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ABSTRACT

Using neurons with gaussian nonlinearities, a neural network is
designed to implement a control law scheduler. For the implementation
discussed here, the neural network is supplied information about existing
operating conditions and then responds by supplying control law
parameter values to the controller. The neural network has two layers of
weights, and the values of the weights and biases are based on given
operating points for the scheduler. By designing the neural network’s
generalization behavior, specifications for the interpolation between the
given operating points are satisfied. The neural network implementation
performs best when the operating points are equidistant and has some
drawbacks when used to implement multi-parameter schedulers.

1 INTRODUCTION

As discussed in [Antsaklis92, Sartori91), a neural network may be used as a
control law scheduler. In this capacity, the neural network can be viewed as a high
level decision maker operating outside the conventional coatrol loop to provide a
higher degree of autonomy to the system. Given a set of operating points and the
associated set of parameters values for the control law, the neural network is
designed to satisfy given specifications for the interpolation between the provided
operating points. Here, these requirements for the interpolation between operating
points are treated as specifications for the generalization behavior of the neural
network, a topic of importance in current neural network research. The gaussian
neural network presented here for satisfying the specifications of the control law
scheduler performs best when the operating points are equidistant and has some
disadvantages when used to implement multi-parameter schedulers.

Of the numerous curves that satisfy the specifications for the interpolation
between the operating points, the neural network design procedure presented in this
paper represents one possible class. Clearly, there exist other methods besides the
one p d here to (math ically) describe the curve. For instance, the
specific interpolation curve may be modelled with polynomials or splines. The
advantage of using the neural network approach described here instead of one of
these schemes is that, in addition to a straight forward design scheme, the acwal
construction of the neural network in hardware would utilize the inherent
parallelism of the neural network and hence result in a fast processing time.

For the ncural network scheduler implementation described in this paper, the
neural network is first given information on the system's operating conditions or
its environment and then supplies control law switching information to the
controller. As depicted in Figure 1, the neural network's inputs are the inputs and
outputs of the plant together with the reference signal. The output of the neural
network is the control law adjustment signal sent to the controller. The neural
network's inputs are not restricted to these signals; other signals such as the plant's
states, derivatives, environmental conditions, or delayed values of any of these can
be used as inputs to the neural network. Basically, any signal that is designed into
the operation of the scheduler is used as an input to the neural network.
Furthermore, the plant and controller can operate in either continuous or discrete
time. If the neural network is implemented in analog hardware, both the plant and
the controller can operate in continuous time. However, if the neural network is to
be implemented in software, both the plant and the controller need to be discrete or
discretized versions of continuous ones. In either case, the designing of the neural
network as discussed in this paper remains unchanged.

In Section 2, the type of scheduler implementation considered in this paper is
defined. The impl ion using a gaussian neural network is presented for both
single-parameter and multi-parameter operating points in Sections 2.1 and 2.2,
respectively, and discussed in terms of equidistant and non-equidistant operating
points in Sections 2.1.1 and 2.1.2, respectively. In Section 2.1.3, a comparison
to other neural network design methods is included. Finally, examples
demonstrating the neural network scheduling implementation prescnted in this
paper are supplied in Section 3.

Figure 1 Neural network used as a scheduler.
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2 GAUSSIAN NEURAL NETWORK IMPLEMENTATION
The gaussian neural network implementation of a scheduler is divided into two
cases: single-parameter operating points and multi-parameter operating points. The
single-parameter case is further divided into equidistant operating points and non-
equidistant operating points.

2.1 Single-Parameter Gaussian Neural Network Scheduler

In this section, a neural network is constructed to implement a scheduler with
operating points defined for a single parameter. For each operating point, the
scheduler provides one or more parameter values to be used in controlling the
system. For the given values of the scheduler, let v(j) denote the j“l operating
point for 1 < j < p, and let v« RP*! denote the vector of ail operating points
arranged in ascending order, where v(j) > v(j-1) for 2> j 2 p. Let d;(j) denote the
i desired output (i.e., the given control law parameter value) of the scheduler for
the j"™ operating point for 1 < i < n and 1 <j<pandletd() « R™! and D «
RP*" denote the vector for 1 < j < p and the matix of desired outputs,
respectively. Thus, the p pairs {v(j), d(j)} are the given operating points. For the
neural network, let u € R'*! denote the neural network’s input, and let the neural
network have multiple outputs denoted by z « R™. For a specific input u, let
zi(u) for 1 <1< n and z(u) denote the output of the neural network.

In constructing the neural network to impl the d
specifications are made:

(1) If u = v(j), then z(u) = d(j),
(i) Ifue [v() - €., v() +&j4] and u # v(j), then zi(u) € [di(j) - ¥ij.
di() + Yij+]’
(i) Ifue [v(j), v(+1)], then z;(u) € [d;(§), 4;G+D)].
A_s an example, Figure 2 illustrates one way in which these specifications can be
viewed. The dots correspond to the operating points and the given controller
parameter, and according to specification (i), the interpolation curve must pass
lhrou_gh these points. The boxes surrounding the dots correspond to the boxes
described in specification (ii), and the boxes between the dots correspond to the
bounding of the interpolation curve per specification (iii). The interpolation curve
must pass correctly through both sets of boxes. Clearly, there exist numerous
curves that satisfy these three specifications. With the design scheme described
here for the parameters of the neural network, a particular class of curves is
achieved that satisfy these specifications, and of the three specifications, (i) and (ii)
can be satisfied precisely using the proposed procedure, and (iii) can be
approximately satisfied.
z4

d scheduler, three

Figure 2 Illustration of interpolation curve specifications.

) 1
With z € R™", an individual output of the neural network is described by
h
2= kEI Wik 8(x) M

where 1 < i <n, wy is a weight of the i™ linear neuron in the output layer, and

g(xy) is the output of the k™ neuron in the hidden layer. Let W & R™ denote
the matrix of weights for the output layer. Since the scheduler has a single
parameter describing its operating points, the neural network requires only a single

inputu e R The output of the K gaussian neuron in the neural network's
hidden layecr is described by
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where 1 £k < h, g:R — R is the nonlinearity of the hidden layer neurons and the
gaussian function with the variable a describing its curvature, sy is the weight (or
“width” of the gaussian function), and ¢, is the bias (or "center” of the gaussian

function). Lets € R™ denote the vector of widths, and ¢ « RP*! denote the
vector of centers. With a = 1, the traditional bell-shaped curve is achieved, but by
allowing o to vary, a class of curves is possible, which allows for greater
flexibility in the design of the interpolation curve. Thus, for a particular neural
network impk jion of a scheduler, the parameters W, s, ¢, and a need to be
selected. The choosing of the gaussian neural network parameters is divided into
two cases: when the operating points are equidistant and when they are non-
equidistant.

2.1.1 Design with Equidistant Operating Points: For the first case, the operating
points v(j) for 1 < j < p are considered 10 be equidi For the p operating
points, assume the distance between each operating point is T. The number of
hidden layer gaussian neurons is set equal to the number of operating points, that
is h=p. This choice is not unreasonable since for many scheduler applications the
number of operating points is not unusually large. The center ¢, for the Kt

neuron is set equal to the operating point value for the kb operating point
o = v(k) @

for 1 <k <h. Since ¢) corresponds to the center of the gaussian nonlinearity,
setting ¢y equal to the operating point parameter corresponds to placing the center
of each gaussian neuron at each operating point and allows for a localized effect at
the output of these neurons with the appropriate choice for each width s,.

To aid in satisfying specifications (ii) and (iii), the widths s are chosen such
that (1) can be approximated by

_ j+1
Zi(u) = kZ, wik 8(xg) ®
=j

when u € [v(j), v(j+1)]. This implies that the tails of the gaussian nonlinearities
g(xg(u)) for k # j and k # j+1 are small compared to those for k = j and k = j+1
when u € [v(j), v(j+1)). The approximation of (5) also implies that the gaussian
neuron with its center ¢y closest to the input u has a larger response compared to

the other gaussian neurons signifying that the input is closest 1o the K operating

point

g(xy()) 2 g(xg(w)) ©
for 1 <f<handforue [v(k) - Ap_;, v(k) + Ay] where Ay is defined such that
gx(v(K) + A)) = g(xy+1(v(K) + Ay)). With (6), the localized effect of the hidden
layer neurons is preserved. Also, the interpolation curve passing through a box
specified by specification (ii) assumes the general shape of the output of the k'
gaussian neuron if €x < Ay ; and gp, < Ay. To further aid in satisfying
specification (iii), the widths s are chosen such that

h
T g @) =1 o
k=1

foru e {v(1), v(p)]. In conjunction with (5) and (6), (7) implies that for u € [v(k),
v(k+1)] the sum of the outputs of g(x (u)) and g(xy,,(u)) is constant, and the W
gaussian neuron contributes more to the sum when u is close to v(k) and less when
it is closer to v(k+1). Since all the operating points are spaced apart by an equal
distance T, the width s for each neuron is selected equivalent such that each
neuron has an equal response halfway between any two neurons. By setting g(x)
in (2) equal to 0.5,

-1
S = ‘12_%)_5) ®
T
where 1 £k < h and g'l(r) = (»ln(t))”u. Unfortunately, due to the nonlinear
nature of the gaussian function of (2), using (8) to determine s does not insure that
(5), (6), and (7) are satisfied exactly, but rather are satisfied approximately; with
(8), a good approximation 1o a constant unit signal is achieved as described by (7).
and through experimentation, a possibly more appealing signal may be found by
slightly adjusting the widths.

Due to the use of the gaussian nonlinearity and the choice of function's center
and width for each of the hidden layer neurons, the output of the neural network is
close to O if the input is outside the region of the operating points. In other
words, if u << v(1) or u >> v(p), then z = 0. This is a drawback if a value is
needed from the scheduler for all possible inputs. However, this behavior could be
used in a fault detection scheme to identify when the inputs have exceeded the
design domain.

The choice of the exponent « in (2) clearly affects the shape of the
interpolation curve. In Figure 3, g(xy) = exp(-xk“) is shown for various values of
o with ¢, =0 and s; = 1. As can be seen, the gaussian curve begins to better
approximate a unit pulse function as « is increased. By appropriately choosing o,
the interpolation curve can be designed to pass though the box defined in
specification (ii). The exponent a also affects how well (7) is satisfied and the
choice of the widths s in (8). It is suggested here that in general o 2 1.
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Figure 3 Family of gaussian-type curves for varied a.

Furthermore, unless stated otherwise, it is assumed that each neuron's nonlinearity
in the hidden layer has the same value for the exponent a. Although, by choosing
different values of o for different neurons, various interpolation curves are
possible.

With the widths, centers, and the nonlinearity specified for the hidden layer,

the weights for the linear output layer are chosen next. Let G « RP™ denote the
output of the hidden layer neurons for each of the p operating points. Thus, the
output layer weights are found by solving the following linear system of equations

GW=D. (O]
Since G is square and nonsingular (h = p), (9) has a unique solution W. Thus, if
the neural network’s input u is exactly one of the operating points, the neural
network's output is exactly the desired output of the scheduler, which satisfies
specification (i).

2.1.2 Design with Non-Equidistant Operating Points: For the second case, the
operating points v(j) for 1 < j < p are considered to be non-equidistant. Two
methods are proposed to cope with this situation: adding more gaussian neurons to
the hidden layer or using an optimization procedure to adjust the parameters of the
hidden layer neurons. 1t is assumed that there are p hidden layer neurons with
centers ¢ chosen as in (4), and that the weights W are chosen such that (9) is a
unique system insuring that specification (i) is satisfied.

First, by adding more gaussian neurons to the hidden layer, a situation in
which the centers of the gaussian neurons are equidistant occurs. This approach is
useful if some of the operating points are equidistant, and the others occur at
specific intervals between the operating points. First, p hidden layer gaussian
neurons are formed with their centers equal to the operating points as specified in
(4). Next, more hidden layer gaussian neurons are added, and their centers are
_lcfhosen such that the centers of the gaussian neurons are equidistant. For example,

v={1 152 3 4]

is the vector of operating points, five hidden layer gaussian neurons are formed
with ¢y = v(k). Two more gaussian neurons are added with centers of 2.5 and 3.5
such that h = 7. Since all of the centers of the gaussian neurons are equidistant and
T = 0.5, the widths s are found via (8) with a = 2, and s =133209for 1 <k<7.
With the centers and the widths selected, the exponent o can be varied to further
satisfy the specifications of the interpolation curve. The weights for the output
layer are found by forming a linear system of equations similar to that of (9). To
make the system unique, the desired output associated with an added gaussian
neuron is assigned either a specified value of a close operating point or an
interpolated value from nearby operating points.

Second, instead of adding neurons based on pseudo-operating points, an
optimization procedure may be used to find the gaussian neural nmetwork's
parameters. In this paper, a gradient descent procedure is proposed to cope with the
case of non-equidistant operating points and to adjust the parameters of the hidden
layer. The hidden layer is constructed of h = p gaussian neurons with exponent a
and with centers ¢ equal to the operating points of the scheduler as described by (4).
With the cost function

1 P Ll a2 13 h 2
=5 X (- X gx (v~ + 3 2 (- X g’ (10)
j=1 k=1 i=t k=1

an approximate unit signal from the hidden layer as described by (7) is desired. The
first sum corresponds to the neural network's output for inputs equal to the
operating points. The second sum corresponds 1o the output of the neural network
for q other values u(j) € [v(1), v(p)]. The particular points in the second sum are
not specified in order to leave this as a design consideration. The gradients of (10)
are computed with respect to s, ¢y, of even a, and the parameters of the gaussian
neural network are adjusted via an iterative gradient descent procedure. The details
of this approach are in [Sartori91].

When the operating points are not equidistant, both of the methods proposed
can also be used to determine the parameters of the hidden layer gaussian neurons.
Extra neurons can first be added at desirable locations, and the gradient descent
procedure can then be used to find the appropriate parameters of the hidden layer.
To find the weights wy of the output layer, extra desired outputs are needed as
described previously to insure that the linear system of equations described in (9)
remains unique.

401
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2.1.3 Comparison to Another Method: Here, the design procedure of [Moody89]
and [Moody88] is compared to the approach presented here. In comparing the
method proposed here and Moody's method, the following are the same: h = p, the
centers are chosen as in (4), and the output weights as in (9). The only differences
considered here are the choices of o = 1 and different widths s.

The design procedure proposed by Moody is presented next. To choose the
centers, Moody proposes to use the standard k-means clustering algorithm since it
is assumed that the number of training pairs p is large, which is not the
assumption made here for the scheduling problem. However, the case when the
centers are chosen equal to the training inputs as in (4) is treated in Moody's
examples. The exponent a of the gaussian nonlinearities is specified as 1. The
widths s are determined by a "P nearest neighbor” heuristic, which in [Moody88] is
described as using the root mean square value of the Euclidean distance to the P
nearest neighbor centers to determine the widths. Using the notation here and P =

s

S = 3 2 3 an

(Cx - cx.1)” + (1 - Ck)
for 1 £k < h. The weights of the output layer are determined via a LMS
algorithm. If h = p and the centers are chosen as in (4), the LMS iterative
procedure is not needed and the unique system of (9) can be solved instead. In
comparing the method proposed here and Moody's method, the following are the
same: h = p, the centers are chosen as in (4), and the output weights as in (9). The
only differences considered here are o = 1 and the widths chosen as in (11).

In [Moody89] and [Moody88], the use of gradient descent procedures to
determine the neural network's centers, widths, and output layer weights are
discussed. The cost function considered uses the sum of the squares of the errors

P
F=3 360200 )
=
which can be compared to the one proposed in (10). In (12), the neural network is
assumed to have only one output, while the gaussian neural network here may
have more than one.

2.2 Multi-Parameter Gaussian Neural Network Scheduler

In this section, a neural network is constructed to implement a scheduler with
operating points that vary for more than one parameter. For the given values of the
scheduler, let v, (j) denote the & parameter of the scheduler for the j'h operating
pointfor 1<r<mand 1 <j<p. Let v(j) € R™! denote the operating point
vector for 1 <j<p. As described previously, d(j) « R™" and D « RP*™ denote
the vector for 1 < j < p and the matrix of desired outputs, respectively. Thus, the
p pairs {v(j), d(j)} are the given operating points. For the neural network, let u ®
R™! denote the neural network's input, and let the neural network have multiple
outputs denoted by z ¢ R™?. For a specific input u, let z(w) for 1 < i < n and
z(u) denote the output of the neural network.

The output of the gaussian neural network is given by

h

z;= kgl Wik g(xk) (13)

where 1 Si<n. The outputs of the hidden layer gaussian neurons are described by

g0xy) = exp(-x ) 14)
ad

m
X= T SV - O’ 1s)
r=1

where 1<k sh. Let S ¢ RM™™ denote the matrix of widths, and C @ R™™
denote the matrix of centers. Compared to the gaussian neurons proposed by
[Moody89], the widths sy, in (15) vary for the different r, which allows the
gaussian nonlinearity to assume an ellipsoid shape for higher dimensions of
operating point parameters and not just a circular shape.

In choosing the values for the centers, widths, and the gaussian variable a, it
is once again desirable to satisfy the three design specifications stated in Section
2.1. In addition, the two cases considered previously for the spacing of the
operating points are applicable here: when the operating points are equidistant and
when they are non-equidistant. For the multi-parameter case, equidistance is
considered for each individual direction and not as a norm over all the directions.

For the first case when the operating points are equidistant, the previous
results are directly extended. A two layer neural network is formed with h = p
hidden layer gaussian neurons and output linear neurons. The center ¢y, for each

gaussian neuron is set equal to the corresponding parameter for each operating
point
Cpr = V(K) (16)
for1<r<mand1<k<h With T, denoting the distance between the two
operating points for the I parameter, the width s, for each neuron is given by
-1
4g” (0.
Stp = —5-%—51 an
for1<r<mand 1 <k<h The gaussian variable o is chosen to satisfy

4
specification (ii), and the weights wy_for the output layer are found by solving the
unique linear system of equations in (9).

For the second case when the operating points are not equidistant, the results
from Section 2.1.2 extend directly. If the operating points are well placed, extra
gaussian neurons can be added to the hidden layer such that with the extra gaussian
neurons the centers of all the gaussian neurons are equidistant. Also, similar to the
approach described previously, an optimization procedure may be used to determine
the widths, centers, and exponents ay. In addition, both adding extra gaussian
neurons and using an optimization procedure can be combined to satisfy the design

As the number of parameters for the operating points increases, one potential
disadvantage of adding extra neurons is the possibility for a large number of
neurons to result; if extra neurons are added for a multi-parameter scheduler of high
dimension, the size of the neural network may become unwicldy. However, for the
examples provided in the Section 3, this is not the case. Another drawback with
this approach is that "valleys” develop in the interpolation curve due to the multi-
dimensional ellipsoid described by (14) and (15). This is illustrated in Example
3.3.

3 EXAMPLES

In [Peek90], a parameter learning method is presented and used to define the
region of operation for an adaptive control system of a flexible space antenna. In
one of the experiments described, an initial pulse disturbance is applied to the
plant, and the adaptive controller is required to follow a zero-order reference model.
The goal of the parameter learning system is to find values for the four adaptive

controller parameters (0}, O3, L, and L) for varied amplitudes of the initial pulse
such that a defined performance index based on the output of the plant is small. In
Table 1, the values found for the controller parameters for different pulse
amplitudes are repeated. Using this table, the goal here is to construct a neural
network scheduler such that a smooth interpolation is achieved between the 9
operating points. Using the results of Section 2,1.1 for the single-parameter
scheduler with equidistant operating points of distance T = 0.5, a gaussian neural
network is designed 1o imph controller schedul

Table 1 Initial Disturbances and Parameter Sets.

Amplitde % o2 L L
2.0 0.093 10.05 490000  119703.96
2.5 0.302 7.35 44046.1  145910.16
3.0 0.307 1579 373257 183321.84
3.5 0.876 9556 440461  175092.19
40 0.808 1048 291140  203493.90
4.5 1.767 1048 320254  203493.90
5.0 3.924 8.70 484507  140073.75
5.5 6.928 773 415675 13839555
6.0 11.08 1005  41567.5 13839555

For the two-layer gaussian neural network scheduler, the centers of the

gaussian neurons in the hidden layer are set equal to the operating points per (4)
c=[20 25 3.0 3.5 40 45 50 55 60].

Applying (8), the weights of the gaussian neurons in the hidden layer are s =
13.3209 for o = 2 and for 1 <k < 9. With the outputs g(x;) of the individual
gaussian neurons for 1 < k < 9 shown in Figure 4, the localized properties of the
gaussian neurons are evident. Forming the matrix G « R** from the outputs of
the hidden layer and forming the matrix D @ R%** of the desired outputs of the
neural network scheduler from the entries in Table 1, the weights W for the linear
neurons in the output layer are found by solving (9). Figure 5 shows the output of
the gaussian neural network scheduler for 6;, and for comparison the straight line
approximations between the operating points are included. As can be seen, z;(k) =
d;k) for 1 <k <9and 1 <i < 4, and specification (i) is satisfied. In the regions
nearby the operating points, the adaptive controller parameter values specified by
the neural network scheduler are close to those specified by Table 1 satisfying
spgciﬁcation (ii) for very thin and wide boxes. In regions between operating
points, a swift yet smooth transition occurs between the value specified by Table
1, and specification (iii) is almost met.

0.8

0.6

0.4

Hidden Layer Outputs

0.2

o

3 35
Amplitude of Disturbance

Figure 4 Individual hidden layer outputs for Example 3.1.
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Neural Network Output for Sigma-2

E 2.5 3 35 4 4.5 s 5.5 6
Amplimde of Disturbance
Figure 5 Gaussian neural network output for 6 for Example 3.1.

For comparison, the design procedure suggested by {Moody89] and (Moody88]

is used. With h = p, the centers are chosen as in (4). With o = 1, the widths are
chosen as sy =4 for 1 <k < 9. The weights W are found by solving for W in (9).
In Figures 6, the neural network output for o, is displayed along with the straight
line approximation (dotted line). Specification (i) is met due to the solving of (9)
for W. However, specification (ii) can only be satisfied for small boxes, and
specification (iii) is not met at all.

16~

Neural Network Output for Sigma-2

]
|
2 25 3 3.5 4 4.5 s 5.5 6
Amplitde of Disturbance
Figure 6 Moody's neural network output for 6 for Example 3.1.

In Table 2, two more disturbances and the appropriate adaptive controller
parameter values found by the parameter learning system of {Peck90] are shown.
With the addition of these disturbances to those in Table 1, the operating points for
the scheduler are no longer equidistant, and the results of Section 2.1.2 are
applicable. To cope with the disturbance amplitudes not being equidistant, extra
gaussian neurons are added to the hidden layer, and the vector of centers is

¢=1[2.00225 2.50 2.75 3.00...6.00 625 6.50 6.75 7.00]".
Applying (8) with T = 0.25 and with o = 2, the weights of the gaussian neurons
in the hidden layer are s = 53.2835 for 1 < k < 21. Adding pseudo-desired
outputs, the matrices G ® R>12! and D @ RZ!** are formed, and the unique
linear system of equations in (9) is solved for W. The gaussian neural network's
output for o, is shown in Figure 7. Once again, specification (i) is satisfied
exactly, and specification (iii) is satisfied approximately. Specification (ii) can be
satisfied for smaller boxes compared to those boxes possible when the points are
equidistant, as in Example 3.1,

Table 2 Extra Initial Disturbances and Parameter Sets.

Amplitude l St %2 L L
2.25 I 0.213 7.04 392000  131674.35
7.0 14.41 19.10 415675 110716.44

20

Neural Network Output for Sigma-2

In [Hackney77], linear models of a F100 engine are developed for various
mght points based on altitude and mach number. In Table 3, 6 of these ﬂigm
points are listed with fictitious controller parameters, and in Figure 8, these six are
diagrammed. It is desired to develop a neural network scheduler for interpolation
between these flight points. The scheduler desired is a2 multi-parameter one, and
the results of Section 2.2 are applicable. Since the operating points are not
equidistant, the method of adding extra gaussian neurons to the hidden layer is
chosen, and 6 extra ganssian neurons are added to achieve equidistance. Withr= 1
corresponding to the altitude and with r = 2 corresponding to the mach number, the
matrix of centers is

. 10 10 10 10 20 20 20 20 30 30 30 30

C= 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25
and the vector of outpms for equation (9) is
d=[123411111 6 6J.

Applying (28) with @ =20, T; = .25,and Tp = 10 sg) = 62.8378 and syg =
0.0393 for 1 < k < 12. Solving (9) for w, the interpolation curve is shown in
Figure 9. The lowest comer corresponds to the point (8, 0.4), the most left comer
to (32, 0.4), and the most right comer to (8, 1.35). Specifications (i) and (ii) are
clearly satisfied, but due to the elliptical nature of the multi-dimensional gaussian
function, Specification (iii) is not met and unwanted "valleys” are formed in the
interpolation curve.

Table 3 Selected Flight Points for F100 Engine.

40
in
g
$10 *9-o
k]
<
0
0 1 2
Mach Number

Figure 8 Selected F100 flight points for Example 3.3.

el

”’ﬂh\\i

Figure 9 Gaussian neural network output for Example 3.3,

For comparison, the design procedure suggested by [Moody89] and [Moody88)
is used. There are 12 neurons used with centers as specified above The exponent

ulschangedto 1, and the widths are chosen per (22): s;; = I/T1 =16and sy =

1[1'2 =001 for 1 <k < 12. Note that two widths are used instead of one as
suggested by Moody. Solving for w in (9), the resulting interpolation curve is
shown in Figure 10. The lowest comer corresponds to the point (8, 0.4), the most
left comer to (32, 0.4), and the most right comer to (8, 1.35). After examining the
actual values for the curve, specification (i) is met. Specification (ii), however,
can not be satisfied for small thin boxes around the operaung points, and in
comparison to the curve in Figure 9, specification (jii) is better satisfied by the
curve of Figure 10.
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Figure 10 Moody's neural network output for Example 3.3.

4 CONCLUDING REMARKS

Using a neural network with gaussian nonlinearities, a method is described
here for scheduler implementation. Given the operating points and the control law
parameter values to be sent to the controller, several specifications are made
concerning the shape of the interpolation curve. The neural network
implementation provides a class of curves to satisfy these specifications, which is
accomplished by designing the generalization behavior of the neural network The
method performs well for a designed scheduler with one-di
operating points but not as well when the operating points are not eqmd:san For
designed schedulers with multi-dimensional operating points, the method has some
drawbacks: a potentially large number of hidden layer neurons and the elliptical
shape of the multi-dimensional gaussian function contributing to unwanted
"valleys” in the interpolation curve. Currently, methods to alleviate these
problems are being investigated.

The results reported in this paper also appear in [Sartori91], where the design
procedure is explained in more detail and extended examples are described.

The authors wish to acknowledge the partial support of the Jet Propuision
Laboratory under Contract No. 957856.
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