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The Setting

what classes of input signals are sufficient
to completely identify the i/o behavior of a system?

we look for classes U of inputs and classes of systems s.t.:

if system σ stimulated with inputs from the set U
and corresponding time record of outputs is recorded,

possible theoretically to uniquely (i/o) identify system in class
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Two types of problems

Problem(s) 1: is a single input sufficient?

if so, does this input need to be very special? (genericity)
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Why these problems?

restricted class of experiments

esp. in systems biology, no experiments w/arbitrary input profiles
sometimes only steps, pulses

or, at the other extreme: a “random” input
(observed, but originating from a “black box” subsystem)

note: for linear (0 initial state), any single 6= 0 input OK (steps, pulses)

e.g. for m = p = 1 just do W (s) =
ŷ(s)

û(s)

[no noise; also, not talking about steady-state ID]
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Here:

(1) generic C∞ inputs enough for class of all analytic systems

(2) results for bilinear systems, steps and pulses

• a class of nonlinear systems

• theoretically, approximate fading-memory . . .

• enzymatic signaling cascades far from saturation

• no regard to computational effort

• deterministic

• finite-time (no stability assumed)
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Grasselli and Isidori’s 1977 paper

universal inputs for observability of bilinear systems:

system observable ⇒

∃ inputs that distinguish any pair

(or any state from zero)

idea: construct descending sequence of spaces

K1 ⊃ K2 ⊃ . . . ⊃ Kn = {0}

of states indistinguishable from zero



Many follow-up universal input theorems

EDS’78: polynomial d.t., analytic c.t. on compacts

Sussmann’79: general theorem for c.t. analytic; and genericity

can be interpreted as parameter identifiability

(params as constant states)

here:

I universal (and generic) over all possible (analytic) systems

I back to bilinear: very concrete classes of inputs
(motivated by biological applications)

(with Yuan Wang, and with YW & Sasha Megretski)
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Informal statement of universal results (m=p=1)

ẋ = f (x) + g(x)u, x(0) = xo , y = h(x)

• there is a C∞ input that serves to distinguish any two Cω systems

(independently of the pair, truly universal)

• in fact, a generic C∞ input works

• no possible Cω input can work
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Informal statement of bilinear results (m=p=1)

ẋ = Ax + u Nx , x(0) = xo , y(t) = cx(t),

• step inputs not enough for identifying bilinear systems

• nor single pulses

• {pulses of a fixed amplitude (but varying widths)} OK

to be precise: under non-degeneracy conditions ∼
controllability/observability
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Systems & distinguishability

single-input single-output initialized σ and σ̂:

σ : ẋ(t) = f (x(t)) + g(x(t))u(t), x(0) = xo , y = h(x(t))

and

σ̂ : ẋ(t) = f̂ (x(t)) + ĝ(x(t))u(t), x(0) = x̂o , y = ĥ(x(t))

(all analytic)

Ω := all (m.e.b.) inputs u : [0,Tu] → R
given two systems σ, σ̂, input u, solutions defined for t ∈ [0,Tu],

ϕ(t, u) = x(t), y(t) = h(ϕ(t, u))

σ, σ̂ indistinguishable under u if

h(ϕ(t, u)) = ĥ(ϕ̂(t, u)) ∀ t ∈ [0,Tu]
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I/O Equivalence

σ, σ̂ i/o equivalent (σ ≡
U
σ̂) w.r.t. all inputs U ⊆ Ω

if no input in U distinguishes:

h(ϕ(t, u)) = ĥ(ϕ̂(t, u)) ∀ u ∈ U , t ∈ [0,Tu]

when U = Ω, just write σ ≡ σ̂, or “systems i/o equivalent”:

cannot be distinguished at all based on “black box” i/o behavior

subset U ⊆ Ω of inputs sufficient for identifying system class Σ if:

for each pair σ, σ̂ in Σ,

σ ≡
U
σ̂ ⇒ σ ≡ σ̂

i.e., not i/o equivalent ⇒ ∃ input in set U which distinguishes
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E.g., linear

linear systems (finite-dimensional, continuous-time)

ẋ = Ax + bu , x(0) = 0 , y = cx

(A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n)

identifiable by any single nonzero input on a nontrivial interval
e.g. constant function (step) or pulse

what about interesting classes of nonlinear systems?
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Bilinear systems

we consider two different classes of bilinear systems
S I

n := n-dimensional bilinear systems of type I: f0 linear, f1 affine,
x0 = 0, h linear:

ẋ = (A + uN)x + bu, x(0) = 0
y = cx

(A,N, b, c) where A,N ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n

write “σo = (A,N, b, c)”

(linear systems: just N = 0)

S II
n := n-dimensional bilinear systems of type II: f0, f2, h all linear,

x(0) allowed nonzero:

ẋ = (A + uN)x , x(0) = b
y = cx
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Algebraic characterization of equivalence

recall (Isidori, Fliess, 1970s):

no need to test all possible inputs

σ and σ̂ (both type I or type II) i/o equivalent iff

cAi1 . . .Aik b = ĉ Âi1 . . . Âik b̂

for all sequences of matrices Aj picked out of A and N

(enough check sequences of length n + n̂)
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Negative results: all steps

Theorem: ∃ generic subset S ⊆ S I
n s.t.:

∀ σo ∈ S ∃ σ̂o ∈ S so that:

I σo and σ̂o are i/o equivalent under all constant inputs (steps)

I but σo and σ̂o are not i/o equivalent

Theorem: same for class-II.

(“generic”:= set of 4-tuples S ⊆ R2n2+2n w/full measure & open dense)
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Negative results: single pulses

uτ,α(t)

Theorem: ∀ τ ≥ 0, α ∈ R, ∃ generic subset S ⊆ S I
n s.t.:

∀ σo ∈ S ∃ σ̂o ∈ S so that:

I σo and σ̂o are i/o equivalent under the pulse function uτ,α

I but σo and σ̂o are not i/o equivalent

Theorem: same for class-II systems.
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Positive results: pulses of fixed amplitude

for any fixed α ∈ R, Vα := set of pulses of magnitude α:

Vα := {uτ,α| τ ≥ 0}

Theorem: for each α 6= 0, ∃ generic M⊆ S I
n s.t.,

for every pair of systems σo
1 , σo

2 ∈M,

σo ≡
Vα

σ̂o ⇐⇒ σo ≡ σ̂o

Theorem: same for type-II

i.e.: set of pulses of amplitude α (and varying length) sufficient
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Sketch of proof of negative results

let C := set consisting of all those 4-tuples

(Q,N, b0, c) ∈ Rn×n × Rn×n × Rn×1 × R1×n

which satisfy the following conditions:

(a) (Q, b0, c) is canonical

(b) (Q − N, b0, c) is canonical

(c) eQ − I is invertible

(d) N /∈ B(T (Q, b0, c))

where: for each canonical σ = (A, b, c), pick (unique, self-adjoint)
T = T (σ) such that

AT = TA′ , b = Tc ′ , cT = b′

and for each nonzero n × n matrix S , (“commutator”) proper
linear subspace of Rn×n:

B(S) := {N ∈ Rn×n |NS = SN ′}



(continued sketch of neg)

let X = Rn×n × Rn×n × Rn×1 × R1×n, and
consider the analytic map ψ : X → X defined by

ψ : (Q,N, b0, c) 7→ (Q − N, N, (ρ(Q))∗b0, c) ,

where ρ(Q) =
∫ 1
0 esQds, and ρ(Q)∗ denotes adjoint matrix of ρ(Q)

Lemma: the set D = ψ(C) is generic

let u = uτ,α with τ = 1, α = 1.

Lemma: consider systems of type I
∀ σo ∈ D, ∃ σ̂o ∈ D s.t.:

1. σo and σ̂o i/o equivalent under the pulse function u, but

2. σo and σ̂o not i/o equivalent

for general τ and α, rescale inputs and time scale
similarly for type II
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Construction of σ̂o

given σo = (A,N, b, c) ∈ D, there exist

(Q,N, b0, c) ∈ C s/t :

A = Q − N, b = [det(ρ(Q)](ρ(Q))−1b0.

let b1 = ρ(Q)b
then b1 = det(ρ(Q))b0, so:

R(Q, b1) = det(ρ(Q))R(Q, b0)

R(Q − N, b1) = det(ρ(Q))R(Q − N, b0)

since det(ρ(Q)) 6= 0, both (Q, b1) and (Q − N, b1) reachable



construction (ctd)

moreover, it can be shown that:

T (Q, b1, c) = det(ρ(Q))T (Q, b0, c),

⇓
B(T (Q, b1, c)) = B(T (Q, b0, c)).

so (Q,N, b1, c) ∈ C
with M = TN ′T−1, one has:
• M 6= N, and
• cet(Q+γN)b1 = cet(Q+γM)b1 for all γ ∈ R and t ≥ 0

in particular, for γ = −1:

cet(Q−N)b1 = cet(Q−M)b1 ∀ t ≥ 0

let σ̂o = ((A + N −M),M, b, c) = (Q −M,M, b, c)
(compare w/ σo = (Q − N,N, b, c))
then: σ̂o ∈ D, and σo ≡

u
σ̂o , but σo 6≡ σ̂o
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The generic set for positive results

let α 6= 0 be given

M := be the set of 4-tuples satisfying the following two properties:

1. (A, b, c) is canonical

2. (A + αN, b) is controllable

this is a proper algebraic set, so generic
and shown to work



Tools: Similarity

bilinear systems σ ∼ σ̂ (“similar” or “internally equivalent”)
if ∃ change of variables x = Tz
s.t. equations of σ get transformed into those of σ̂

i.e. 4-tuples (A,N, b, c) and (Â, N̂, b̂, ĉ) in same GL(n)-orbit under
similarity action:
same dimension n, and ∃ T ∈ Rn×n invertible s.t.

A = TÂT−1, N = TN̂T−1, b = Tb̂, c = ĉT−1
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Canonical Systems and Uniqueness

suppose that both σ and σ̂ canonical

Lemma. σ ≡ σ̂ ⇐⇒ σ ∼ σ̂

(and similarity is unique)

recall: canonical σ means span-reachable and observable 4-tuple
(A,N, b, c):

I no proper subspace of Rn contains b and is invariant under
x 7→ Ax and x 7→ Nx

I no proper subspace of Rn is contained in the nullspace of
x 7→ cx and is invariant under x 7→ Ax and x 7→ Nx
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Lemma. σ ≡ σ̂ ⇐⇒ σ ∼ σ̂
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recall: canonical σ means span-reachable and observable 4-tuple
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Sketch of positive result (type I)

pick σo
1 = (A1,N1, b1, c1) and σo

2 = (A2,N2, b2, c2) in M, s.t.
same outputs for each u ∈ Vα

must show that σo
1 ≡ σo

2

fix any τ > 0
applying uτ,α ∈ Vα to the two systems:

ẋ = (A1 + uN1)x + b1u, x(0) = 0, y = c1x

ż = (A2 + uN2)z + b2u, z(0) = 0, y = c2z ,

one has:

c1e
A1(t−τ)x(τ) = c2e

A2(t−τ)z(τ) ∀ t ≥ τ,

(easy:) for generic τ0 > 0, (A1, x(τ0), c1) & (A2, z(τ0), c2)
canonical
∴ ∃ T ∈ GL(n) s.t.

A2 = T−1A1T , z(τ0) = T−1x(τ0), c2 = c1T
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(ctd.)

so using c2e
A2s = c1e

A1sT for all s, above becomes:

c1e
A1(t−τ)x(τ) = c1e

A1(t−τ)Tz(τ) ∀ t ≥ τ

from observability of (A1, c1), it follows that

x(τ) = Tz(τ) ∀ τ > 0

or equivalently:∫ τ

0
e(A1+αN1)sds b1 = T

∫ τ

0
e(A2+αN2)sds b2 ∀ τ > 0

taking d/dτ :
e(A1+αN1)τb1 = Te(A2+αN2)τb2

this is true for all τ ≥ 0
so in particular:

b1 = Tb2
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(ctd.)

on the other hand, taking repeated derivatives in τ
and then setting τ = 0, one obtains:

(A1 + αN1)
kb1 = T (A2 + αN2)

kb2 ∀ k ≥ 0

which implies (0 ≤ k ≤ n − 1):

R(A1 + αN1, b1) = T [R(A2 + αN2, b2)]

and (1 ≤ k ≤ n):

(A1 + αN1)[R(A1 + αN1, b1)] = T (A2 + αN2)[R(A2 + αN2, b2)]

so

(A1+αN1)[R(A1+αN1, b1)] = T (A2+αN2)T
−1[R(A1+αN1, b1)]



(ctd.)

as R(A1 + αN1, b1) invertible
(because (A1 + αN1, b1) is controllable), ⇒

T (A2 + αN2)T
−1 = (A1 + αN1)

so again follows from above, and the fact that α 6= 0,

that N2 = T−1N1T

so, the 4-tuples are similar, and the systems are i/o equiv
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A construction

given any analytic function κ(r), consider:

ẋ = 1

ż = z

ẇ = (κ(x)− u)z

y = w

analytic system

σ and σ̂ same system, but just different initial states:

x0 := (0, 1, 0) and x̂0 := (0, 0, 0)

“observables”: ({h, Lf h, Lgh, L2
f h, Lf Lgh, . . .}) are:

{w , z , κ(x)z , κ′(x)z , κ′′(x)z , . . .}

⇒ y(t) 6= ĥ(t) for some u, i.e., σ 6≡ σ̂

but, σ ≡
κ
σ̂ (y(t) = ŷ(t) ≡ 0)
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Main result

Theorem: there exists a generic set U of smooth inputs s/t

(∀ u ∈ U) σ ≡
u
σ̂ ⇒ σ ≡ σ̂

i.e.: every u in U distinguishes any two σ and σ̂

generic:= contains a countable intersections of open dense sets
seeing for each T > 0, C∞[0, T ] w/Whitney topology



Identification by jets

σ 6≡ σ̂ if there is some u such that

dk

dtk

∣∣∣∣
t=0

y(t, u) 6= dk

dtk

∣∣∣∣
t=0

ŷ(t, u)

for some k.
Theorem: there is a generic set W ⊆ R∞ such that

for each µ = (µ0, µ1, µ2, . . .) in W, ∃ u with u(i)(0) = µi

so that for any σ and σ̂,

dk

dtk

∣∣∣∣
t=0

y(t, u) =
dk

dtk

∣∣∣∣
t=0

ŷ(t, u) ∀ k

⇓
σ ≡ σ̂

(generic: containing a countable intersection of open dense
subsets, with the product topology on R∞)
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Review: Chen/Fliess encoding of inputs (m=1)

consider:

Ċ (t) = (X0 +
m∑

i=1

uiXi )C (t), C (0) = 1

solution exists by Peano-Baker formula:

C [u](t) =
∑
w

Vw [u](t)w

w : word in {X0, X1, . . . ,Xm}
Vw [u]: iterated integrals of u defined recursively:

Vφ[u](t) = 1

VXiw [u](t) =

∫ t

0
ui (s)Vw [u](s) ds

where u0(t) ≡ 1

e.g.: VXi
[u](t) =

∫ t

0
ui (s) ds, VXiXj

[u](t) =

∫ t

0
ui (s)

∫ s

0
uj(τ)dτds



Review: Fliess Series

c =
∑
w

c(w)w (c(w) ∈ R)

= c(φ) + c(X0)X0 + c(X1)X1 + . . . c(Xm)Xm

+ c(X0X0)X0X0 + c(X0X1)X0X1 + . . .

c is convergent if: |c(w)| ≤ CM l l! C ,M = const, l = |w |
Fliess operator: u 7→ y = Fc [u] defined by:

y(t) =< c , C [u](t) > =
∑
w

c(w)Vw [u](t)

e.g.(m = 1) : y(t) = c(φ) + c(X0)

∫ t

0
ds + c(1)

∫ t

0
u(s) ds

+ c(X0X1)

∫ t

0

∫ s1

0
u(s2) ds2 ds1

+ c(X1X1)

∫ t

0
u(s1)

∫ s1

0
u(s2) ds2 ds1 + . . .

Fc [u] well defined on [0,T ), some T > 0, if c convergent



Look at operators

Fact: i/o behaviors of initialized state space system are defined by
appropriate σ = Fc , i.e.,

for each u in Ω, y(t) = Fc [u](t)

in fact,
c(Xi1Xi2 . . .Xir ) = Lgir

. . . Lgi1
h(x0)

(g0 := f )

so enough to show ∃ generic set W in R∞ s/t for each
µ = (µ0, µ1 . . .) in W, there is u with u(i)(0) = µi such that:

for any c , ĉ ,

dk

dtk

∣∣∣∣
t=0

Fc [u](t) =
dk

dtk

∣∣∣∣
t=0

Fbc [u](t) ∀ k

⇓
c = ĉ



Sketch of proof

to prove result on series,

enough to deal with c and a specific series ĉ – the zero series

infinite jet µ = (µ0, µ1, . . .) said to be universal for a set S of series

if ∃ u with u(i)(0) = µi s.t.

Fc [u] 6≡ 0 for each c ∈ S

Definition: family S of Fliess series is:

1. equiconvergent if ∃ r ,M > 0 s.t.

|c(w)| ≤ M r |w | (|w |)! ∀ c ∈ S

2. compact if compact in weak topology

(seen as a family of sequences indexed by words in X ′
i s)



Main Lemma

Lemma: S compact, equiconvergent, 0 6∈ S

⇒ {infinite jets universal for S} open dense.

Corollary:

the set of uniformly universal jets is generic

because:

set of nonzero conv Fliess series =
⋃

w ,k Sw ,k

where Sw ,k = all series such that

|c(w)| ≥ 1/k

and
|c(w)| ≤ k l l! where l = |w |



A technical Lemma

Lemma: Let S compact, equiconv,

and assume we know ∃ at least one u which is universal for S , i.e.:

Fc [u](t) 6≡ 0 ∀c ∈ S

now let µ be any (arbitrary) finite jet

then, ∃ ν, finite extension of µ, universal for S

main idea: for any given finite µ,

∃ analytic inputs vj with v
(i)
j (0) = µi s/t vj → u (in L1 topology)

together with compactness and equiconv of S ,

∃ j0 s.t. vj0 universal for S



Proof of Main Lemma

given S : compact, equiconvergent, 0 6∈ S

want: univ jets for S is open, dense

openness follows from compactness of S



Density:

let µ be a jet, and let W be any nbhd of µ

W = W0 ×W1 ×W2 × . . .×Wr × Rm × Rm × . . .

let µr := restriction of µ to first r terms

0 6∈ S ⇒ ∀ c ∈ S , ∃ a jet ν “good” for c

compactness of S ⇒ ∃ V1, V2, . . .Vs , 3:

• {Vi} covers S

• each Vi has a (finite) univ jet

tech lemma ⇒:

∃ ν1, extension of µr , univ for V1

∃ ν2, extension of ν1, univ for V1
⋃
V2

Repeats
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Many open problems. . .

I special classes: pulses with varying amplitudes?

I cascades of bilinear?

I other classes of systems?

I unif univ theorems for C∞ classes with appropriate
transversality assumptions?

References:

I w/Y. Wang, Uniformly Universal Inputs, in Analysis and
Design of Nonlinear Control Systems, Springer-Verlag, 2007

I w/Y. Wang & A. Megretski, Input classes for identification of
bilinear systems, IEEE Transactions Autom. Control, to
appear.
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