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1. INTRODUCTION

In this paper, we present a framework for the modeling and analysis of Hybrid Control
Systems (HCS). For our purposes, an HCS is a system consisting of a time-driven,
continuous-state system, which is being supervised and controlled by a discrete-state symbolic
system. In particular, a hybrid control system consists of two rather distinct parts: a system
adequately described by a set of difference or differential equations, which shall be called the
plant, and a higher level decision making controiler, modeled as a discrete-event system. Note
that the use of the term "hybrid" is quite distinct from its common use in the control field
referring to systems with both digital and analog components. Hybrid control systems are
quite common in practice. A familiar hybrid control system is the temperature control of a
typical home, if the furnace and air conditioner are modeled as continuous-time systems as they
are being controlled by a thermostat which can be regarded as a decision making system.
Recently, attempts have been made to study hybrid control systems in a unified, analytical
framework (4, 12, 17, 18, 24].

2% AN APPROACH TO MODELING HYBRID CONTROL SYSTEMS

The difficulty in modeling and analysis of HCS arises from their heterogeneous nature.
The plant is a continuous-state system which evolves in real time, while the controller is an
event driven system which evolves in logical time. In order for the plant and contoller to
interact, the HCS must contain an additional part which serves as an interface and allows an
exchange of information between the plant and controiler. The three parts of a hybrid control
system, controller, interface, and plant, can be envisioned as a hierarchical system with the
controller as the highest layer, the interface in the middle, and the plant as the lowest layer.

The model described here, and used throughout this work, is a refinement of the above
three layer hierarchy made up of four interacting blocks. Two of these blocks, the plant and
controller, refate to the corresponding parts of the hierarchy, and the remaining two blocks, the
actuator and aggregator, each represent a portion of the interface. The actuator relays
commands from the controller to the plant, and the aggregator carries information from the
plant to the controller. Figure 2.1 shows the arrangement of these four blocks as well as the
names and locations of the signals which provide communication between the blocks. Each of
the blocks and its associated signals will be described now.

2.1 Pant

The plant is modeled as a time-invariant, continuous-time system (CTS). This can be
used to represent any type of system which evolves in real time and can be suitably
approximated by ordinary differential equations. Formally the plant is specified by the
following equations:

x(t) = £f(x(1), (1)) (1)
z(t) = g(x(1)) ()
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Figure 2.1: Hybrid Control System Model

where x(t) € R is the plant state, r(t) € R™ is the input, and z(t) € RP is the measured output.
For the purposes of this work we assume that z(t) = x(t). Note that a discrete-time system
(DTS) piant can also be used by replacing equation (1) with x(k+1) = f(x(k), r(k)).

2.2 Aggregator

The aggregator contains the portion of the interface responsible for relaying information
from the plant to the controiler. The input to the aggregator is the measured output, z, and the
output is zh. The task of the aggregator, therefore, is to convert the continuous-time signal, z,
to a discrete-event signal, zh. To accomplish this the aggregator partitions the state space of the
plant into a number of regions, where each region is associated with an event, ej € E, where E
is a set of possible events. It is possible that more than one region can be associated with the
same event. Whenever the state of the plant moves from one region to another, the aggregator
outputs the event associated with the new region. The aggregator then remains silent until the
plant state moves into another new region.

Mathematically the aggregator can be specified by a function, o, which maps each point

in R to an event in E. « is not an injective function, so it induces equivalence classes in R™.

These equivalence classes form the aforementioned regions in RM which partition the state
space, and are cailed aggregator regions.

Definition 2.1: The aggregator regions generated by the function o in the space R form a
partition of R such that two points, ri, r € R, are in the same aggregator region iff there
exists a curve in R from ry to rp such that a(r) = a(ry) = a(rp) for any point, r, on the curve.

The set of aggregator regions shall be denoted by A. O
Thus

o:RP>E aggregator function

z(t) = x(t)e RO aggregator input

zhje E aggregator output

The action of the aggregator can be written as
zh = sp{afx)] (3)

where we abuse notation slightly by allowing o to operate on a signal. sp is a function which
suppresses repeated events so that the aggregator generates an event only when the plant state
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first enters a region. The function « is intended to induce equivalence classes which generate
reasonably large regions in the state space, large enough such that the piant state can evolve for
a non-zero amount of time and remain in the same region. As a result, z4 will be a discrete and
asynchronous signal which has a value only at the times that x moves from one equivalence

class of o to another. The model for the aggregator may seem a bit restrictive, but its ability to
handle a variety of systems will be discussed later.

2.3  DES Controller

The controiler is discrete-event system, meaning it reacts to discrete symbolic input. In
this case, the input and output consist of an asynchronous sequence of symbols which are
called events. Several modeling strategies have been developed for discrete-event systems.
Here the controller is modeled by a deterministic automaton which may have an infinite number

of states. The automaton is specified by a quintuple, {S, E, C, d, ¢}, as follows

S = {s1,52,583,...} set of controller states
E={ejezes...} set of events (controller inputs)
C={c1,¢2,¢3,...} set of commands (controller outputs)
8: SXE—=S state transition function

$: S—>C output function

As mentioned previously, the automaton may have an infinite number of states, in fact it may
have an infinite number of events and commands as well. This model can be used to represent
a wide variety of discrete-event systems, it follows the model found in [14] and is similar to
those found in [20, 26].

The input signal to the controller is zi and the output signal is rh. The names reflect the
fact that they are the high level signals corresponding to the continuous-time signals z and r.
Whenever an event is received by the controtler on zA, the controller immediately undergoes a
state transition determined by the state transition function,

ti = &(ti-1, zhi) 4

where tje S, zh; € E, and i is a time index. With each state transition, the controller generates
an output by the output function,

rhi = ¢(tj) (3

where rh; € C. Note that since the state transitions and outputs of the DES controller occur
immediately upon receiving an input event, there is no need to include time in the model. The
delay between successive state transitions and outputs is determined completely by the input
signal, zh. Also note that the subscript on a signal, e.g. zh;, is used to indicate the logical
order of the event, state, or command carried on that signal. The subscript on a set member,
¢.g. ei, however, refers to a particular member of the set.

2.4  Adcuator

In this model the actuator receives a discrete-event signal, 74, carrying commands from
the controller. The unit in turn produces a continuous-time signal, r, which serves as the input
to the plant. To produce r, the actuator must be programmed with a method to ranslate each
command in C into a numeric value for . The signal, r, is piecewise constant for it depends
only on the most recent controller command and will not change until the next command is
received. In this way the actuator operation is similar to a hold circuit. The action of the

actuator is determined by the function vy, where

y:C—> Rm actuator function
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r(t) e Rm actuator output
thje C actuator input
and described by
r = hold[Y(rA)] (6)

where we allow 7 to operate on a signal, and hold is a function which retains the current value
until a new argument appears.

2.5  Example: Double Integrator
As an example of an HCS we will consider a system consisting of a double integrator
and a simple automaton. The double integrator forms the plant, and it is specified by the

equation
M R

The aggregator partitions the state-space into four regions corresponding to the four quadrants,

such that a(x) = e; if x lies in quadrant i. The controller consists of a three state automata as
shown in Figure 2.2 where c; is the output associated with state s;. Finally, the actuator maps
the three commands, c1, ¢, and c3, to -10, 0, and 10 respectively. The behavior of this
system is to drive the state of the plant to zero, as can be seen in Figure 2.3 which shows
various state trajectories.

Figure 2.2: DES Controller for Double Integrator

3. A DISCRETE EVENT SYSTEM MODEL FOR HYBRID CONTROL SYSTEMS

The difficulty in analysis presented by Hybrid Control Systems is due to the
incompatibility between the models employed in the various blocks which make up the HCS,
namely the DES controller and the CTS or DTS plant. A scheme in which a single modeling
strategy is used would facilitate analysis. In this section, a method for representing the entire
HCS as two interacting DES's will be described. The benefits and limitations of the new
model will be described as well as the relationship between the results obtained from the new
model and the nature of the original model.

3.1 DES Equivalent Plant
Notice that from the point of view of the DES controller the remainder of the HCS
appears as a DES. This is because the input and output of the actuator, plant, and aggregator,
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Figure 2.3: Various State Trajectories of the Double Integrator

taken together, are discrete-event signals. This allows the HCS model described in Section 2
to be converted into a discrete-event system model by combining the actuator, plant, and
aggregator into a single block. The discrete-event controller remains the same in the new
model and the newly formed block constitutes another DES which shall be referred to as the
DES equivalent plani. Like the controller, the DES equivalent plant is modeled by an
automaton, but unlike the controller this automaton may not be deterministic, and the state
transitions do not occur instantly when an input is received. However, one can determine
exactly when the transitions occur because of the time dependence of the underlying system.

The DES equivalent plant is specified by the quintuple {P, C, E, v, ¢p} as follows

P={p1,p2.p3,- ..} the set of states
C={c1,c2,¢3,...) the set of inputs (commands)
E = {e1,ere3,...} the set of outputs {events)

v :PxC - P(P) the state transition function
¢p:P—E the output function

where P(P) denotes the power set of P. Each state in P is uniquely associated with exactly one
of the aggregator regions, i.e. there is a one-to-one correspondence between the members of
the set P and the members of set A. This correspondence is such that when the state of the
real-time plant is in particular member of A, the state of the DES equivalent plant will be the

corresponding member of P. The function ¢p plays the same role as ot because it maps the
plant state to an event in E. Notice that the state transition function, \, maps to an element of

the power set of P, indicating that the automaton is nondeterministic in general. The function y
is also a partal function in general.

We now express the state transition function, v, for the case of a DTS plant. We will
use xhj € P to denote the state of the DES equivalent plant at time 1.

w(xhi, thi) = dpV(au( (0¥ (dp(xhy)), Yirhi)))) - (xhi} (8)
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Note that the notation oilV and ¢pim' is used to denote the preimage of « and ¢p. The DES

equivalent plant is non-deterministic in general because ¢i?¥ maps a single event to a subset of
Rn

oV : E — P(RM

which will generally result in a set, containing more than one state, as the value of y(xh,;, rh;).
in addition, q>pi"" may map a single event to several DES equivalent plant states

dp"V : E — P(P)

resulting in an even larger set for y(xh;, rh;).

The DES equivalent plant represents the extent to which the DES controller in a
particular hybrid control system can reguiate the plant. The controi of the plant is limited by
two factors. First, the plant input is limited to those set points which can be generated by the
actuator. This limitation reduces the number of possible state trajectories which can be realized
in the plant, and this is reflected in the DES equivalent plant by a reduced number of possible
state transitions.

The second limitation on the control of the plant is caused by the aggregator. The
aggregator does not provide the DES controller with the exact state of the plant, but rather with
a sort of approximation. Thus, based solely on information from the aggregator, the response
of the plant to a given input is not known precisely. This effect appears in the DES equivalent
plant as nondeterministic state transitions. That is, for a given input and state, the DES
equivalent plant may have several possible transitions. The example in Section 3.3 clearly
shows this effect. First however, we derive the conditions for determinism.

3.2 Determinism in the DES Equivalent Plant

We would like to know what restrictions can be placed on the hybrid system to ensure
that the DES equivalent plant can be represented by a deterministic autornaton. This is because
the exact behavior of the system can only be determined if the system is deterministic.

Definition 3.1 : A DES equivalent plant is said to be deterministic iff ¥V p;e P, cje C, we
have y(pi, ¢j) € {pi, void} where pje P. a

If v is to represent a deterministic automaton, then the expression on the right side of
equation (8) must take on values which are sets with only one member.

Theorem 3.1 : The DES equivalent plant will be deterministic iff

Vaje A,thje C 3 aze A st x(k+D)e a1 U ap
where
x(k) € ay
and
x(k+1) = f(x(k), y(rhy)).
Proof
Recall that A is the set of aggregator regions and that there is a one-to-one

correspondence between the aggregator regions and the states of the DES equivalent plant.
Thus by making the correspondence

pi < ay and pj & ay,
the theorem can be rewritten as

Vpie P,thie C 3 pje P s.t. pe {pi, pj}
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where pj and p are the DES equivalent plant states at time(k) and time(k+1) respecdvely. Thus
Theorem 3.1 is a basically a restatement of the definition a deterministic DES equivalent plant,

saying that if the state changes, there is a unique state to which it wiil change. O

The restriction of Theorem 3.1 guarantees that if the current value of zk and rh are

known, then the next value of zA can be determined uniquely and thus y is a function in the
conventional sense because it returns only one value. Another way of stating the theorem is
that, under any given value of A, all real-time plant trajectories in any given aggregator region
lead to the same subsequent aggregator region.

Often the restriction of Theorem 3.1 is unnecessary. If a particular control objective is
to be attained, the non-deterministic transitions may not be relevant to the design of the
controller. In any case, the state transition function of a DES equivalent plant can be separated
into 2 deterministic part and a non-deterministic part. The deterministic part will be a partial
function in general because it may not be defined for all states and inputs. Let the deterministic

part of the state transition function be W4 such that

Yq :PxC—>P

where
Yd(xhj, rhj) € y(xh;, rhy)

and yyq is defined only for those pairs (p;, ¢j) where Iy(pj, ¢t = 1. The notation IXII refers to
the cardinality of set X. Furthermore if the restriction of Theorem 3.1 is met, then

Y(xh;, rhi) = {wg(xhj, thj)}.

The deterministic portion of the DES equivalent plant, described by the function g,
represents in a sense the controllable portion of the DES equivalent plant. The state transitions

included in W4 can be enabled by the controller and there is no uncertainty in which transition
will occur. If these deterministic transitions are sufficient to achieve the control objectives for
the system, then the non-deterministic part of the DES equivalent plant is of no consequence.

3.3  Example: Double Integrator

The double integrator system from Section 2.5 is a case of an HCS with a non-
deterministic DES equivalent plant. Figure 3.1 shows the state trajectories of the real-time
plant under the three available control inputs, along with the aggregator regions. The
trajectories which are roughly parallel are under the same input, r. As can be seen the
aggregator regions this example do not lead to a deterministic DES plant. The reason for this
situation is that the aggregator does not preserve enough information about the state of the
actual plant. Therefore, by changing the aggregator to add more regions as shown in Figure
3.2, the system can be made to have a deterministic DES equivalent plant. The new aggregator
is a refinement of the original which preserves more information about the actual plant state and
leads to the deterministic DES equivalent plant shown in Figure 3.3. The original aggregator
was sufficient for the stabilizing DES controller of the original example, but the new aggregator
will allow any controller to be designed without the worry of unpredictable plant behavior.
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Figure 3.3: The DES Equivalent Plant for the Double Integrator

Final Note

A more thorough treatment of this research can be found in [25], which includes an

application of Lyapunov stability to HCS.
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