^{o}}$$

for any fixed $\alpha \in \mathbb{R}$, $\mathcal{V}_{\alpha} :=$ set of pulses of magnitude α :

$$\mathcal{V}_{\alpha} := \{ \mathbf{u}_{\tau, \alpha} | \ \tau \ge \mathbf{0} \}$$

Theorem: for each $\alpha \neq 0$, \exists generic $\mathcal{M} \subseteq \mathcal{S}'_n$ s.t.,

for every pair of systems $\sigma_1^o, \, \sigma_2^o \in \mathcal{M}$,

$$\sigma^{o} \underset{\mathcal{V}_{\alpha}}{\equiv} \widehat{\sigma^{o}} \iff \sigma^{o} \equiv \widehat{\sigma^{o}}$$

Theorem: same for type-II

for any fixed $\alpha \in \mathbb{R}$, $\mathcal{V}_{\alpha} :=$ set of pulses of magnitude α :

$$\mathcal{V}_{\alpha} := \{ \mathbf{u}_{\tau, \alpha} | \ \tau \ge \mathbf{0} \}$$

Theorem: for each $\alpha \neq 0$, \exists generic $\mathcal{M} \subseteq \mathcal{S}'_n$ s.t.,

for every pair of systems σ_1^o , $\sigma_2^o \in \mathcal{M}$,

$$\sigma^{o} \underset{\mathcal{V}_{\alpha}}{\equiv} \widehat{\sigma^{o}} \iff \sigma^{o} \equiv \widehat{\sigma^{o}}$$

Theorem: same for type-II

i.e.: set of pulses of amplitude α (and varying length) sufficient

Introduction

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

Sketch of proof of negative results

let $\mathcal{C} :=$ set consisting of all those 4-tuples

 $(Q, N, b_0, c) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$

which satisfy the following conditions:

(a) (Q, b_0, c) is canonical (b) $(Q - N, b_0, c)$ is canonical (c) $e^Q - I$ is invertible (d) $N \notin \mathcal{B}(T(Q, b_0, c))$ where: for each canonical $\sigma = (A, b, c)$, pick (unique, self-adjoint) $T = T(\sigma)$ such that

$$AT = TA', b = Tc', cT = b'$$

and for each nonzero $n \times n$ matrix S, ("commutator") proper linear subspace of $\mathbb{R}^{n \times n}$:

$$\mathcal{B}(S) := \{ N \in \mathbb{R}^{n \times n} \, | \, NS = SN' \}$$

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let $\mathbf{u} = \mathbf{u}_{\tau,\alpha}$ with $\tau = 1, \alpha = 1$.

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let $\mathbf{u} = \mathbf{u}_{\tau,\alpha}$ with $\tau = 1, \alpha = 1$.

Lemma: consider systems of type I $\forall \sigma^{o} \in \mathcal{D}, \exists \widehat{\sigma^{o}} \in \mathcal{D} \text{ s.t.}:$

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let
$$\mathbf{u} = \mathbf{u}_{\tau,\alpha}$$
 with $\tau = 1, \alpha = 1$.

Lemma: consider systems of type I $\forall \sigma^o \in \mathcal{D}, \exists \widehat{\sigma^o} \in \mathcal{D} \text{ s.t.}:$

1. σ^{o} and $\widehat{\sigma^{o}}$ i/o equivalent under the pulse function **u**, but 2. σ^{o} and $\widehat{\sigma^{o}}$ not i/o equivalent

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let
$$\mathbf{u} = \mathbf{u}_{\tau,\alpha}$$
 with $\tau = 1, \alpha = 1$.

Lemma: consider systems of type I $\forall \sigma^o \in \mathcal{D}, \exists \widehat{\sigma^o} \in \mathcal{D} \text{ s.t.}:$

1. σ^{o} and $\widehat{\sigma^{o}}$ i/o equivalent under the pulse function **u**, but 2. σ^{o} and $\widehat{\sigma^{o}}$ not i/o equivalent

for general τ and α_{r} rescale inputs and time scale

let $\mathcal{X} = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times 1} \times \mathbb{R}^{1 \times n}$, and consider the analytic map $\psi : \mathcal{X} \to \mathcal{X}$ defined by

$$\psi: (Q, N, b_0, c) \mapsto (Q - N, N, (\rho(Q))^* b_0, c),$$

where $\rho(Q) = \int_0^1 e^{sQ} ds$, and $\rho(Q)^*$ denotes adjoint matrix of $\rho(Q)$ Lemma: the set $\mathcal{D} = \psi(\mathcal{C})$ is generic

let
$$\mathbf{u} = \mathbf{u}_{\tau,\alpha}$$
 with $\tau = 1, \alpha = 1$.

Lemma: consider systems of type I $\forall \sigma^o \in \mathcal{D}, \exists \widehat{\sigma^o} \in \mathcal{D} \text{ s.t.}:$

1. σ^{o} and $\widehat{\sigma^{o}}$ i/o equivalent under the pulse function **u**, but 2. σ^{o} and $\widehat{\sigma^{o}}$ not i/o equivalent

for general τ and $\alpha,$ rescale inputs and time scale similarly for type II

Construction of $\widehat{\sigma}^{o}$

given
$$\sigma^o = (A, N, b, c) \in \mathcal{D}$$
, there exist
 $(Q, N, b_0, c) \in \mathcal{C} \quad s/t:$
 $A = Q - N, \ b = [\det(\rho(Q)](\rho(Q))^{-1}b_0.$
let $b_1 = \rho(Q)b$
then $b_1 = \det(\rho(Q))b_0$, so:
 $\mathcal{R}(Q, b_1) = \det(\rho(Q))\mathcal{R}(Q, b_0)$
 $\mathcal{R}(Q - N, b_1) = \det(\rho(Q))\mathcal{R}(Q - N, b_0)$

since det $(\rho(Q)) \neq 0$, both (Q, b_1) and $(Q - N, b_1)$ reachable

construction (ctd)

moreover, it can be shown that:

$$T(Q, b_1, c) = \det(\rho(Q)) T(Q, b_0, c),$$

$$\Downarrow$$

$$\mathcal{B}(T(Q, b_1, c)) = \mathcal{B}(T(Q, b_0, c)).$$

so
$$(Q, N, b_1, c) \in C$$

with $M = TN'T^{-1}$, one has:
• $M \neq N$, and
• $ce^{t(Q+\gamma N)}b_1 = ce^{t(Q+\gamma M)}b_1$ for all $\gamma \in \mathbb{R}$ and $t \ge 0$
in particular, for $\gamma = -1$:

$$ce^{t(Q-N)}b_1=ce^{t(Q-M)}b_1 \qquad orall t\geq 0$$

let $\widehat{\sigma^{o}} = ((A + N - M), M, b, c) = (Q - M, M, b, c)$ (compare w/ $\sigma^{o} = (Q - N, N, b, c)$) then: $\widehat{\sigma^{o}} \in \mathcal{D}$, and $\sigma^{o} \equiv \widehat{\sigma^{o}}$, but $\sigma^{o} \not\equiv \widehat{\sigma^{o}}$ Introduction

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Closing Remarks

let $\alpha \neq \mathbf{0}$ be given

 $\mathcal{M}:=$ be the set of 4-tuples satisfying the following two properties:

- 1. (A, b, c) is canonical
- 2. $(A + \alpha N, b)$ is controllable

this is a proper algebraic set, so generic and shown to work

bilinear systems $\sigma \sim \hat{\sigma}$ ("similar" or "internally equivalent") if \exists change of variables x = Tz

s.t. equations of σ get transformed into those of $\widehat{\sigma}$

bilinear systems $\sigma \sim \hat{\sigma}$ ("similar" or "internally equivalent") if \exists change of variables x = Tz

s.t. equations of σ get transformed into those of $\widehat{\sigma}$

i.e. 4-tuples (A, N, b, c) and $(\widehat{A}, \widehat{N}, \widehat{b}, \widehat{c})$ in same GL(n)-orbit under similarity action:

same dimension *n*, and $\exists T \in \mathbb{R}^{n \times n}$ invertible s.t.

$$A = T\widehat{A}T^{-1}, \ N = T\widehat{N}T^{-1}, \ b = T\widehat{b}, \ c = \widehat{c}T^{-1}$$

suppose that both σ and $\widehat{\sigma}$ canonical

Lemma. $\sigma \equiv \hat{\sigma} \iff \sigma \sim \hat{\sigma}$

(and similarity is unique)

suppose that both σ and $\widehat{\sigma}$ canonical

Lemma.
$$\sigma \equiv \hat{\sigma} \iff \sigma \sim \hat{\sigma}$$

(and similarity is unique)

recall: canonical σ means span-reachable and observable 4-tuple (A, N, b, c):

- ▶ no proper subspace of \mathbb{R}^n contains *b* and is invariant under $x \mapsto Ax$ and $x \mapsto Nx$
- ▶ no proper subspace of \mathbb{R}^n is contained in the nullspace of $x \mapsto cx$ and is invariant under $x \mapsto Ax$ and $x \mapsto Nx$

Sketch of positive result (type I)

pick $\sigma_1^o = (A_1, N_1, b_1, c_1)$ and $\sigma_2^o = (A_2, N_2, b_2, c_2)$ in \mathcal{M} , s.t. same outputs for each $u \in \mathcal{V}_{\alpha}$

Sketch of positive result (type I)

pick $\sigma_1^o = (A_1, N_1, b_1, c_1)$ and $\sigma_2^o = (A_2, N_2, b_2, c_2)$ in \mathcal{M} , s.t. same outputs for each $u \in \mathcal{V}_{\alpha}$

must show that $\sigma_1^{\rm o}\equiv\sigma_2^{\rm o}$

Sketch of positive result (type I)

pick $\sigma_1^o = (A_1, N_1, b_1, c_1)$ and $\sigma_2^o = (A_2, N_2, b_2, c_2)$ in \mathcal{M} , s.t. same outputs for each $u \in \mathcal{V}_{\alpha}$ must show that $\sigma_1^o \equiv \sigma_2^o$ fix any $\tau > 0$ applying $\mathbf{u}_{\tau,\alpha} \in \mathcal{V}_{\alpha}$ to the two systems:

$$\dot{x} = (A_1 + uN_1)x + b_1u, \quad x(0) = 0, \quad y = c_1x \\ \dot{z} = (A_2 + uN_2)z + b_2u, \quad z(0) = 0, \quad y = c_2z,$$

one has:

$$c_1 e^{A_1(t-\tau)} x(\tau) = c_2 e^{A_2(t-\tau)} z(\tau) \qquad \forall t \geq \tau,$$

(easy:) for generic $\tau_0 > 0$, $(A_1, x(\tau_0), c_1) \& (A_2, z(\tau_0), c_2)$ canonical

 $\therefore \exists T \in GL(n) \text{ s.t.}$ $A_2 = T^{-1}A_1T, \ z(\tau_0) = T^{-1}x(\tau_0), \ c_2 = c_1T$

(ctd.)

so using $c_2 e^{A_2 s} = c_1 e^{A_1 s} T$ for all s, above becomes:

$$c_1 e^{A_1(t-\tau)} x(\tau) = c_1 e^{A_1(t-\tau)} T z(\tau) \qquad \forall t \ge \tau$$

(ctd.)

so using $c_2 e^{A_2 s} = c_1 e^{A_1 s} T$ for all *s*, above becomes:

$$c_1 e^{A_1(t-\tau)} x(\tau) = c_1 e^{A_1(t-\tau)} T z(\tau) \qquad \forall t \ge \tau$$

from observability of (A_1, c_1) , it follows that

$$x(\tau) = Tz(\tau) \qquad \forall \ \tau > 0$$

or equivalently:

$$\int_0^\tau e^{(A_1+\alpha N_1)s} ds \, b_1 = T \int_0^\tau e^{(A_2+\alpha N_2)s} ds \, b_2 \qquad \forall \ \tau > 0$$

taking $d/d\tau$:

$$e^{(A_1+\alpha N_1)\tau}b_1 = Te^{(A_2+\alpha N_2)\tau}b_2$$

this is true for all $\tau \ge 0$ so in particular:

$$b_1 = Tb_2$$

(ctd.)

on the other hand, taking repeated derivatives in τ and then setting $\tau = 0$, one obtains:

$$(A_1 + \alpha N_1)^k b_1 = T(A_2 + \alpha N_2)^k b_2 \qquad \forall k \ge 0$$

which implies $(0 \le k \le n-1)$:

$$\mathcal{R}(A_1 + \alpha N_1, b_1) = \mathcal{T}[\mathcal{R}(A_2 + \alpha N_2, b_2)]$$

and $(1 \le k \le n)$:

$$(A_1 + \alpha N_1)[\mathcal{R}(A_1 + \alpha N_1, b_1)] = T(A_2 + \alpha N_2)[\mathcal{R}(A_2 + \alpha N_2, b_2)]$$

so

$$(A_1+\alpha N_1)[\mathcal{R}(A_1+\alpha N_1,b_1)]=T(A_2+\alpha N_2)T^{-1}[\mathcal{R}(A_1+\alpha N_1,b_1)]$$

as $\mathcal{R}(A_1 + \alpha N_1, b_1)$ invertible (because $(A_1 + \alpha N_1, b_1)$ is controllable), \Rightarrow $T(A_2 + \alpha N_2)T^{-1} = (A_1 + \alpha N_1)$

so again follows from above, and the fact that $\alpha \neq$ 0, that $\mathit{N}_2 = \mathit{T}^{-1} \mathit{N}_1 \mathit{T}$

so, the 4-tuples are similar, and the systems are i/o equiv

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

A construction

given any analytic function $\kappa(r)$, consider:

$$\dot{x} = 1 \dot{z} = z \dot{w} = (\kappa(x) - u)z y = w$$

analytic system

 $\sigma \text{ and } \widehat{\sigma} \text{ same system, but just different initial states:}$ $x_{0} := (0, 1, 0) \text{ and } \widehat{x}_{0} := (0, 0, 0)$ "observables": $(\{h, L_{f}h, L_{g}h, L_{f}^{2}h, L_{f}L_{g}h, \ldots\})$ are: $\{w, z, \kappa(x)z, \kappa'(x)z, \kappa''(x)z, \ldots\}$ $\Rightarrow y(t) \neq \widehat{h}(t)$ for some u, i.e., $\sigma \not\equiv \widehat{\sigma}$ but, $\sigma \equiv \widehat{\sigma} \quad (y(t) = \widehat{y}(t) \equiv 0)$

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Theorem: there exists a generic set \mathcal{U} of smooth inputs s/t

$$(\forall u \in \mathcal{U}) \qquad \sigma \equiv \widehat{\sigma} \implies \sigma \equiv \widehat{\sigma}$$

i.e.: every u in $\mathcal U$ distinguishes any two σ and $\widehat{\sigma}$

generic:= contains a countable intersections of open dense sets seeing for each T > 0, $C^{\infty}[0, T]$ w/Whitney topology

Identification by jets

 $\sigma\not\equiv \widehat{\sigma}$ if there is some u such that

$$\frac{d^{k}}{dt^{k}}\bigg|_{t=0} y(t,u) \neq \left. \frac{d^{k}}{dt^{k}} \right|_{t=0} \hat{y}(t,u)$$

for some k.

Theorem: there is a generic set $\mathcal{W} \subseteq \mathbb{R}^{\infty}$ such that

for each $\mu = (\mu_0, \mu_1, \mu_2, ...)$ in W, $\exists u$ with $u^{(i)}(0) = \mu_i$ so that for any σ and $\hat{\sigma}$,

(generic: containing a countable intersection of open dense subsets, with the product topology on \mathbb{R}^{∞})

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Review: Chen/Fliess encoding of inputs (m=1)

consider:

$$\dot{C}(t) = (X_0 + \sum_{i=1}^m u_i X_i)C(t), \quad C(0) = 1$$

solution exists by Peano-Baker formula:

$$C[u](t) = \sum_{w} V_{w}[u](t)w$$

w: word in $\{X_0, X_1, \ldots, X_m\}$ $V_w[u]$: iterated integrals of u defined recursively:

$$egin{aligned} V_{\phi}[u](t) &= 1 \ V_{X_iw}[u](t) &= \int_0^t u_i(s) V_w[u](s) \, ds \end{aligned}$$

where $u_0(t) \equiv 1$

e.g.:
$$V_{X_i}[u](t) = \int_0^t u_i(s) \, ds, \quad V_{X_iX_j}[u](t) = \int_0^t u_i(s) \int_0^s u_j(\tau) d\tau ds$$

Review: Fliess Series

$$c = \sum_{w} c(w)w \qquad (c(w) \in \mathbb{R})$$

= $c(\phi) + c(X_0)X_0 + c(X_1)X_1 + \dots c(X_m)X_m$
+ $c(X_0X_0)X_0X_0 + c(X_0X_1)X_0X_1 + \dots$

c is convergent if: $|c(w)| \leq CM^{l} I!$ C, M = const, l = |w|Fliess operator: $u \mapsto y = F_{c}[u]$ defined by:

$$y(t) = \langle c, C[u](t) \rangle = \sum_{w} c(w) V_{w}[u](t)$$

e.g. $(m = 1)$: $y(t) = c(\phi) + c(X_{0}) \int_{0}^{t} ds + c(1) \int_{0}^{t} u(s) ds$
 $+ c(X_{0}X_{1}) \int_{0}^{t} \int_{0}^{s_{1}} u(s_{2}) ds_{2} ds_{1}$
 $+ c(X_{1}X_{1}) \int_{0}^{t} u(s_{1}) \int_{0}^{s_{1}} u(s_{2}) ds_{2} ds_{1} + \dots$

 $F_c[u]$ well defined on [0, T), some T > 0, if c convergent

Look at operators

Fact: *i*/*o* behaviors of initialized state space system are defined by appropriate $\sigma = F_c$, i.e.,

for each u in Ω , $y(t) = F_c[u](t)$

in fact,

$$c(X_{i_1}X_{i_2}\ldots X_{i_r})=L_{g_{i_r}}\ldots L_{g_{i_1}}h(x_0)$$

 $(g_0 := f)$

so enough to show \exists generic set \mathcal{W} in \mathbb{R}^{∞} s/t for each $\mu = (\mu_0, \mu_1 \dots)$ in \mathcal{W} , there is u with $u^{(i)}(0) = \mu_i$ such that: for any c, \hat{c} ,

Sketch of proof

to prove result on series,

enough to deal with c and a specific series \hat{c} – the zero series

infinite jet $\mu = (\mu_0, \mu_1, ...)$ said to be *universal* for a set S of series if $\exists u$ with $u^{(i)}(0) = \mu_i$ s.t.

 $F_c[u] \not\equiv 0$ for each $c \in S$

Definition: family S of Fliess series is:

1. equiconvergent if $\exists r, M > 0$ s.t.

$$|c(w)| \leq M r^{|w|} (|w|)! \quad \forall c \in S$$

compact if compact in weak topology
 (seen as a family of sequences indexed by words in X's)

Main Lemma

Lemma: S compact, equiconvergent, $0 \notin S$

 \Rightarrow {infinite jets universal for S} open dense.

Corollary:

the set of uniformly universal jets is generic

because:

set of nonzero conv Fliess series = $\bigcup_{w,k} S_{w,k}$ where $S_{w,k}$ = all series such that

 $|c(w)| \geq 1/k$

and

$$|c(w)| \le k^l l!$$
 where $l = |w|$

Lemma: Let *S* compact, equiconv,

and assume we know \exists at least one *u* which is universal for *S*, i.e.:

```
F_c[u](t) \not\equiv 0 \quad \forall c \in S
```

now let μ be **any** (arbitrary) finite jet

then, $\exists \nu$, finite extension of μ , universal for S

main idea: for any given finite μ ,

∃ analytic inputs v_j with $v_j^{(i)}(0) = \mu_i$ s/t $v_j \rightarrow u$ (in L_1 topology) together with compactness and equiconv of S, ∃ j_0 s.t. v_{j_0} universal for S given S: compact, equiconvergent, $0 \notin S$

want: univ jets for S is open, dense

openness follows from compactness of S

Density:

let μ be a jet, and let ${\mathcal W}$ be any nbhd of μ

 $\mathcal{W} = \mathcal{W}_0 \times \mathcal{W}_1 \times \mathcal{W}_2 \times \ldots \times \mathcal{W}_r \times \mathbb{R}^m \times \mathbb{R}^m \times \ldots$

let μ^{r} := restriction of μ to first r terms $0 \notin S \Rightarrow \forall c \in S, \exists a \text{ jet } \nu$ "good" for ccompactness of $S \Rightarrow \exists \mathcal{V}_{1}, \mathcal{V}_{2}, \ldots \mathcal{V}_{s}, \exists$:

- $\{\mathcal{V}_i\}$ covers S
- each \mathcal{V}_i has a (finite) univ jet

tech lemma \Rightarrow :

```
\exists \nu_1, \text{ extension of } \mu^r, \text{ univ for } \mathcal{V}_1\exists \nu_2, \text{ extension of } \nu_1, \text{ univ for } \mathcal{V}_1 \bigcup \mathcal{V}_2Repeat<sup>s</sup>
```

Background

New results

Special classes of inputs for special classes of systems

Proofs of negative results for bilinear

Proofs of positive result for bilinear

No single \mathcal{C}^{ω} input works for \mathcal{C}^{ω} systems

Uniformly universal inputs

Proof of uniformly universal result

Many open problems...

- special classes: pulses with varying amplitudes?
- cascades of bilinear?
- other classes of systems?
- ► unif univ theorems for C[∞] classes with appropriate transversality assumptions?

References:

- w/Y. Wang, Uniformly Universal Inputs, in Analysis and Design of Nonlinear Control Systems, Springer-Verlag, 2007
- w/Y. Wang & A. Megretski, Input classes for identification of bilinear systems, IEEE Transactions Autom. Control, to appear.