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ABSTRACT

Using neural networks, a method for the failure behavior
identification of a space antenna model is investigated. The proposed
method employs three stages. If a fault is suspected by the first stage
of fault detection, a diagnostic test is performed on the antenna. The
diagnostic test's results are used by the second and third stages to
identify which fault occurred and to diagnose the extent of the fault,
respectively, The first stage uses a multi-layer perceptron, the second
uses a multi-layer perceptron and neural networks trained with the
quadratic optimization algorithm, a novel training procedure, and the
third stage uses back-propagation trained neural networks.

1 INTRODUCTION

In this paper, a method for the identification of failure behavior via
neural networks is presented. The method presented here is illustrated
with a space antenna model provided by the Jet Propulsion Laboratory’s
(JPL's) Large Spacecraft Control Laboratory Group Experiment Facility
[1,2] but is not restricted to this particular space structure; the
architecture and design procedure may be applied to other plants. To
perform the failure behavior identification, the technique explained here
uses a diagnostic test and divides the process into three stages of fault
detection, identification, and diagnosis while exploiting both the
classification ability and the function approximation ability of neural
nctworks.

The proposed procedure is illustrated in Figure 1. The neural
network fault tree first suspects a fault, which initiates a diagnostic test
for the plant. For the JPL space antenna, the diagnostic test consists of
a reference step input, and the steady-state value and the maximum plant
output are recorded and passed to the fault identification neural network.
Using the diagnostic test resuits, the fault identification neural network
determines which of the following three occurred: (1) a fault, and names
the fault, (2) a false alarm, or (3) an undetermined behavior. This
classification is performed by neural networks either designed as multi-
layer perceptrons, such as the ones discussed in [3-5], or trained using
the quadratic optimization algorithm of [3]. Next, the type of fault and
the results of the diagnostic test are passed to the final function block
which is comprised of several back-propagation trained neural networks.
Training one neural network for each assumed fault, these neural
networks learn the relationship between the diagnostic test results and
the particular values of the fault that occurred. The output of the fault
diagnosis neural network is an estimate of the fault that occurred. This
estimate can then be used by the controller to compensate for the fault.
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Figure 1 Neural network failure behavior identifier.

In receni years, other results addressing failure behavior
identification and neural networks have been reported in the literature
{6,7). These methods determine faults from the steady-state behavior of
the plant. In [6], the concept of determining failures from fault
trajectories emanating from a nominal state is used, and in (7], the fault
identification problem is performed in two steps. The neural network
failure behavior identification approach described in this paper combines
these two methods by identifying in steps the failures via their
trajectories. Unlike the other approaches, an active diagnostic test is
used here to determine the plant's steady-state output. (The use of a
diagnostic test is similar to the reaction of a human operator when a
fault is suspected in the plant.) In addition to a diagnostic test, three
types of neural networks are used to perform the identification.

2 POSSIBLE FAULTS

Ilustrating the failure identification procedure presented here with
JPL's space antenna, a fourth order linear SISO discrete-time
approximation of the antenna employing the HA1 actuator and the
HS10 sensor is used. The model contains two controllable and
observable boom-dish modes of the antenna and approximates the
continuous system satisfactorily. For this space antenna model, five
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possible faults are assumed: three for the HA1 actuator (two
multiplicative and one additive) and two for the HS10 sensor (one
!nuluphcauve and one additive). The placement of the five faults is
illustrated in Figure 2.

Figure 2 (a) Actuator degradation fault, (b) Actuator degradation faul
© Aubxator. f:glifdbias fault, (d) Sensor degradation fam:.g;ﬂa(e()"éensa‘"
added bias

3 FAULT IDENTIFICATION NEURAL NETWORKS

For fault identification, neural networks designed using the
methpdology of [3-5] and trained using the quadratic optimization
algorithm of [3] are used as pattern classifiers to identify which fault
has occurred, The results from the diagnostic test for the various faults
are used to design and to train the neural networks.

For the JPL space antenna, the diagnostic test consists of recording
the steady-state anq the maximum plant output of the plant's response
to a reference step input (with the controller on). For the five faults,
numerous values of each one were used, and the corresponding
dnagnqspc test results were saved. In Figure 3, these values are plotted,
Examx_mng the various fault trajectories, all diverge from the nominal
beha.wor of the antenna, namely a steady-state value of 0.004267 and a
maximum plant output of 0.021499.

Figure 3 Fault trajectories: ¥ .... o oooo N ++++ P oxxxx § #exs,

Using the information in Figure 3, the various trajectori
separated from one another with straight lines forming cor{veio:éegsio?xrse
anq one way of dividing the faults is included in Figure 3. A squaré
region around the nominal operation point is included and is denoted as
a s.afet)j zone or false alarm region. The equations for the lines
delineating the regions are used to construct a multi-layer perceptron to
perform the initial phases of fault identification, The multi-layer
perceptron has two inputs, the steady-state value and the maximum
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plant output from the diagnostic test, and six outputs, the four fault
regions, the false alarm region, and an undetermined fault which is
signaled if the inputs to the multi-layer perceptron do not lie in any of
the other regions.

In the division of the fault regions, two regions contain more than
one fault. To construct a division surface between the faults in these
two regions, two neural networks are trained using the quadratic
optimization algorithm of [3]. When the goal of training a neural
network is to perform a classification, the quadratic optimization
algorithm is a method to accomplish this in a short amount of training
time (typically in a single iteration). The method forms an error
function that is quadratic with respect to the weights of each layer of the
neural network and finds the single minimum for each layer. The
derivation and a further explanation of the quadratic optimization
algorithm can be found in [3,8]. Of course, the back-propagation
algorithm could have been used, however by using the quadratic
optimization algorithm, a shorter training time results for this case.

Using the data from the fault region containing o, B, and § in the
first quadrant, the quadratic optimization algorithm is used to train a
two-layer neural network with 15 hidden layer neurons to separate the o
anciB faulrsfmmthe&AfanlL The algorithm converged in a single step

to F = 0.0015, where F is define &n [3] as the optimization function.
Testing the results, the trained neural network is given random inputs
inside the fanlt region, and its outputs are plotted in Figure 4. The
neural network classifies approximately half of the region as an a or
fault and classifies the other half as a § fault. Using the data from the
fault region containing y and n in the third quadrant, another neural
network was trained with the quadratic optimization algorithm.
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Figure 4 Neural network fault classifier: o/f **** § ...

4 FAULT DIAGNOSIS NEURAL NETWORKS

In this section, neural networks trained using the back-propagation
algorithm as function approximators are used to estimate the values of
the faults. The results from the diagnostic tests for the various faults
are used to train the neural networks.

For the JPL space antenna, the steady-state values from the step
response diagnostic test are used to train the neural networks. The
neural networks have two-layers, a single input, the steady-state value
from the diagnostic test, and a single output, the estimate of the fault's
value. The neural networks were trained until a close approximation to
the actual curve representing the relationship between the steady-state
and the fault was achieved.

5 EXAMPLE

An actuator degradation fault of n = -2.3 is induced at t = 200 after
a reference step input begins at t = 0. This failure is shown in Figure
5. The neural network fault tree registers the fault, and the diagnostic
test's results are a steady-state of -0.004722 and a maximum plant
output of -0.24399. The neural network fault identifier determines that
an actuator added bias fault occurred with i} = -2.3347. Compensating
for the 7} fault, a second diagnostic test determines that the steady-state
is 0.004324 and the maximum plant output is 0.021891. Applying a
reference step input, the compensated system's plant output mimics the
nominal system'’s operation.
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Figure 5 Failure output.

6 CONCLUDING REMARKS

A method for detecting, identifying, and diagnosing faults for JPL's
space antenna model is proposed. Three types of neural networks are
used in the process to fully utilize the neural network's abilities for
pattern recognition and function approximation. With the aid of an
active diagnostic test, five faults for the space antenna are able to be
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