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Polynomial and rational matrix interpolation: theory and control
applications

PANOS J. ANTSAKLISt and ZHIQIANG GAO#

A generalization of polynomial interpolation to the matrix case is introduced
and applied to problems in systems and control. It is shown that this
generalization is most general and it includes all other such interpolation
schemes that have appeared in the literature. The polynomial matrix interpola-
tion theory is developed and then applied to solving matrix equations; solutions
to the diophantine equation are also derived. The relation between a poly-
nomial matrix and its characteristic values and vectors is established and it is
used in pole assignment and other control problems. Rational matrix interpola-
tion is discussed; it can be seen as a special case of polynomial matrix
interpolation. It is then used to solve rational matrix equations including the

model matching problem.

1. Introduction

A theory of polynomial and rational matrix interpolation is introduced in this
paper and its application to certain systems and control problems is discussed at
length. Note that many system and control problems can be formulated in terms
of matrix equations where polynomial or rational solutions with specific proper-
ties are of interest. It is known that equations involving just polynomials can be
solved by either equating coefficients of equal power of the indeterminate s or,
equivalently, by using the values obtained when appropriate values for s are
substituted in the given polynomials; in the latter case one uses results from the
theory of polynomial interpolation. Similarly, one may solve polynomial matrix
equations using the theory of polynomial matrix interpolation presented here:
this approach has significant advantages and these are discussed below. In
addition to equation solving, there are many instances where interpolation-type
constraints are being used in systems and control without adequate justification;
the theory presented here provides such justification and thus it clarifies and
builds confidence into these methods.

Polynomial interpolation has fascinated researchers and practitioners alike.
This is probably due to the mathematical simplicity and elegance of the iheory
complemented by the wide applicability of its results to areas such as numerical
analysis among others. Note that, although for the scalar polynomial case,
interpolation is an old and very well studied problem, only recently has
polynomial matrix interpolation appeared to have been addressed in any
systematic way (Antsaklis 1980, 1983, Antsaklis and Lopez 1984, Antsaklis and
Gao 1990, Lopez 1984). Rational, mostly scalar interpolation has been of
interest to systems and control researchers recently. Note that the ratioral
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interpolation results presented here are distinct from other literature results. as
they refer to the matrix case and concentrate on fundamental representation
questions. Other results in the literature attempt to characterize rational
functions that satisfy certain interpolation constraints and are optimal in some
sense and so they rather complement our results than compete with them.

In this paper, a polynomial matrix interpolation of the type Q(s))a; = b;.
where Q(s) is a matrix and a;, b; are vectors, is introduced as a generalizaFion} of
the scalar polynomial interpolation of the form g(s;) = b;. This genergllzgtlon
appears to be well suited to studying and solving a variety of multivariable
system and control problems. The original motivation for the develqpment qf
the matrix interpolation theory was to be able to solve the polynomial matrix
equations that appear in the theory of systems and control and, in particular, Fhe
diophantine equation; the results presented here however go well beyond solvmg
that equation. It should be pointed out that the driving force, while developing
the theory and the properties of matrix interpolation, has always been system
and control needs. This explains why no attempt has been made to generalize
more of the classical polynomial interpolation theory results to the matrix case.
This was certainly not because it was felt that it would be impossible, quit.e the
contrary. The emphasis on system and control properties in this paper simply
reflects the main research interests of the authors.

Characteristic values and vectors of polynomial matrices are also discussed in
this paper. Note that contrary to the polynomial case, the zeros of t.he
determinant of a square polynomial matrix Q(s) do not adequately charactenz.e
Q(s): additional information is needed that is contained in the characteristic
vectors of Q(s), which must also be given together with the characteristic values,
to characterize Q(s).

The use of interpolation-type constraints in system and control theory is first
discussed and a number of examples are presented.

Motivation: interpolation-type constraints in systems and control theory

Many control system constraints and properties that are expressed in terms
of conditions on a polynomial or rational matrix R(s), can be written in an
easier to handle form in terms of R(s;), where R(s;) is R(s) evaluated at certain
(comiplex) values s =s;, j =1, [. We shall call such conditjons in terms of R(s;),
interpolation (type) conditions on R(s). This is because, in order to under.stand
the exact implications of these constraints on the structure and properties of
R(s), one needs to use results from polynomial interpolation theory. Next, a
number of examples from systems and control theory where polynon.nal. aqd
polynomial matrix interpolation constraints are used, are outlined. This list is

not complete, by far.

Eigenvalue/eigenvector conrtrollability tests: 1t is known that all the upcontroll-
able eigenvalues of ¥ = Ax + Bu are given by the roots of the determinant qf a
greatest left divisor of the polynomial matrices s/ — A and B. An alternative,
and perhaps easier to handle, form of this result is that s; is an uncontrollable
eigenvalue if and only if rank[s;/ — A, B]<n where A‘ is nXn (PBH
controllability test—see Kailath 1980). This is a more restrictive version of the
previous result which involves left divisors, since it is not clear how to hqndle
multiple eigenvalues when it is desirable to determine all uncontrollable eigen-
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values. The results presented here can readily provide the solution to this
problem.

Selecting T(s): in the Model Matching Problem, the plant H(s) and the desired
transfer function matrix 7'(s) are given and a proper and stable M(s) is to be
found so that T(s) = H(s)M(s). The selection of T(s) for such M(s) to exist
can be handled with matrix interpolation.

The state feedback pole assignment problem has a rather natural formulation
in terms of interpolation-type constraints; similarly, so has the output feedback
pole assignment problem.

More recently, stability constraints in the H™ formulation of the optimal
control problem have been expressed in terms of interpolation-type constraints
(Kimura 1987, Shaked 1989, Chang and Pearson 1984). It is rather interesting
that Shaked (1989) and Chang and Pearson (1984) discussed a ‘directional’
approach which is in the same spirit of the approach taken here.

The above are just a few of the many examples of the strong presence of
interpolation type conditions in the systems and control literature; this is
because they represent a convenient way to handle certain types of constraints.
However, a closer look reveals that the relationships between conditions on
R(s;) and properties of the matrix R(s) are not clear at all and this needs to be
explained. Only in this way can one take full advantage of the method and
develop new approaches to handle control problems. Our research on matrix
interpolation and its applications addresses this need.

The main ideas of the polynomial matrix interpolation results can be found
in earlier publications (Antsaklis 1980, 1983, Antsaklis and Lopez 1984, Antsak-
lis and Gao 1990, Lopez 1984), with state and static output feedback applica-
tions appearing in Antsaklis (1977) and Antsaklis and Wolovich (1984); some of
the material on rational matrix interpolation has appeared before in Antsaklis
and Gao (1990).

Here, a rather complete theory of polynomial and rational matrix interpola-
tion with applications is presented. Note that all the algorithms in this paper
have been successfully implemented in Matlab. In summary, the contents of the
paper are as follows.

Summary

Section 2 presents the main results of polynomial matrix interpolation. In
particular, Theorem 2.1 shows that a p X m polynomial matrix Q(s) of column
degrees d;, i =1, m, can be uniquely represented, under certain conditions, by
[ = Zdz + m triplets (s;, a;, b;), j =1, [, where sj is a complex scalar and a by
are vectors such that Q(s;) a;=b;, j= 1, [. It is shown that this formulation is
most general and it includes, as special cases, other interpolation constraints
which have been used in the literature.

In §3 equations involving polynomial matrices are studied using interpola-
tion. All solutions of (highest) degree r are characterized and it is shown how to
impose additional constraints on the solutions. The diophantine equation is an
important special case and it is examined at length. The conditions under which
a solution to the diophantine equation of degree r does exist are established and
a method based on the interpolation results to find all such solutions is also
given.
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In § 4 the characteristic values of a polynomial matrix Q(s) are discussed and
all matrices with given characteristic values and vectors are characterized. Based
on these results it is possible to impose restrictions on Q(s) of the form Q(s;)
a; = 0 that imply certain characteristic value locations with certain algebraic and
geometric multiplicity. This problem is completely solved here. The cases when
the desired multiplicities require the use of conditions involving derivatives of
Q(s) are handled in the Appendix.

In §5, the results developed in the previous section on the characteristic
values and vectors of a polynomial matrix Q(s) are used to study several systems
and control problems. The pole or eigenvalue assignment is a problem studied
extensively in the literature. It is shown how this problem can be addressed
using interpolation, in a way which is perhaps more natural and effective;
dynamic (and static) output feedback as well as state feedback is used and
assignment of both characteristic values and vectors is studied. Tests for
controllability and observability and the control design problem with the
interpolation-type of constraints are also discussed.

Section 6 introduces rational matrix interpolation. It is first shown that
rational matrix interpolation can be seen as a special case of polynomial matrix
interpolation and the conditions under which a rational matrix H(s) is uniquely
represented by interpolation triplets are derived in Theorem 6.1. It is also shown
how additional constraints on H(s) can be incorporated. These results are then
applied to rational matrix equations and results analogous to the results on
polynomial matrix equations derived in the previous sections are obtained.

The Appendix contains the general versions of the results in §4, that are
valid for repeated values of s;, with multiplicities beyond those handled in that
section. Smith forms are defined and the relation between Smith and Jordan
canonical forms is shown.

2. Polynomial matrix interpolation

In this section the theory of polynomial matrix interpolation is introduced.
The main result is given by Theorem 2.1 where it is shown that a p X m
polynomial matrix Q(s) of column degrees d;, i=1, m, can be uniquely
represented, under certain conditions, by / = Zdi + m triplets (s;, aj, by, j=1,
[, where s; is a complex scalar and a;, b; are vectors such that Q(s;) a; = b,
j =1, . One may have fewer than >d; + m interpolation points ! in which case
the matrix (with column degrees d;) can satisfy additional constraints. This is
very useful in applications and it is shown in (2.6); in Corollary 2.2 the leading
coefficient is assigned. Connections to the eigenvalues and eigenvectors are
established in Corollary 2.3. In Lemma 2.4 the choice of the interpolation points
is discussed. In Theorem 2.1 the vector a; postmultiplies Q(s); in Corollary 2.5
premaltiplication of Q(s) by a vector is considered and similar (dual) results are
derived. The theory of polynomial matrix interpolation presented here is a
generalization of the interpolation theory of polynomial and there are, of
course, alternative approaches which are discussed; they are shown to be special
cases of the formulation in Theorem 2.1. In particular, Q(s) is seen as a matrix
polynomial and alternative expressions are derived ir: Corollary 2.6; in Corollary
2.7 interpolation constraints of the form Q(zx) = Ry, k=1, g, are considered,
which may be seen as a direct generalization of polynomial constraints. Finally,
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in Theorem 2.8 derivatives of Q(s) are used to generalize the main interpolation
results.

The basic theorem of polynomial interpolation can be stated as follows.
Given [ distinct complex scalars s;, j = 1, [, and / corresponding complex values
b;. there exists a unique polynomial g(s) of degree n = [ — 1 for which

gls)=b; j=1.1 2.1)

That is, and nth degree polynomial g(s) can be uniquely represented by the
[ =n + 1 interpolation (points or doublets or) pairs (s;, b;), j=1, [. To see
this, write the nth degree polynomial g(s) as g(s) = g[l.s, ..., s"]’ where ¢ is
the (1 X (n + 1)) row vector of the coefficients and []' denotes the transpose.
The [ = n + | equations in (2.1) can then be written as

| 1
s s

gV =g ;l 3[ = [by, .. by] = By
s{_' sf"

Note that the matrix V(/ x /) is the well-known Vandermonde matrix which is
non-singular if and only if the / scalars s;, j=1, [, are distinct. Here s; are
distinct and therefore V is non-singular. This implies that the above equation
has a unique solution g; that is, there exists a unique polynomial g(s) of degree
n which satisfies (2.1). This proves the above-stated basic theorem of poly-
nomial interpolation.

There are several approaches to generalize this result to the polynomial
matrix case and a number of these are discussed later in this section. It is shown
that they are special cases of the basic polynomial matrix interpolation theorem
that follows.

Let S(s) :=blkdiag{[l,s, ..., s%]'} where d,, i =1, m, are non-negative
integers; let ;% 0 and b; denote (m X 1) and (p X 1) complex vectors respect-
ively and s; complex scalars.

Theorem 2.1:  Given interpolation (points) triplets (s;, a;,b;), j=1, I, and
non-negative integers d; with | = > d; + m such that the (Ed,- + m) X | matrix

S, = [S(spay, ..., S(spay] 2.2)

has full rank, there exists a unique (p X m) polynomial matrix Q(s), with ith
column degree equal to d;, i = 1, m for which

Q(sj)a;=b; j=1,1 (2.3)
Proof: Since the column degrees of Q(s) are d;, Q(s) can be written as
Q(s) = 0S(s) (2.4)

where Q (p X (3.d; + m)) contains the coefficients of the polynomial entries.
Substituting in (2.3), Q must satisfy

oS, = B (2.5)
where B;:=[by, ..., bj]. Since S, is non-singular, Q and therefore Q(s) are
uniquely determined. |

It should be noted that when p=m=1 and d;=1[-1=n this theorem
reduces to the polynomial interpolation theorem. To see this, note that in this
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case the non-zero scalars a;, j =1, [, can be taken to be equal to I, in which
case S; =V the well known Vandermonde matrix; V is non-singular if and only
if s;, j =1, [, are distinct.

Example 2.1: Let Q(s) be a 1 X2 (= p X m) polynomial matrix and let =9
interpolation points or triplets be specified:

{(sj,a;. b)) j = 1,2,3} = {(~=1,[1,0]'. 0). (0, [-1. 1]", 0). (L. [0, 1}'. 1)}
In view of Theorem 2.1, Q(s) is uniquely specified when d and d, are chosen
so that [ (=3)=>d;+m=(d, +d>)+2or d +d,=1 assuming that S5 has
full rank. Clearly there is more than one choice for d; and d,; the resulting

.Q(s) depends on the particular choice for the column degrees d; and different
combinations of d; will result in different matrices Q(s). In particular:

(i) let d; = 1, and d, = 0. Then S(s) = blkdiag {[1s]’, 1} and (2.5) becomes:

1 -1 0
0S5 = Q[S(spay, S(sy)az, S(s3)az] = Q| -1 0 0| =[0,0,1]= B;
0 1 1

from which Q =[1, 1, 1] and Q(s) = OS(s) = [s + 1, 1];
(ii) let dy=0, d,=1. Then S(s)=blkdiag{l,[l.s]'} and (2.5) gives
Q =10, 0, 1] from which Q(s) = [0, 5], is clearly different from (i) above. |

2.1. Discussion of the interpolation theorem
2.1.1. Representations of Qfs). Theorem 2.1 provides an alternative way to
represent a polynomial matrix (or a polynomial) other than by its coefficients
and degree of each entry. More specifically: a polynomial g(s) is specified
uniquely by its degree, say, n and its n + 1 ordered coefficients. Alternatively,
in view of (2.1) the [ pairs (s;, b;), j=1, [, uniquely specify the nth degree
polynomial ¢(s) provided that / = n + 1 and the scalars s; are distinct.

Similarly, a polynomial matrix Q(s) is specified uniquely by its dimensions
p X m, its column degrees d;, i = 1, m, and the d, + 1 coefficients in each entry
of column i. In view of Theorem 2.1, given the dimensions p X m, the
polynomial matrix Q(s) is uniquely specified by its column degrees d;, i = 1, m,
and the [ triplets (s;, a;, b;), j =1, [, provided that / = >d; + m and (s, a;) are
so that S; in (2.2) has full rank. Notice that when p = m = 1 these conditions
reduce to the well-known polynomial interpolation conditions described above,
namely that s; must be distinct.

2.1.2. Number of interpolation points. It is of interest to examine what happens
when the number of interpolation points /, in Theorem 2.1, is different from the
required number determined by the number of columns s/ and the desired
column degrees of Q(s), d;,, i=1, m. That is, what happens when
[+ >.d;+ m: the equation of interest is QS;= B, in (2.5). A solution
Q(p x (2,d; + m)) of this equation exists if and only if

S
rank l:B'J = rank §,

This implies that there exists a solution Q for any B, if and only if rank (§;) = /;
that is. if and only if 5,. a (>,d; + m) X [ matrix has full column rank.

Polynomial and rational matrix interpolation 355

(i) When [ > Y d; + m, the system of equations in (2.5) is over specified; there
are more equations than unknowns as §; is a (3ld; + m) x [ matrix. If now the
additional (! — (2.d; + m)) equations are linearly dependent upon the previous
(>.d; + m) ones, then a Q(s) with column degrees d;, i =1, m, is uniquely
determined provided that (3.d; + m) interpolation triplets (s;. a;, b;) satisfy the
conditions of Theorem 2.1. Otherwise there is no matrix of column degrees d;,
i =1, m, which satisfies these interpolation constraints. In this case these
interpolation points represent a matrix of column degrees greater than d,.

(ii) When [ < >.d; + m, then Q(s) with column degrees d;, i =1, m, is not
uniquely specified, since there are more unknown than equations in (2.5). That
is, in this case there are many (p X m) matrices Q(s) with the same column
degrees d; which satisfy the / interpolation constraints (2.3) and therefore can be
represented by these / interpolation triplets (s}, a;, b;).

2.1.3. Additional constraints. This additional freedom (in (ii) above) can be
exploited so that Q(s) satisfies additional constraints. In particular, & =
(Zd,- + m) — [ additional linear constraints, expressed in terms of the coeffici-
ents of O(s) (in Q), can be satisfied in general. The equations describing the
constraints can be used to augment the equations in (2.5). This is a very useful
characteristic and it is used extensively in later sections. In this case the
equations to be solved become

Q[S;. C1 = [B, D] (2.6)

where QC = D represent k := (>,d; + m) — [ linear constraints imposed on the
coefficients Q; C and D are matrices (real or complex) with k columns each.
The following examples illustrate the above.

Example 2.2. (i) Consider a 1 X 2 polynomial matrix Q(s) and / = 3 interpola-
tion points:

{(s» @, b)) j = 1,2,3} = {(=1.[1,0]', 0), (0, [1, 1], 0), (L, [0, 1]", D)}

as in Example 2.1. Let dy =1, d, = 0. It was shown in Example 2.1 (i) that the
above uniquely represent Q(s)=[s +1,1]. Suppose now that an additional
interpolation point (sy, ay, by) = (1,[1.0]",2) is specified. Here [=4>
>di+m=1+2=3and

1 -1 0 1
0S5, =Q) -1 0 0 1}=[0,0,1,2]= B,
0 1 1 0

Notice however that the last equation Q1 1 0] =2 can be obtained from
QS; = B;, by a postmultiplication by [~1 =2 2]'. Clearly, the additional
interpolation point does not impose any additional constraints on (J(s) as it does
not contain any new information about Q(s). If now the new interpolation point
is taken to be (sy.ay. by) =[1,[1,0]",3) then. as can be easily verified, there is
no Q(s) with d; + d, = 1 which satisfies all four interpolation constraints. In this
case one should consider Q(s) with higher column degrees, namely d, + d, = 2.

(i) Consider again a 1| X 2 polynomial matrix Q(s) but with / = 2 interpolation
points:

it

{(sja; b)) j = 1,2} = {(~1, [1.0]'. 0). (0, [~1, 1], 0)}



356 P. J. Antsaklis and Zhigiang Gao

from Example 2.1. Let dy =1, d;=0. Here [ =2< Sdi+m=1+2=31In
this case it is possible, in general, to satisfy (>d;+ m)— [ =1 additional

(linear) constraint. In particular

1 -1 €y
Q[Sz Cl1= Q] ~1 0 ¢ | =[0.0,d] =B D]
0 1 C3

where Q[c, ¢ ¢3]’ = d is the additional constraint on the coefficients Q of

1 0
Q(s) = 0S(s) = lq1 92 93] (5) (1)

For example, if it is desired that the coefficient ¢, = 2, this can be enforced by
taking ¢; =c3=0 and ¢; =1, d=2. Then Q=2 2 2] and Q(s) =[2s +2 2]
satisfies all requirements. a

The additional constraints on Q(s) (or Q) do not, of course, have to be
linear. They can be described, for example, by nonlinear algebraic equations or
inequalities. However, in contrast to the linear constrains, it is difficult in this

case to show general results.

2.1.4. Determination of the leading coefficients. It is well known that if the
leading coefficient of an nth degree polynomial is given, then n. not n + L
distinct points suffice to determine uniquely this polynomial. A corresponding
result is true in the polynomial matrix case.

Let C. denote the matrix with ith column entries the coefficients of s%, in
the ith column of Q(s): that is, the leading matrix coefficient (with respect to
columns) of QO(s). Let also §; := blkdiag {[1. s, ..., s%7']'}, i=1, m, where
the assumption that d; is greater than zero is made for §; to be well defined.
Note that this assumption is relaxed in the alternative expression of these results

discussed immediately following the Corollary.

Corollary 2.2: Given (sj,a;, b)), j=1, I, and non-negative integers d; with
[ = >.d; such that the (S dyy x | martrix Sy = [Si(s)ay. .. .. Si(s)al] has ful!
rank, there exists a unique (p X m) polynomial matrix Q(s), with ith column
degree d;, and a given leading coefficient matrix C. which satisfies (2.3).

Proof: Q(s) = C.D(s) + Q;S(s) with D(s) := diag [s%] for some coefficient
p x (>.d;) matrix Q,. Equation (2.3) implies

Q151 = By — C[D(spay, ..., D(s)a] (2.7)

which has a unique solution Q, since Sy, is non-singular. Q(s) is therefore
uniquely determined. O

Note that here the given C, provides the additional m constraints (for a total of
Nd; + m) needed to determine uniquely Q(s) in view of Theorem 2.1. It is also
easy to see that when p =m =1, the corollary reduces to the polynomial
interpolation result mentioned above.

The results in Corollary 2.2 can be seen in view of our previous discussion
for the case when only / < >.d; + m interpolation points are given. In that case
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it was possible to satisfy, a general k := (D> d, + m) — [ additional constraints.
Here, the requirement that the leading coefficients should be . can be written
as

Q[S:. €] = [B,, C] (2.8)

where C is chosen to extract the leading coefficients from Q. Since (. has
k = m columns, [ = > d; interpolation points will suffice to generate >.d, + m
equations with > d; + m unknowns, to determine uniquely Q(s).

Example 2.3: Consider a 1 x 2 polynomial matrix Q(s) with column degrees
dy =1, d> =0. Assume that the interpolation point (/ = D= 1) s {5y, @y B1)
= (—1,[1,0]",0) and the desired leading coefficient is C. = [¢, ¢;]. Then

1 0 0
Q[SI,C]=Q -1 1 0 -——[0 Cy Cz]z[Bl, CC]
0o 0 1
from which Q = [cy, ¢y, ¢2] and Q(s) = [¢| + €15, ¢3]. O

2.1.5. Interpolation constraints with B;= 0. Often the interpolation constraints
(2.3) are of the form

Q(s)ai=0 j=1,1 (2.9)
leading to a system of equations
0S8, =0 (2.10)

where S; is a (2.d; + m) x [ matrix; see Theorem 2.1. In this case, if the
conditions of Theorem 2.1 are satisfied then the unique Q(s) which is described
by the [ = (D.d; + m) interpolation points is Q(s) = 0. It is perhaps instructive
to point out what this result means in the polynomial case. In the polynomial
case this result simply states that the only nth degree polynomial with n + 1
distinct roots s; is the zero polynomial, a rather well-known fact. It is useful to
determine non-zero solutions Q of (2.10). One way to achieve this is to use:

Q[S, €] = [0, D] (2.11)

where again S, is a (Q,d, + m) x | matrix but the number of interpolation points
[ is taken to be [/ < >.d; + m. In this way Q(s) is not necessarily equal to a zero
matrix. The matrices C and D each have k := (D.d; + m) — [ columns, so that
Q(s) can satisfy, in general, k& additional constraints; see Example 2.3.

2.1.6. Eigenvalues and eigenvectors. An interesting result is derived when
Corollary 2.2 is applied to an (n X n) matrix Q(s) = sI ~ A. In this case d; = 1,
i=1,n C.=1I,S(s)=1and Q,= A;also!=n,S;,=]ay, ..., a,]and (2.7)
can be written as:

Alay, ...,a,) = B, = [ay. ..., a,]diag[s)] (2.12)

When [by, ..., b,] = B, =0 then. in view of (2.12) and Corollary 2.2, the
following is true.

Corollary 2.3: Given (s;,a;)), j=1, n, such that the (n X n) matrix Sy, =
lay, ..., a,] has full rank, there exists a unique n X n polynomial matrix Q(s)
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with column degrees all equal to | and a leading coefficient matrix equal to 1
which satisfies (2.3) with all b; = 0: that is Q(s;)a; = (s;] — A)a;=0.

The above corollary simply says that A is uniquely determined by its »
eigenvalues s; and the n corresponding linearly independent eigenvectors a;, a
well-known result from matrix algebra. Here, this result was derived from our
polynomial matrix interpolation theorem, thus pointing to a strong connection
between the polynomial matrix interpolation theory developed here and the
classical eigenvalue eigenvector matrix algebra results.

2.1.7. Choice of interpolation points. The main condition of Theorem 2.1 is that
S, a (Xd; + m) x [ matrix, has full (column) rank [. This guarantees that the
solution Q in (2.5) exists for any B, and it is unique. In the polynomial case S,
can be taken to be a Vandermonde matrix which has full rank if and only if s;.
j=1.1, are distinct, and this has already been pointed out. In general however,
in the matrix case, s;, j = 1, [, do not have to be distinct; repeated values for s,
coupled with appropriate choices for a; will still produce full rank in §; in many
instances, as can be easily verified by example. This is a property unique to the

matrix case.

Example 2.4: Consider a 1 X 2 polynomial matrix Q(s) with d, =1, d, =0 (as
in Example 2.1). Suppose that / = 3 interpolation points are given:

{(s; @ b)) j = 1,2,3} = {(0, [1, 0", 1), (0. [0, 1, 1361, [1, 8)°, 2)}-
Here S(s) = blkdiag {[1,s]’, 1} and

1 0 1
0S:=Ql0 0 1]|=[1,1,2]=B;
0 1 0

from which Q(s) = QS(s) =[1 1 1]S(s) =[s + 1, 1]. Note that the first two
columns of S; are S(0)[1,0]" and S(0)[0,1]'. They correspond to the same
s;=0, j=1, 2, and they are linearly independent. O

If s;,, j=1, [, are taken to be distinct, then there always exist a; # 0 such
that S, has full rank. An obvious choice is a;=¢, for j=1,d,+1, a;=e> for
j=dy+2, ..., dy+dy+2 etc, where the entries of column vector ¢; are zero
except for the ith entry which is 1; in this way, §; is block diagonal with m
Vandermonde matrices of dimensions (d; + 1) x (d;+ 1), i=1, m, on the
diagonal, which has full rank since s; are distinct (in fact we only need groups of
d; + 1 values of s; to be distinct).

Example 2.5: In Example 2.4 (Q(s) 1 x2, [ =3, d, =1, d; =0) take sy, 52,
and s3 to be distinct and let a; = a; = ey =[1 0] and a3 =e, =[0 1]". Then in
0S5 = Bs,

1 1 0
53 =48 §2 0
0 0 1

which has a block diagonal form with 2 (= m) Vandermonde matrices on the
diagonal. Clearly S; has full rank since s, and s, are distinct; so there is a

unique solution Q for any Bj. g

OO
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It is also important to know, especially in applications, what happens to the
rank of §; for given a;. It turns out that §; has full rank for almost any choice of
a; when s; are distinct. Consider the following.

Femma 24: Let s, j=1, 1, with |<Yd;+ m be distinct complex scalars.
Then the (>.d; + m) X [ matrix S; in (2.2) has full column rank | for almost any
set of non-zero a;, j =1, I. ]

Proof: First note that S, has at least as many rows (>,d; + m) as columns (/).
The structure of S(s) together with the fact that a; # 0 and s; distinct imply that
the /th order minors of §; are non-zero multivariate polynomial in a;, the
entries of a;, j =1, /. These minors become zero only for values of a; on a
hypersurface in the parameter space. Furthermore, note that there always exists
a set of a; (see above) for which at least one /th order minor is non-zero. This
implies that rank S, = / for almost any set of a; # 0. a

?Eample 2.6: Let S(s) =blkdiag{[1,s]’, 1} and take s, =0, s, =1 (distinct).
en

an  ap
Sy = [S(sy)ay, S(sa)ax] =] 0 ap,
ay a»n

whgre a, =[ay.ay] and a, = (a3, a»] (#0). Rank S, will be less than 2
(= 1) for values of a; which make zero all the second-order minors: a,a,,,
ay a2 — aypdy . apas. Such a case is, for example, when a;; = a;» = 0. O

2.1.8. Alternative bases. Note that alternative polynomial bases, other than
[1,s.s%, ...]', which might offer computational advantages in determining Q(s)
from interpolation equations (2.5) can, of course, be used. Choices include
Chebychev polynomials, among others, and they are discussed further later in
this paper in relation to applications of the interpolation results.

2.2. Alternarive approaches to matrix interpolation

() ~Dual version. In Theorem 2.1, a; are column vectors which postmultiply
Q(s;) in (2.3) to obtain the interpolation constraints Q(sj)a; = b;; b; are also
column vectors. It is clear that one could also have interpolation constraints of
the form

where‘ a; anq Q, are row vectors. Equation (2.13) gives rise to an alternative
(*dual’) matrix interpolation result which we include here for completeness.
 Let S(s)=blkdiag{[l,s,...,s%]} where d;, i=1,p, are non-negative
integers; let a;#0 and b; denote (1 X p) and (1 X m) complex vectors
respectively and s; complex scalars.

Corollary 2.5: Given (s;,a;,b;), j=1,1, and non-negative integers d; with
[ =3d; + p such that the | x (2.d; + p) matrix
21;9_(51)

& = : (2.14)
a;S(s;)



360 P. J. Antsaklis and Zhigiang Gao

has full rank, there exists a unique (p X m) polynomial matrix Q(s), with ith
row degree equal to d;, i =1, p, for which (2.13) is true.

Proof: The proof is similar to the proof of Theorem 2.1: Q(s) can be written as

Q(s) = S(5)Q (2.15)
where Q((de + p) X m) contains the coefficients of the polynpmial entries of
O(s). Substituting in (2.8) where B, = [bj, ..., bi]', Q must satisfy

$1Q = B, , (2.16)
Since S, is non-singular, Q and therefore Q(s) are uniquely determined. O

Example 2.7: Let Q(s) be a 1 X 2 (= p X m) polynomial matrix anq let [ =2
interpolation points be specified: {(s]-_, aj, bj)j=1,2} =
{(~1,1,[0 1]), (0, 1, [1 1])}. Here [ =2=3d; + p from which d; = 1 that is,
a matrix of row degree 1 may be uniquely determined. Note that S(s) = [1,s].

Then
se-[i “oJe-i 1]
e-[; o

and Q(s)= S(s) @ =[s+1,1] '
(ii) Q(s) as a matrix polynomial. The relation between representation (2.4) used

in Theorem 2.1 and an alternative, also commonly used, representation of Q(s)
is now shown, namely:

Q(s) = 0Sals) = Qo + +++ + Qus* (2.17)
where Sy(s) :=[I, ..., Is?]" a m(d + 1) x m matrix with d = max(d;), i =1,
m, and O =[Qq, ..., Q4] the (p x m(d + 1)) coefficient matrix. N.otlce. that
S(s) = KS,(s) where K((>.d; + m) x m(d + 1)) describes the appropriate inter-

change of rows in S(s) needed to extract S(s) (of Theorem 2.1). Representa-
tion (2.17) can be used in matrix interpolation as the following corollary shows.

from which

O

Corollary 2.6: Given (s;,a;, b)), j=1, [, and non-negative integer d with
[ = m(d + 1) such that the m(d + 1) X [ matrix

Sa = [Sa(sp)ays - - - Sa(spail (2.18)
has full rank, there exists a unique (p X m) polynomial matrix Q(s) with highest
degree d which satisfies (2.3).

Proof: Consider Theorem 2.1 with d; = d; then

ésd[ = B (2.19)
is to be solved. The result immediately follows in view of S(s) = KS4(s) which
implies that S is non-singular, since here K is non-singular. O

Notice that, in order to represent uniquely a matrix Q(s) wjth column d‘egrees
d,, i=1, m, Corollary 2.6 requires more interpolation points (s;, a;, bj) than
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Theorem 2.1 since md = . d;. This is, however, to be expected as, in this case,
less information about the matrix Q(s) is used (only the highest degree d), than
in the case of the theorem where the individual column degrees are supposed to
be known (d;, i = 1, m).

Example 2.8: Let Q(s) be 1 X2 (=p xm),d=1and let the / =m(d +1) =4
interpolation points (s;, a;, b;) be as follows: let the first three be the same as in
Example 2.1 and the fourth be (2, [0. 1]’, 1). The equation (2.19) now becomes

1 -1 0 0

= =1 0 1 1 1

Qsd4 = Q . 0 0 0 = [O’ O» lv 1] = B4
0 0 1 2

from which Q =[1,1,1,0] and Q(s) = 0S.(s)= Qys + Qo =[s + 1,1] as in
Example 2.1 (i). If the fourth interpolation point is taken to be equal to
(2.[0,1]’,2) then B,;=[0,0,1,2] while S, remains the same. Then 0 =
[0,0,0, 1] and Q(s) = QS4(s) = [0, s] as in Example 2.1(ii) a

Similarly to the case of Theorem 2.1, if the number of interpolation points
I < m(d + 1) then Q(s) of degree d is not uniquely specified. In this case one
could, in general, satisfy k :=m(d + 1) — [ additional linearly constraints by
solving

Q[Sa Cl = [B,, D] (2.20)
where QC = D represent the k linear constraints imposed on the coefficients Q.
Constraints on Q other than linear can, of course, be imposed in the same way
as in the case of Theorem 2.1.

(iii) Constraints of the form (z;, Ry), k =1, q. Interpolation constraints of the
form

Q(z) =Ry k=1,q (2.21)

have also appeared in the literature. These conditions are but a special case of
(2.3). In fact, for each k, (2.21) represents m special conditions of the form
Q(sj))a;=b;, j=1, [, in (2.3). To see this, consider (2.3) and blocks of m
interpolation points where s;=z,, i=1, m with a,=e;, 5,,,;, =2, i =1, m,
with a,,.; = ¢; and so on, where the entries of ¢; are zero except the ith entry
which is 1: then Ry of (2.21) above is Ry = [by, ..., by], Ry =[bpirs - - -, bam]
and so on. In this case s; are not distinct but they are m-multiple. This is
illustrated in Example 2.9 below where: m =2 and s, = 5, = 0 with a; = [1, 0],
ay=[0,1]" and R, =[by,b;]=[1,1]; also s3=s4=1 with a3=[1,0], ay =
[0, 1]" and R, = [b3, by] = [2,1].

A simple comparison of the constraints (2.21) to the polynomial constraints
(2.1) seems to suggest that this is an attempt to generalize directly the scalar
results to the matrix case. As in the polynomial case, zx, k =1, g, therefore
should perhaps be distinct for Q(s) to be uniquely determined. Indeed this is the
case, as is shown in the proof of the following corollary.

Corollary 2.7: Given (24, Ry), k=1, g with q=d + 1, and R, p X m, such
that the m(d + 1) X mq matrix
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S 7= [S(T1)s o on Sl Zad] (2.22)

has full rank, there exists a unique (p X m) polynomial matrix Q(s) with highest
degree d which satisfies (2.21).

Proof: The proof is direct in view of Corollary 2.6; there are [ = mgq interpola-
tion points. Notice that here Sy (after some reordering of rows and columns) is
a block diagonal Vandermonde type matrix, and it is non-singular if and only if

zx are distinct. m

Example 2.9: Let QO(s) be 1 X2 (=p X m), d=1and let the g=d+1=2
interpolation points be {(zx. R, k=1,2)={(0,[1,1]),(1,[2.1]}. In view of
Q(s) = 0S4(s) = (Q1s + Qv)

O[Sa(z1)s Sa(z2)] = [Ry. Ro] or

=[1, 1, 2, 1]

S = O =
—_—0 = O

Q
oo o~
SoOmO

from which O (=(Q¢.01)=[1,1,1,0] and Q(s) = QSu(s) =[s +1,1] as in
Examples 2.1 and 2.8. a

Note that if, instead of degree d, the column degrees d;, i =1, m, of Q(s)
are known, then a result similar to Corollary 2.7, but based directly on Theorem
2.1, can be derived and used to determine Q(s) which satisfies (2.21) given
(zx» Ri), k=1, g. In this case, for a unique solution, g is selected so that
mq = (O.d; + m).

In Corollaries 2.6 and 2.7 above, it is clear that the dual interpolation results
of Corollary 2.5, instead of Theorem 2.1, could have been used to derive dual
versions. These dual versions involve the row dimension p instead of m and
they could lead in certain cases to requirements for fewer interpolation points,
depending on the relative size of p and m. These alternative versions of the
corollaries can be easily derived and they are not presented here.

(iv) Using derivatives. In the polynomial case, they are interpolation constraints
which involve derivatives of ¢(s) with respect to s. In this way, one could use
repeated values s; and still have linearly independent equations to work with. In
the matrix case it is not necessary to have derivatives to allow some repeated
values for s;, since the key condition in Theorem 2.1 is S; of (2.2) to be of full
rank which, in general, does not imply that 5; must be distinct; see Example 2.4
and Corollary 2.7 above. Nevertheless, it is quite easy to introduce derivatives
of Q(s) in interpolation constraints and this is now done for generality and
completeness.

Notice that the kth derivative of S(s) := blkdiag{[l,s, .. ., s} i=1, m,
with respect to s, denoted by §¥)(s), is easily determined using the formula
(590 = d(d; = 1) ... (d; = k + 1)s*~* for k less or equal to d; and (s%)* =0
for k larger than d;. The interpolation constraints Q(s;)a; = b; in (2.3) now have
a more general form

OW(spay; = by k=0,1,... (2.23)

W P ok (oY) o 1 A
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for each distinct value s;. Clearly, Q(s) = QS(s) implies Q*)(s) = QS™*)(s) and
QS®(s))ay; = by, (2.24)

in view of (2.23). There is a total of / relations of this type which can be written
as QS; = By, as in (2.5). To be able to determine uniquely Q(s), the new matrix
S, which now contains columns of the form S“""(s,)dkj, must have full (column)
rank. In particular, the following result can be shown.

Tpeprem 2.8: Consider interpolation triplets (s;, ayj. b)) where si, j=1, o,
distinct complex scalars and ay;#0 (m X 1), by (p X 1) complex vectors. If
k=0, 1 — 1, let the total number of interpolation points be

[ =L
1

For non-negative integers d;, i =1, m, and |=>d,+ m assume that the
(X.d; + m) x | matrix S; with columns of the form S(k)(sj)akj j=1, 0, k=0,
[; = 1 namely

8 5= [ 800 Vetgts + « S(ll‘”(sl)a,l-m, e 8Os Dag,, .. J (2.25)

has full column rank. Then there exists a unique p X m polynomial matrix Q(s)
which satisfies (2.23).

Prgof: The proof is similar to Theorem 2.1. Solve QS;,= B, to derive the
unique Q and Q(s) = QS(s). O

Example 2.10: Consider a 1 X 2 polynomial matrix Q with d, =1, d, =0 and
let the [=>d+m=3 interpolation points  {(sy, ag;, bo1), (51, ap, b11),
(s2,a02, bo3)} = {(=1,[1 0], 0), (=1, [1 0], 1), (0, [0 1], 1)} satisfy Q(sy)ag
= b()l’ Q(”(sl)a” =5 b” and Q(Sz)a()z = boz. Here, o =2, 11 =2, [2 =1 and
[ = E‘l’l]- = 3. Now

1 0 0
08, = Q[S(O)(s,)aol, S“)(Sl)an’ S(o)(sz)a()z] =Q|-1 1 0 =[011]
0 0 1
= [b(]h bllv b02] = B3
from which Q =[1 1 1] and Q(s) = QS(s) = [s + 1, 1]. O

3. Solution of polynomial matrix equations

In this section equations of the form M(s)L(s) = Q(s) are studied. The main
result is Theorem 3.1 where it is shown that all solutions M(s) of (highest)
Qegree r can be derived by solving an equation MS, = B, derived using
!nterpolationA In this way, all solutions of degree r of the polynomial equation,
If. they exist. are characterized. The existence and uniqueness of solutions is
discussed, as well as methods to impose constraints on the solutions. Alternative
pases are examined in numerical considerations. The diophantine equation is an
important special case and it is examined at length. Lemma 3.2 and Corollary
}.3 establish some technical results necessary to prove the main result in
I".heorem 3.4 which shows the conditions under which a solution to the
cﬁophantine equation of degree r does exist; a method based on the interpola-
tion results to find all such solutions is also given. Using this method, it is quite
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easy to impose additional constraints the solutions must satisfy and this is

shown.
Consider the equation

M(s)L(s) = Q(s) 3.1

where L(s) (r x m) and Q(s) (k X m) are given polynomial matrices. The
polynomial matrix interpolation theory developed above will now be used to
solve this equation and determine the polynomial matrix solutions M(s) (k X t)

when one exists.
First consider the left-hand side of equation (3.1). Let

M(s) i= Mg+ -+ Ms' (3.2)

where 7 is a non-negative integer, and let d; := deg.; [L(s)], i = 1, m. If
O(s) = M(s)L(s) (3.3)
then deg, [Q(s)] =d,+r for i=1, m. According to the basic polynomial

~

matrix interpolation Theorem 2.1, the matrix Q(s) can be uniquely specified
using > (di+r)+ m= >'d; + m(r + 1) interpolation points. Therefore consider
| interpolation points (s;. a;, b;), j =1, [, where

[ =>d; + m(r+1) (3.4)

Let S,(s) :=blkdiag{[1,s...., s%*"]’} and assume that the Xdi + m(r + 1))
x | matrix
8 = [5051) g1y - - = S (3.5)

has full rank; that is, the assumptions in Theorem 2.1 are satistied. Note that in
view of Lemma 2.2, for distinct s;, S,; will have full column rank for almost any
set of non-zero a;. Now, in view of Theorem 2.1, Q(s) which satisfies

OGpa;=b; j=1,1 (3.6)

is uniquely specified given these / interpolation points (s;, a;, bj). To solve (3.‘1),
these interpolation points must be appropriately chosen so that the equation
O(s) (= M(s)L(s)) = Q(s) is satisfied:
Write (3.1) as
ML,(s) = Q(s) (3.7

where
M = [M,, ..., M,] (k x t(r + 1))

L.(s) := [L(s)', ..., s"L(s)'] (t(r + 1) X m)

Let s = s; and postmultiply (3.7) by a; j = 1, /; note that s; and a;, j = 1, [, must
be so that S,; above has full rank. Define

bj i= Q(Sf)a/ j= 1, I (38)
and combine the equations to obtain
ML, = B, (3.9)

where
L,.[ = [L,(Sl) Ay, ooy L,(S[)a[] (t(r + 1) X [)
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By i=[by.....b](kx1)

Theorem 3.1: Given L(s), Q(s) in (3.1), let d; :=deg,[L(s)] i=1, m and
select r to satisfy

deg..[Q()] =d;+r i=1.m (3.10)

Then, a solution M(s) of (highest) degree r exists if and only if a solution M of
(3.9) does exist; furthermore, M(s) = M[I,sl, ....s"I].

Proof: First note that (3.10) is a necessary condition for a solution M(s) in
(3.1) of degree r to exist, since deg, [M(s)L(s)] =d; + r. Assume that such a
solution does exist; clearly (3.9) also has a solution M. That is, all solutions of
(3.1) of degree r map into solutions of (3.9). Suppose now that a solution to
(3.9) does exist. Notice that the left-hand side of (3.9) ML, = 0S,; where
O(s) = M(s)L(s) = QS,(s). Furthermore, the right-hand side of (3.9) B, = QS,,,
in view of (3.8): also note that Q(s) is uniquely represented by the !/
interpolation points (s;. a;, b;) in view of (3.LO) and the interpolation theorem.
Therefore, (3.9) implies that QS,, = QS or Q = Q, since Sy is non-singular, or
that M(s)L(s) = Q(s) = Q(s); that is M(s) =My +- - +Ms" = M[L,sI, ...,
s"IN" is a solution of (3.1). O

Alternative expression
It is not difficult to show that solving (3.9) is equivalent to solving

where
¢; := L(spaj, b; = Q(sj)a; j=1,1 (3.12)

In view now of Corollary 2.6, the matrices M(s) which satisfy (3.11) are
obtained by solving

MS, = B, (3.13)

where S, :=[S8.(s))cq, ..., S (spe] ((r+ 1) x 1), with S.(s):=[1l,sI,...,
STV (e(r+1)x1t) and By :=[by, ..., b)) (kx1); M(s) is then M(s) = M[I,
sl, ..., s'I]" where M (k x t(r+ 1)) satisfies (3.13). Solving (3.13) is an
alternative to solving (3.9).

Discussion

Theorem 3.1 shows that there is a one-to-one mapping between the solutions
of degree r of the polynomial matrix equation (3.1) and the solutions of the
linear system of equations (3.9) (or of (3.13)). In other words, using (3.9) (or
(3.13)), we can characterize all solutions of degree r of (3.1). Note that the
conditions (3.10) of the theorem are not restrictive as they are necessary
conditions for a solution M(s) in (3.1) of degree r to exist; that is, all solutions
of M(s)L(s) = Q(s) of any degree can be found using Theorem 3.1. Also note
that no assumptions were made regarding the polynomial matrices in (3.1); that
is, Theorem 3.1 is valid for any matrices L(s), Q(s) of appropriate dimensions.

To solve (3.1), first determine the column degrees d;, i =1, m, of L(s) and
select r to satisfy (3.10). Choose (s;,a;), j=1, [, with [ = >d;+ m(r + 1), so
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that S, := [S,(s)ay, . ... S,(s;)a;] has full rank; note that, in view of Lemma
2.2, for s; distinct S, will have full rank for almost any a;. Calculate b; =
QO(sj)a(B;) and L, in (3.9), or S, in (3.13). Solving (3.9) (or (3.13)) is
equivalent to solving (3.1) for solutions M(s) of degree < r; M(s)y= M][I,sl,
....s'I]". When applying this approach, it is not necessary to determine in
advance a lower bound for r: it suffices to use a large enough r. Theorem 3.1
provides the theoretical guarantee that, in this way. all solutions of (3.1) can be
obtained. Searching for solutions is straightforward in view of the availability of
computer software packages to solve a linear system of equations. Even when an
exact solution does not exist, it can be approximated using, for example, least

squares approximation.

Existence and uniqueness of solutions
A solution M(s) of degree < r might not exist or, if it exists, might not be
unique. A solution M to (3.9) exists if and only if

rank[%”] = rank L, (3.14)
!

If rank L,; = [, full column rank, (3.14) is satisfied for any B,, which implies that
the polynomial equation (3.1) has a solution for any Q(s) such that (3.10) is
satisfied. Such would be the case, for example, when L(s) is unimodular (real or
complex scalar in the polynomial case). In the case when L, does not have full
column rank, a solution M exists only when there is a similar column
dependence in B; (see (3.14)), which implies a certain relationship between L(s)
and Q(s) for a solution to exist. Such would be the case, for example, when
L(s) is a (right) factor of Q(s). A necessary condition for L, to have full
column rank is that it must have at least as many rows f(r + 1), as columns
[ =>d;+ m(r+1). It can be easily seen that if ¢ =< m, this is impossible to
happen. This implies that if L(s) has more columns than rows, solutions M(s)
exist only under certain conditions on L(s) and Q(s), a known fact. For
example, when |L(s)|#0 (r=m), a solution exists if and only if L(s) is
unimodular. When ¢ > m, more rows than columns in L(s), a necessary
condition for L, to have full column rank is:

. >di—1 (3.15)

r—m

r =

In this case, if (3.9) has a solution, then it has more than one solution. Similar
results can be derived if (3.13) is considered. This is the case in solving the
diophantine equation, which is considered in detail later in this section.

Example 3.1: Consider the polynomial equation
M(s)L(s) = M(s)(s + 1) = Q(s)

Here m =1 and d; = deg L(s) = 1. Then [ = >d; + m(r + 1) =2 + r interpola-
tion points will be taken where r is to be decided upon. Note that since m =1,
a;=1 and S, will have full rank if s; are taken to be distinct. Suppose
O(s) =s*+3s+2, a second degree polynomial. In view of Theorem 3.1,
degQ(s)=2<d,+r=1+r from which r=1, 2, .... Let r=1, and take

{s;.j =1.2,3} = {0, 1. 2}. Then from (3.9)

A S s OV TR B
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ML, = [My, M{] [L0), L(1). L(2)]

1 2 3
= [MO« Ml] ‘:O 2 6:]

= [Q(0), Q(1), Q(2)] = [2.6,12] = B,

Here rank[L,'. B}] =rank L, =2 so a solution exists. It is also unique:
(Mo, My]=[2, 17]. That is M(s)=(s+2) is the unique solution of
M(s)(s +1)y=s5"+3s + 2.

It is perhaps of interest at this point to demonstrate the conditions for
existence of solutions in the polynomial equation M(s)(s + 1) = Q(s) via (3.9)
and the discussion above; note that the polynomial equation has a solution if
and only if Q(s)/(s + 1) is a polynomial or equivalently Q(—1)=0. From the
above system of equations (r=1), for a solution to exist Q(2)=
=30(0) + 30(1) or dy =d, +dy if Q(s)= d>s* + dys + dy. But this is exactly
the condition for Q(—1) =0 as it should be. Similarly, it can be shown that
Q(—1) = 0 must be true for r =23, . ..

If now deg Q(s) =0 or 1 then r =0 satisfies degQ(s)=d;+r and [ =2
interpolation points are needed. Let {s; j = 1.2} = {0, 1}. Then

ML, = [My, M][L.(0), L,(1)]
= [Mo, M\][1, 2] = [Q(0), Q(1)] = B,

Clearly, a solution exists only when Q(1) =2Q(0). That is, for deg Q(s) =1,
and Q(s) = dys + dq a solution exists only when d; + dy = 2d, or d, = d, or
when Q(s)=do(s +1) in which case M(s)=d,. For degQ(s)=0 and
Q(s) = dy, a constant, it is impossible to satisfy Q(1) = 2Q(0); that is, a solution
does not exist in this case. O

It was demonstrated in the example that, using the interpolation results in
Theorem 3.1, one can derive the conditions for existence of solutions in
polynomial equations. However, the main use of Theorem 3.1 is in finding all
solutions of polynomial matrix equation of certain degree when they exist.

Example 3.2: Consider
. 1
M(s)L(s) = M(s) L 4 1] =[s +1,1] = Q(s)

Here, m=2, dy=1and dy=0; [ =>d;+ m(r+1)=1+2(r+1)=3+2r.
To select r, consider the conditions of Theorem 3.1:

degi Q(s) =1=dy+r=1+r

degy Q(s) =0=<d, +r=0+r
0 r= 0 1, ... satisfy the conditions. Let r =0, then /=3; take
{(sja)), ] =1,2,3} = {(0,[1,0]'), (0,0, 1]"), (1,[1,0]")} and note that S, does
have full rank. Then

MLy, = M[L©O)ay, L(O)as, L(Das] = My [_? } (1)]

[Q(0)a,, Q(V)ay, Q(2)as]
=[1.1,2] = B,
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This has a unique solution M(s)= My =[2,~1]. Note that here L(s) is
unimodular and, in fact, the equation has a unique solution for any (1 X 2)

Q(s). -

Constraints on solutions

When there are more unknowns (f(r+1)) than equations (/=
> d;+ m(r+1)) in (3.9) or (3.13), this additional freedom can be exploited so
that M(s) satisfies additional constraints. In particular, k :=1(r +1) =/ addi-
tional linear constraints, expressed in terms of the coefficients of M(s) (in M),
can be satisfied in general. The equations describing the constraints can be used
to augment the equations in (3.9). In this case the equations to be solved

become
M[Lrl’ C] = [B[, D] (316)

where MC = D represents k :=r(r + 1) — [ linear constraints imposed on the
coefficients M; C and D are matrices (real or complex) with k& columns each.
Similarly, if (3.13) is the equation to be solved, then to satisfy additional linear

constraints one solves
M[S,, C] = [B,, D] (3.17)

This formulation for additional constraints is used extensively in the following to
obtain solutions of the diophantine equation which have certain properties. It
should also be noted that additional constraints on solutions which cannot be
expressed as linear algebraic equations on the coefficients M can, of course, be
handled directly. One could, for example, impose the condition that coefficients
in M must minimize some suitable performance index.

Numerical considerations

In ML, =B, (3.9), the matrix L, (t(r+1)x /) is constructed from
L.(s)=[L(s), ..., s"L(s)') and (s;, a;), j =1, [. The choice of the interpola-
tion points (s;, a;) certainly affects the condition number of L,. Typically, a
random choice suffices to guarantee an adequate condition number. This
condition number can be improved many times by using an alternative (other
than [1,s, ...]) polynomial basis such as Chebychev polynomials. Similar
comments apply to equation MS; = B, (3.13). It is shown below how (3.9) and
(3.13) change in this case.

Let [po, - .., pr) = T[L,s, ..., s"]" where p;(s) are the elements of the new
polynomial basis and T =[], i, j=1, r + Lis the transformation matrix. Then
M(s)=M[I,slI, ..., s"I]"=M[pol, ..., pl] from which

M= M[T ® I (3.18)
where ® denotes the Kronecker product. M and M are of course the
representation of M(s) with respect to the different bases. Equation (3.9) now
becomes

ML, = B (3.19)
where [,, involves L ,(s) = [poL(s)’, ..., p,L(s)'] instead of L,(s). Here
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Ly=[T® []Ly (3.20)
where L, will have improved condition number over L, for appropriate choices
of pi(s) or T. Similarly, (3.13) becomes in this case

ML, = B, (3.21)
where
Si=[T® 1] (3.22)

3.1. The diophantine equation
An important case of (3.1) is the diophantine equation:

X(s)D(s) + Y(s)N(s) = Q(s) (3.23)

where the polynomial matrices D(s), N(s) and Q(s) are given and X(s), Y(s)
are to be found. Rewrite as ’

X6 Yol | 8] = M2 = 000 (3.24)

from yvhich it is immediately clear that the diophantine equation is a polynomial
equation of the form (3.1) with

ME) = [X6). YOl L) = RO (3.25)

and gll the previous results do apply. That is, Theorem 3.1 guarantees that all
solution of (3.24) of degree r are found by solving (3.9) (or (3.13)). In the
theory of systems and control the diophantine equation used involves a matrix
L(s) = [D'(s), N'(s)]" which has rather specific properties. These will now be
exploited to solve the diophantine equation and to derive results beyond the
resulFs of Theorem 3.1. In particular, conditions are derived which, if satisfied, a
solution to (3.24) of degree r does exist. ’
Consider N(s) (pxm) and D(s mXx m i -
N(s)D~'(s) = H(s) a proper transfer matrix(, 2hat(is ; Wlth D=

S]im H(s) < =

Thpn L(s) ((p + m) x m) in (3.25) has full column rank and, as is known
the‘ diophantine equation (3.24) has a solution if and only if a greatest n'gh£
divisor (g.r.d.) of the columns of L(s) is a right divisor (r.d.) of Q(s). Let
(N, D) be right coprime (r.c.), a typical case. This implies that a solution
M =[X,Y] of some degree r always exists. We shall now establish lower
boupds for r, in addition to (3.10), for the system of linear equations (3.9) (or
equxyalently (3.13)) to have a solution for any Bj; that is, in view of (3.14) we
are interested in the conditions under which L, ((p + m)(r + 1) x /) has full
column rank /. Clearly these equations can be used to search for solutions for
lower degree than r, if desirable. Such solutions M(s) may exist for particular
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L(s) and Q(s), as discussed above: approximate solutions of certain degree may

also be obtained using this approach.
L,(s) in (3.7) has column degrees d;+ r.i=1, m, and it can be written as

L,(s) = L,S/(s) (3.26)

where S,(s) := blkdiag[l,s, ..., s@*"]". It will be shown that under certain
conditions L, ((p + m)(r + 1) x[21"d;+ m(r +1)]) has full column rank.
Then, in view of

Ly :=[LAs)ay, - ... Ls)al
= Lr[Sr(Sl)al* i i g S,(s,)a,] = LrSrl (327)

and Sylvester’s inequality it will be shown that L, ((p + m)(r + 1) X 1) also has
full column rank, thus guaranteeing that a solution to ML, = B, (3.9) does
exist.

N(s), D(s) are right coprime with N(s)D'(s) = H(s) a proper transfer
matrix. Let v be the observability index and n := deg|D(s)|, the order of this
system. Assume that D(s) is column reduced (column proper); note that
deg.(L(s)) = d; = deg D(s) since the transfer matrix is proper. Then n = D.d..

Lemma 3.2: Rank L,=n+ m(r+1) forr=v-1

Proof: First, note that L, has more rows than columns when r = n/p — 1. It is
now known that the observability index satisfies v= n/p. Therefore, for
r=v~1 L, has more rows than columns and full column rank is possible. For
r=v—1,rank L, =n+ mv=n+ m(r+1), since L, in this case is the elimi-
nant matrix in Wolovich (1974) which has full rank when N, D are coprime. Let
now r=v and consider the system defined by N.(s):= Fe (80
D.(s) :=s"D(s) with H(s) = N (s)D.(s)~". It can be quite easily shown that
N. and D, are right coprime and D, is column reduced; furthermore, the
observability index of this system is v, = 1. This is because there are n + mv
non-zero observability indices = 1 since L, ,; the output map of a state-space
realization of H(s) has n + mv independent rows; in view of the fact that the
order of the system is deg|s*D(s)| = n + myv, all these indices must be equal to

1. Now
[Ne(ﬂ _ [Lv_.(s)
D.(s) s¥D(s)
and rank L. = n + mv+ m since N., D, satisfy all the requirements of the
eliminant matrix theorem (Wolovich 1974). This implies that for r=v,
rank L, = n + mv+ m, since L.(s)=[Nc(s)'. Dc(s)’, s“N(s)']" and the addi-
tion of rows to L., to obtain L,, does not affect its full column rank. A similar
proof can be used to show, in general, that if rank L, = n + m(r + 1) for some
r=r,>v—1 then it is also true for r = r; + 1. In view of the fact that it is
also true for r = v— 1 (also r = v). the statement of the lemma is true, by
induction. O

= LS(s)

The following corollary of the Lemma is now obtained. Assume that (s;. a;)
are selected to satisfy the assumptions of Theorem 3.1, S, full column rank. and
let D(s) be column reduced.

Corollary 3.3:  Rank L, = rank S, =1< Yd;+ m(r + 1) for r=v— 1.

Feera——
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Proof: I£1 (3.27), Ly,=L,S,; where L, ((p+m)(r+ 1)x 1), L, ((p+ m)(r
+ 1) X [2d; + m(r + 1)]). Applying Sylvester's inequality,

rank L, + rank S,; — [>.d; + m(r + 1)] < rank L,; < min [rank L,, rank §,/]

F_or rzv—1,rank L, =n+ m(r+1) with n= Zdi (D(s) column reduced) in
view of Lemma 3.2. Therefore rank L,, = rank S,; which equals the number of
columns /, as is assumed in Theorem 3.1. O

The main result of this section can now be stated. Consider the diophantine
equation of (3.24) where N(s)(p X m), D(s)(m X m) right coprime and
H(s) = N(s)D~'(s) a proper transfer matrix. Let v be the observability index of
the system and let D(s) be column reduced with d;:=deg, D(s). Let
[ = >d; + m(r + 1) interpolation points (sj, aj, bj) j =1, | be taken such that S,
has full rank (condition of Theorem 3.1). Then the following theorem holds.

Theorem 3.4:  Let r satisfy
deg,[Q(s)] =d;+r i=1,mandr=v -1 (3.28)

Then the diophantine equation (3.23) has solutions of degree r, which can be
found by solving ML, = B, (3.9) (or (3.13)).

Proof: In view of Theorem 3.1 all solutions of degree r, if such solutions exist,
can be found by solving (3.9). If, in addition, r = v— 1, in view of Corollary
3.3, L, has full column rank which implies that a solution exists for any B,, or
that a solution of the diophantine of degree < r exists for any Q(s). a

The theorem basically says that if the degree r of a solution to be found is
taken large enough, in particular r =v—1, then such a solution to the
diophantine does exist. All such solutions of degree r can be found by using the
polynomial matrix interpolation results in Theorem 3.1 and solving (3.9) (or
(3.13)). The fact that a solution of degree r = v — 1 exists when D(s) is column
reduced and certain constraints are on the degrees of Q(s), has been known (see
for example Chapter 6 in Callier and Desoer 1982 and Theorem 9.17 in Chen
1984). This result was derived here using a novel formulation and a proof based
Example 3.3: Let

on interpolation results.
Bls) = s 0 N = s+1 0 d
1 —s+1]° T L

st + 25t -35-5 —38 — 5
Q) [ —252 — 55— 4 —s? — 35— 2]
Here, D(s) is column reduced with ¢; =2, d; =1 and v=2. According to
Theorem 3.1, deg,[Q(s)]=<d;+r, i=1, 2, implies 3<2+r and 2<1+r
from which r = 1; I = > "d; + m(r + 1) = 5 + 2r interpolation points. For such
r, all solutions of degree r are given by (3.9) or (3.13). Here r=v—1=1,
therefore in view of Theorem 3.4 a solution of degree r = 1 does exist. All such
solutions are found using ML,; = B, (3.9) or (3.13). For r = 1.5, = =3, =2, -1
0.1,2,3and / |

o= L] L0 LA
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a solution is

ke ' - —O
M(s) = [X(s), Y(s)}{“;S ol iy —16] -

If, in D(s), the column reduced assumption is relaxed then the following
corollary applies.
Corollary 3.5: Rank L, = rankL,=n+ m(r +1) for I = >d;+ m(r+1) and

r=zv-—1.

Proof: First, note that S, in this case is square and non-singular which, in view
of (3.27). implies that rank L, = rank L,. Since D(s) is not column reduced
then n<>d;. In general, in this case, for r=v-1 rank L, =
n+ m(r+1)<>d;+ m(r+1) (with equality holding when D(s) is column
reduced); that is, n + m(r + 1) is the highest rank L, can achieve. This can be
shown by reducing D(s) to a column reduced matrix by unimodular multiplica-
tion and using Sylvester’s inequality together with Lemma 3.2. O

When D(s) is not column reduced, then, in view of Corollary 3.5, L, in
ML,= B, (3.9) will not have full column rank/ but rank L, =
n+m(r+1)< >d;+ m(r+1) =1 In view of (3.14), a solution will exist in
this case if Q(s) is such that the rank condition in (3.14) is satisfied; this will
happen when only n + m(r + 1) equations in (3.9), out of /, are independent. If
r is chosen larger in this case, that is if it is selected to satisfy > deg. Q
+m<n+m(r+1) or > deg,;Q <n+ mr, instead of S deg Q< D.d;+ mr
as required by Theorem 3.4, then in view of Theorem 2.1, there are / — O deg; O
+ m) more interpolation equations than needed to specify uniquely Q(s) and
these additional columns in B, will be linearly dependent on the previous ones.
If similar dependence exists between the corresponding columns of L, then
(3.14) is satisfied and a solution exists. In other words, if 7 is taken to be large
enough, then the conditions of Theorem 3.4 on r will always be satisfied in this
case (after D(s) is reduced to column reduced form by a multiplication of the
diophantine equation by an appropriate unimodular matrix). It should also be
stressed at this point that numerically it is straightforward to try different values

for r in solving ML, = B, (3.9).

Constraints on solutions

In the equation ML,= B, (3.9) there are, at each row,
t(r +1) = (p + m)(r + 1) unknowns (number of columns of M =[M,, ..., M,]
=[(Xq, Yo)s - .., (X,, Y,)]) and [ = Xd; + m(r + 1) linearly independent equ-
ations (number of columns of L,). Therefore, for r sufficiently large, there are
p(r + 1) — >d; more unknowns than equations and it is possible to satisfy, in
general, an equal number of additional constraints on the coefficients M of
M(s) = [X(s), Y(s)]. These constraints can be accommodated by selecting larger
values for r and they are exceptionally easy to handle in this setting when they
are linear. Then, the equation to be solved becomes

M[L,. C) = [B;. D] (3.29)

where MC = D are the, say, k; desired constraints on the coefficients of the
solution; the matrices C and D have k; columns each. The degree of the
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solution r should then be chosen so that
plr+ 1) = dd =k, (3.30)

in addition to satisfying the conditions of Theorem 3 .4.

Typically. we want solutions of the diophantine with | X(s)] # 0. This can be
satisfied by requiring for example that X, = / (or any other non-singular matrix)
which, in addition guarantees that X ~'(s)Y(s) will be proper. Note that to
guarantee that X, = I one needs to use m linear equations, that is in this case
the number of columns of C and D will be at least m.

To gain some insight into this important technique, consider the scalar case
which has been studied by a variety of methods. In particular, consider the
polynomial diophantine where p = m = 1. Let d; = deg D(s) = n, n, = deg Q(s)
and note that v = n. Therefore r, according to Theorem 3.4, must ge choseﬁ to
satisfy r 2 n, — n and r = n — 1. Select Q(s) so that ng=2n—1thenr=n-1
satisfies all conditions, as is well known. In view of the above, to guarantee that
X 'Y will be proper, one needs to set an additional constraint such as X, =1
(m =1) which, in view of (3.30), implies that X ~'(s)Y(s) proper can be
guaranteed if r is chosen to satisfy r = n. In the case when N(s)D7!(s) is
strictly proper (instead of proper), however, this additional constraint is not
peeded and X “'(s)Y(s) proper can be obtained for r = n — 1. This is because
in this case, a solution with X, = 0 leading perhaps to a non-proper X ~'(s) Y(sj
is not possible. Notice that for » = n — 1 the solution is unique.

Example 3.4:  Consider Example 3.3, p(r+ 1) - 3d;=2(1+ 1) - 2 + =1
From (3.30), one can add one extra constraint on the solution in the form o%
(3.16.) or (3.17). Assume that in addition to solving for [X(s), Y(s)] in Example
3.3, it is desirable that X(s) has a zero at s = —10 and X(-10)[1 2] =0 Oﬁ’

This can be easily incorporated as an e i i i i
. xtra interpolation triple
solution obtained is P P e

ey _[s-10 10 12 .
) = [, ¥is)] [16 18 —185 -2 12255:1;)

Note that X(s) has a zero at —10 and [X(s), Y( i i

' : . : . , Y(s)] is a solution of the
;Jl;)phantme equation (3.23) with the D(s), N(s) and Q(s) given in Example
3 O

Example 3.5: Let

8= 2 0 -1 0
D(s) [ 0 S+J. N(s):[sl 1:’,and Qs) = é ﬂ
)

From which dy =d; =1, deg, Q(s)=0,i=1,2:and | =2 + 2(r +1).
Forr=1,5;=-2,-1,0,1,2,3 and

o= [0 L A

. _[s -1 - + 1
(s) = [X(s), Y(s)] [1/3 1/3 oS —1;3s+2/3] -

a solution is
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Example 3.6: Let

- - (
D(s)z[soz SSJ.N(S):[SII ﬂ,andQ(x)zB g]

From which d, = d, = 1; deg,; Q(s) =0.i =1, 2:and [ =2+ 2(r+1)
Forr=1,5=-2,-1,0,1, 2, 3 and

B BRI Y

M(s) = [X(s5). Y(s)]

_ | =0-4665s — 0-2954 0-3805 0-4665s + 0-2085 —0-3805(s + 1)
0-3401s — 0-4040 0-0320 —0-3401s + 0.7761  —0-0320(s + 1)

Note that, in this example, the rows of [M, M,] form the basis for the left null

space of Sy. O

Note that in Example 3.5 and 3.6 we solved the problem

X(s) Y(s) D(s) | |1

—N(s) D(s) N(is)| |0
separately, where X(s) and Y(s) are the solution of the Bezout identity and
D Y (s)N(s) = N(s)D1(s) gives the left coprime factorization.

4. Characteristic values and vectors

When all the n zeros of an nth degree polynomial g(s) are given, then g(s)
is specified within a non-zero constant. In contrast, the zeros of the determinant
of a polynomial matrix Q(s) do not adequately characterize Q(s): information
about the structure of Q(s) is also necessary. This additional information is
contained in the characteristic vectors of QO(s), which must also be given,
together with the characteristic values, to characterize Q(s). The characteristic
values and vectors of Q(s) are studied in this section.

We are interested in cases where the complex numbers s;, j =1, [, used in
interpolation, have special meaning. In particular, we are interested in cases
where s; are the roots of the non-trivial polynomial entries of the Smith form of
the polynomial matrix Q(s) or, equivalently, roots of the minors of Q(s), or
roots of the invariant polynomials of Q(s) (see the Appendix). Such results are
useful in addressing a variety of control problems, as is shown later in this and
the following sections. Here, we first specialize certain interpolation results from
§2 to the case when b, in the interpolation constraints (2.3), are zero and we
derive Corollary 4.1. This corollary characterizes the structure of all non-singular
Q(s) if all of the roots of |Q(s)| together with their associated directions, i.e.
(s, a;), are given. We then concentrate on the characteristic values and vectors
of O(s). and in Theorems 4.2, 4.3, 4.7 and in the Appendix, we completely
characterize all matrices with such given characteristic values and vectors.

Note that here only the right characteristic vectors are discussed
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(Q(s;)a; = 0); similar results are, of course, valid for left characteristic vectors
(a;Q(s;) = 0; see also Corollary 2.5) and they can be easily derived in a manner
completely analogous to the derivations of the results presented in this and the
following sections. These dual results are omitted here.

Consider the interpolation constraints (2.3) with b; = 0; that is

Q(s)a; =0 j=1.1 (4.1)

In this case one solves (2.5) with B, = 0; that is
QS =B =0 (4.2)
where S;=[S(s1)ay, ... S(sPa)(Xd; + m)x [ and Q(p x (Sd; + m)). This

case, B, =0, was prieﬂy discussed in § 2, see (2.11); see also the discussion on
e:geny'alues and eigenvectors. We shall now start with the case when Q(s) is
non-singular. The following corollary is a direct consequence of Corollary 2.2:

Corf)llary 4.1:  Let Q(s) be (m X m) and non-singular with n = deg|Q(s)|. Ler
di, i=1, m, be its column degrees and let >.d;=n. If (s, a), j=1. I ‘with

=n, are given and they are such that Sy, has full rank,/then a Q(:v) 1vhich
satisfies (4.1) is uniquely specified within a premultiplication by an (m x m)

non-singular leading coefficient matrix C..

Proof: Since’deg]Q(s)l =n =4, the leading coefficient matrix C. of Q(s)
must be non-singular. The rest follows directly from (2.7). O

‘ This corollary says that if all the n zeros s; of the determinant of Q(s) are
given together with the corresponding vectors a; which satisfy (4.1) then, under
certain assumptions (Sy; full rank), Q(s) is uniquely determined within a
nqn—smgulgr leading coefficient matrix C. provided that its column degrees d;
(given) satisfy >.d;, = n. If d; are not specified, there are many such matricesl
One could relax some of the assumptions (S;; full rank) and further extend
some of the results of §2 by using derivatives of Q(s) and Theorem 2.8
Instead, we start a new line of inquiry which concentrates on the meaning .of
éiﬁ}i’i:::;?;ny_ satisfy relations such as (4.1). We return to Corollary 4.1 later

If a complex scalar z and vector a satisfy Q(z)a =0, where Q(s) isa p X m
matrix aqd .the vector a # 0, then under certain conditions z and a are called the
characferzstzc value and vector of Q(s) respectively. This is, of course, an
extension of the well-known concepts in the special case when Q(s) = s/ i A;
then z and a are an eigenvalue and the corresponding eigenvector of A’
respectively. Note that in the general matrix case, the fact that z and a satisfy
Q(z) a =0 does not necessarily imply that they do have special meaning: for
example, fqr Q(s)=[1,0] and a = [0, 1], Q(z) a =0 for any scalar z. On. the
other hand if Q(s) is square and non-singular, Q(z) a = 0 would imply that z is
a root of' the determinant of Q(s): in fact in this case z and a are indeed a
§haracter|stlc value and vector of Q(s). Conditions of the form Q(z) a =0 are
Lrgg}osgd to tforce.Q(s) to have certain characteristic values and vectors which are

y important in applicati initi isti
e e apre b beb&? ions. The definitions of characteristic values and

Given a p X m polynomial matrix Q(s), its Smith form is uniquely defined;
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see the Appendix. The characteristic values (or zeros) of Q(s) are defined using
the invariant polynomials £;(s) of Q(s).

Definition 4.1: The characteristic values of Q(s) are the roots of the invariant
polynomials of Q(s) taken all together. If a complex scalar s; is a characteristic
value of Q(s), the m x 1 complex non-zero vector 4, which satisfies

Q(sj)a; =0 4.3)

is the corresponding characteristic vector of Q(s). ]

Q(s) may have repeated characteristic values and the algebraic and a
geometric multiplicity of s; are defined below for Q(s) square and non-singular;
it is straightforward to extend these definitions to a p X m Q(s). In the case of
a real matrix A, if some of the eigenvalues are repeated one may have to use
generalized eigenvectors. Here generalized characteristic vectors of Q(s) are also
defined. The general definition involves derivatives of Q(s) and it is treated in
the Appendix. In the results below, only characteristic vectors that satisfy
relation (4.1), which does not contain derivatives of Q(s), are considered for
reasons of simplicity and clarity; a general version of these results can be found
in the Appendix.

Let QO(s) be an (m X m) non-singular matrix. If s; is a zero of |Q(s)]
repeated n; times, define n; to be the algebraic multiplicity of s;; define also the
geometric multiplicity of s; as the quantity (m — rank Q(s;)).

Theorem 4.2: There exist complex scalar s; and I; non-zero linearly independent
(m x 1) vectors ajj, i =1, I}, which satisfy

Q(S,')ai/ =0 (4.4)

if and only if s; is a zero of |Q(s)| with algebraic multiplicity (= n;) =1l; and
geometric multiplicity (= m — rank Q(s) = 1.
Proof: This is a special case of the Theorem A.1 of the Appendix for k; =1,
The complex values s; and vectors a;; are characteristic values and vectors of
QO(s). In the case when /; =1, the theorem simply states that s; is a zero of
|Q(s)| if and only if rank Q(s;) <m, an obvious and well-known result. The
conditions of Theorem 4.2 imply a certain structure for the Smith form of Q(s),
as is shown in Corollary A.3 in the Appendix. In particular, if the conditions of
Theorem 4.2 are satisfied then the Smith form of Q(s) contains the factor
(s — s;) in [; separate locations on the diagonal.
In the following it is assumed that n = deg|Q(s)| is known and the matrices
Q(s) with given characteristic values and vectors s; and a;; are characterized.

Theorem 4.3: Let n = deg|Q(s)|. There exist o distinct complex scalars s; and
(m x 1) non-zero vectors a;, i =1, 1;, j=1,0 with zflj =nand a3, i=1, 1,
linearly independent which satisfy (4.4) if and only if the zeros of |Q(s)| have o
distinct values s;, j=1, o, each with algebraic multiplicity (= ny) = [; and
geometric multiplicity (= m — rank Q(s;) = 4.

Proof: This is a special case of the Theoremn A.4 in the Appendix. L

Note that the independence condition on the m X 1 vectors ay;, azj, - - -» 4y
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implies that /; < m; that is, no characteristic value is repeated more than m
times. One should use the general Theorem A.4 if this is not sufficient.
The following corollary of Theorem 4.3 formalizes the most familiar case.

Corollary 4.4: Ler n = deg IQ(S)I. There exist n distinct complex scalars s; and
(mzx 1) non-zero vectors a;, j =1, n, which satisfy (4.1) if and only if the zeros
of |Q(s)| have n distinct values s;.

If‘a matrix Q(s) satisfies the conditions of Theorem 4.3, its Smith form
contains the factor (s —s;) in exactly /; different locations on the diagonal; see
Corollary A.5 and (A.4). This is true for each distinct value s;, j =1, 0. In ’view
of the divisibility properties of the diagonal entries of the’ Smith form, this
information specifies uniquely the Smith form. ,

Corollary 4.5:  All Q(s) which satisfy the conditions of Theorem 4.3 have the
same Smith form.

If a Smith form with factors (s — s,-)"v, k;# 1, in certain location is desired,
one must then use Theorem A.4 and Corollary A.5 which utilize the derivatives

of Q(s).

Example 4.1: Suppose for some Q(s), de N=n= i
am , deg|Q(s)| =n=2 and, Q(s)a; =0 is
Sat—l—SfIEd for sy =1 and ay ='[1, 0]" and a, = [0, 1]’. Here li=1 = 2]. Since
ly=2=n, Theorerp 4.3 implies that 0 =1, or that s; = 1 is the only distinct
roolt.olf. I.Q(s)Izand it has an algebraic multiplicity (=n) =2 =/, and geometric
multiplicity =2 = /. Its Smith form has s — 1 in /, = 2 locati i

and it is uniquely determined. It is 1 S

B ="y .

(See also Example A.1). a

A.d.ditional structural information about matrices s), whic i
condltloqs.of Theorem 4.3 is given by applying Corolla$(4.)i. Corc}:ll:ra;lzfyl rt]};i
the condltlpn that §;; must have full (column) rank. Notice that the rep-eated
values s, give rise to /; linearly independent columns S(s)a;, i =1, [;, in §
because a;, i =1, [;, are linearly independent; therefore SI,/ has fuil ]r;mk folrl
almo}st any set of (sj, a;) of Theorem 4.3. Corollary 4.1 then implies that the
matrices Q(s) which satisfy the conditions of Theorem 4.3 are uniquely specified
Wlthll"l a premuitiplication by a non-singular matrix C, if the column degrees d,
are given and they satisfy 3d; = n; note that it is not possible to have X, <nl
since n = deg|Q(s)|. It should be pointed out that this result does not contr‘adict
the fact that if the ei’genvalues and the eigenvectors of a matrix 4 are known
:2;2 i}[] —t Q =—Q(s.) is uniquely determined since, in this case, the additionai
vd,i at d; =1, i 1, n, apd C. =1 are being used; see Corollary 2.3. If
2d; > n Fhep Q(s) is underdefined and there are many such matrices Q(s) (note
that C. is singular in this case). To cbtain such matrices in this case (Zd; > n)
(::e Coduld select a Q(s) with 3d; = n and then premultiply Q(s) by an art;itrary
Zerl(r::o ;}:;;er?amx hU(s); note that |Q(5)| and [U(s)Q(s)| have exactly the same
- p.remumpol;;titoscondmons of Theorem 4.3 specify Q(s) within a unimod-
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Lemmad.6: Theorem 4.3 is satisfied by a matrix Q(s) if and only if it is
satisfied by U(s)Q(s) where U(s) is any unimodular matrix.

Proof: The proof is straightforward. Note that (4.3) is satisfied if and only if it
is satisfied for U(s)Q(s) with the same s5; and a;: this is because U(s;) is
O

non-singular.

It is of interest at this point to summarize briefly the results so far: Assume
that, for an (m X m) polynomial matrix Q(s) yet to be chosen, we have decided
upon the degree of |Q(s)| as well as its zero locations—that is, about n, s; and
the algebraic multiplicities n;. Clearly there are many matrices that satisfy these
requirements; consider for example all the diagonal matrices that satisfy these
requirements. If we specify the geometric multiplicities /; as well, then this
implies that the matrices Q(s) must satisfy certain structural requirements so
that m — rank Q(s;) = /; is satisfied; in our example the diagonal matnx, the
factors (s — s;) must be appropriately distributed on the diagonal. If k; are also
chosen to be equal to 1 as it is the case studied here (see Appendix for Ky 1)s
then the Smith form of Q(s) is completely defined, that is Q(s) is defined within
pre and post unimodular matrix multiplications. Note that this is equivalent to
imposing the restriction that Q(s) must satisfy n relations of type (4.4), as in
Theorem 4.3, without fixing the vectors a;. If, in addition, a; are completely
specified then Q(s) is determined within a unimodular premultiplication; see
Lemma 4.6.

If an (m x m) non-singular polynomial matrix Q(s) satisfies all conditions of
Theorem 4.3 with the exception that deg|Q(s)| is not specified, then, in view of
Theorem 3.2, the following can be shown.

Corollary 4.7:  Let |Q(s)| # 0. There exist o distinct complex scalars s; and
(m x 1) non-zero vectors a;, i=1, l;, j=1, o, with zfll- =nand a;, i =1, I,
linearly independent which satisfy (4.4) if and only if 7i := deg |Q(s)| = n with s;,
j=1. a, roots of |Q(s)|, and with algebraic and geometric multiplicity of s; in

0(s) = .

In view of this corollary, it can now be shown that the conditions of
Theorem 4.3, with the exception that the deg|Q(s)| is not given, specify Q(s)
within a premultiplication by a polynomial matrix.

Corollary 4.8: Let |Q(s)| #0 and let (4.4) be satisfied for (s, ay), i=1, 1
j=1, o, with Zfl,« =n with a, i =1, I, linearly independent and s;, j =1, o,
distinct. Then Q(s) is specified within a premultiplication by a polynomial

matrix. This polynomial matrix is unimodular if deg|Q(s)| = n.

Note that if # = n, then the conditions of Corollary 4.7 are the same as the
ones in Theorem 4.3 and the fact that Q(s) is specified within a premultiplica-
tion by a unimodular matrix in Corollary 4.8 agrees with Lemma 4.6. Corollary
4.8 also agrees with Corollary 4.1 when it is applied with Xd; > n (see the
discussion following Example 4.1).

The above Theorems and Corollaries show that the existence of appropriate
(s;. a;;) which satisfy (4.4) implies (and is implied by) the occurrence of certain
roots in |Q(s)| and certain directions associated with these roots. How does one
go about selecting such a; and how does one go about finding an appropriate
Q(s)? This can of course be done by Corollary 4.1. (s;. a;) are chosen so that
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Sy has full rank, as was discussed following Example 4.1. Note that in view of
Lemma 2.4, if s5; are distinct the corresponding (non-zero) a; can be chosen
almost arbitrarily as, in this case, §;; will have full rank for allmost any set of
non-zero a;. Therefore, if one is interested in determining a polynomial matrix
Q(s) with (Q(s)l having n distinct zeros, one could (almost) arbitrarily choose n
Non-zero Vectors g and apply Corollary 4.1 to determine such Q(s). If
adcilt'lolfla}l‘reqfuireglents are imposed, such as certain algebraic and geométric
multiplicities for the zeros, then the i i i i i
ShOUIE et results in this section and in the Appendix

In the following, the results in Corollaries 4.7 and 4.8 derived for Q(s)
square and non-singular are extended to the non-square case.

Given (m X m) Q(s) let n = deg|Q(s)| and assume that

Q(Sj)aij =0 (4.5)

is satisfied for o distinct s;, j = 1, o, with a;, i = 1, [, linearly independent and
21[ = n. That assumes that s, a; and Q(s) satisfy Theorem 4.3,

Theorem 4.9:  Q(s) is a right divisor (r.d.) of an (r X m) pol ] ]
; d. /
M(s) if and only if M(s) satisfies ( ¢ ERGHERS SE

M(s)a; = 0 (4.6)
with the same (s;, a;;) as in (4.5) above.

Proof: Necessity: if Q is a r.d. of M, M = M Q. Premultiply (4.5 VI(s;

obtain (4.6). Sufficiency: let M(s) satisfy (4.6) zgld let G(s)pb};(a gr)e:t}:es]:lr(sc/l) f)(;
'M apd Q: then there exists a unimodular matrix U such that U[$§] = [{] . ’fhis
lmphes.that G satisfies the same n relations as Q(s) and M(s) in (4.5) a(rjld. (4.6)
respectively. Therefore deg|G(s)| = n in view of Corollary 4.6. Since G is a £.d
of 0, Q= QQV\Xhich implies that Q is unimodular since deg|Q| = n. Therefc;ré
M=MG=(MQ "Q, thatis Qis ar.d. of M. a

Tbeorem 4.9 is very important; a more general version is given in Theorem
A.7 in the Appendix. From the theoretical point of view, it generalizes the
chafa.ctenstic value and vector results to the non-square, non-full rank case. In
addmon,_ from the practical point of view it provides a convenient way to ifnpﬁse
the restriction on a r X m M(s) that can be written as

M= WwQ (4.7)

where the square and non-singular Q has specific characteristic values and
vectors and W is a “do not care’ polynomial matrix.

In the pglynomial case, Theorem 4.9 states that the polynomial m(s) has a
factor g(s) if the (distinct) roots of g(s) are also roots of m(s). For repeated
roots one should use Theorem A.7 in the Appendix.

In view of the above, it should now be clear that n relations of the form
M(s))a; =0, j=1, n, with s; distinct, and g; non-zero (m X 1) vectors will
guarantee that the (r X m) M(s) has a r.d. Q(s) which has n distinct zeros of
1Q(s)| equal to sj- Such M(s) can be determined using Corollary 4.1.

Corollary 4.10: An r x m polynomial matrix M(s) has a r.d. Q(s) with the
property ‘hf" the zeros of |Q(s)| are equal to the n distinct values siv J=1,n,if
and only if there exist non-zero vectors a; such that
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M(spa; =0 j=1,n (4.8)
Proof: There exists an m xm Q(s) with deg|Q(s)| = n which satisfies
Q(sj)a; = 0. Then, in view of Theorem 4.9, the result follows. (|

5. Pole placement and other applications

The results developed in the previous section on the characteristic values and
vectors of a polynomial matrix Q(s) are useful in a wide range of problems in
systems and control. Several of these problems and their solutions using
interpolation are discussed in this section. The pole placement or pole assign-
ment problem is discussed first.

Pole or eigenvalue assignment is a problem studied extensively in the
literature. In the following it is shown how this problem can be addressed using
interpolation, in a way that is perhaps more natural and effective. Dynamic (and
static) output feedback is used first to shift arbitrarily the closed loop eigen-
values (also known as the poles of the system). Then state feedback is studied.

5.1. Output feedback —diophantine equation

5.1.1. Dynamic output feedback. Here all proper output controllers of (highest)

degree r (of order mr) that assign all the closed loop eigenvalues to arbitrary

locations are characterized in a convenient way. This has not been done before.
We are interested in solutions [X(s), Y(s)] (m X (p + m)) of the diophan-

tine equation

X(5)D(s) + Y(5N(s) = Q) (5.1)

where only the roots of |Q(s)| are specified, furthermore X Y(s)Y(s) should
exist and be proper. This problem is known as the pole placement (eigenvalue
assignment) problem where N(s)D~'(s) (p x m) is a description of the plant to
be controlled and C = X" (s)Y(s) (m x p) is the desired controller which
assigns the closed-loop poles (eigenvalues) at desired locations.

Note the difference between the problem studied in §3, where Qf(s; is
known, and the problem studied here where only the roots of 1Q(s)| (or [Q(s)]
within multiplication by some non-zero real scalar) are given. It is clear,
especially in view of §4, that there are many (in fact an infinite number) of
Q(s) with the desired roots in |Q(s)[. So, if one selects in advance a Q(s) with
desired roots in |Q(s)| that does not satisfy any other design criteria (and there
are usually additional control goals to be accomplished) as is typically done,
then one really solves a more restrictive problem than the eigenvalues assign-
ment problem. In fact, in this case one solves a problem where the methods of
§ 3 are appropriate, as in this case Q(s) is given; note that this approach to the
problem is closer to the characteristic value and vector assignment problem
(eigenvalue/eigenvector problem) discussed below, than just the pole assignment
problem. In the scalar polynomial case if Q(s) is selected so that the roots of
|Q(s)| are the desired ones then one really arbitrarily selects, in addition, only
the leading coefficient of Q(s), which is not really restrictive. This perhaps
explains the tendency to do something analogous in the multivariable case: this
however clearly changes and restricts the original problem. It is shown here that
one does not have to select Q(s) in advance. For the pole placement problem it
is more natural to use the interpolation approach of § 4, where the flexibility in

Polynomial and rational matrix interpolation 381

selecting Q(s) is expressed in terms of selecting the characteristic vectors of
O(s). in general, for almost any choice for the characteristic vectors, subject to
some rather mild rank conditions (see § 4) the pole assignment is accomplished.
These vectors can then be seen as design parameters and they can be selected to
satisfy requirements in addition to pole assignment. Note that this design
approach is rather well known in the state feedback case, as is discussed later in
this section.

Consider now the diophantine equation (5.1). The results of § 3 and 4 will be
used to solve the pole assignment problem.

The diophantine equation (5.1) has been studied at length in §3 and the
notation developed there will also be used in this section. In particular, let
M(s) :=[X(s), Y(s)] and L(s):=[D'(s), N'(s)]" then (5.1) becomes
M(s)L(s) = Q(s). This equation can be written as ML,(s) = Q(s) (3.7) where
M :=[My, ..., M,] a real matrix with M(s) = My + + M,s" and
L(s):=[L(s).,....s"L(s)']". If now b; = Q(sj)a;, j=1, [, and B, :=[by. ...,
b,] then the equation to be solved, (see (3.9)) is

ML, =B, =0 (5.2)

where L,; = [L,(sy)ay, - .., L(spa] (p + m)(r + 1) X [); the unknown matrix
Mismx(p+m)(r+1).

If the column degrees of L(s)=[D’(s), N'(s)]' are d; and the highest
degree of M(s) =[X(s).Y(s)] is r. then deg|X(s)D(s)+ Y(s)N(s)| =
deg |M(s)L(s)| < X.d; + mr; the equality is satisfied when X(s)D(s)+
Y(s)N(s) is column reduced. In Corollary 3.3 the conditions under which L,
has full column rank were derived: if (s;,a;) are selected to satisty the
assumptions of Theorem 3.1, that is §, to have full column rank, then
2(r + 1) for r=v—1, where v is the observability index of the system; note
that L, :=[L,(say, ..., L(spa)= L,[S(s)ay, ..., S(s)a]= L,S, where
S.(s) :=blkdiag[l,s, ..., s%“*]". That is, under mild conditions on (s;, a;) and
for r = v—1, L,; in (5.2) has full column rank /.

Suppose now that X (s)D(s) + Y(s)N(s) is forced to satisfy

M[Ly. C) = [0, D] (5.3)
where [ = > d;, + mr. Note that ML, = 0 imposes the condition that

(= Dd; + mr); that is the >.d;+ mr roots of [X(s)D(s)+ Y(s)N(s)| are to
take on the values s;, j = 1, [, (see Corollary 4.8 and Theorem 4.9 for the proof
of this claim). Here (s;, @;) must be such that §,, above has full column rank /
(see Corollaries 3.3, 3.5 anc the discussion above); note that this is true for
almost any a; when s; are distinct (Lemma 2.4). For L, also to have full column
rank [, we need r = v — 1 as was shown in Corollary 3.3.

In the case when N(s)D'(s) is proper with |D(s)| = n, n instead of X.d;
may be used in which case [ = n + mr poles are assigned. Note that n must be
used when D(s) is not column reduced, as in this case deg|X(s)D(s)+
Y(s)N(s)| = deg|X(s)D(s)| < n + mr < 2d;+ mr since X '(s)Y(s) is also
proper; Corollary 3.5 shows that rank L, = n + mr in this case and Corollary
4.8 shows that | X' (s) D(s) + Y(s)N(s)| will have the desired roots.
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The equations MC = D can guarantee that the leading coefficient of X(s) is
non-singular so that X ~'(s) exists and X ~'(s)Y(s) is proper. This will add m
more equations (or columns of C and D) for a total of Xd; + m(r + 1)
equations. Thus, the following theorem has been shown.

Let N(s)D '(s) be proper with N, D right coprime and |D(s)| = n.

Theorem 5.1: Ler r =v— 1. Then (X(s), Y(s)) exists such that all the n + mr
zeros of |X(s)D(s)+ Y(s)N(s)| are arbitrarily assigned and X Ys)Y(s) is
proper. It is obtained by solving (5.3). O

In (5.3) there are (in each row) (p + m)(r + 1) unknowns and n + m(r + 1)
equations; the fact that r = v — 1 implies that there are more unknowns than
independent equations as pv= n. Note that the Theorem was proved for the
case when s; are distinct, or more generally the case when (s, a;) exist, so that
S, has full rank. The general case, where the desired values s; and their
multiplicities are not considered in §4, can be studied using the results in the
Appendix which involve derivatives of the polynomial matrices and similar
results can be derived.

Notice that the order of the compensator C(s)= X YWs)Y(s) is mr with
minimum order m(v — 1). By reducing the system to a single input controllable
system and by using, if necessary. dual results it can be shown that the minimum
order of the pole assigning compensator C(s) using this method is
min(u — 1, v— 1), where u and v are the controllability and observability indices
of the system respectively. This agrees with the well-known results of Brasch
and Pearson (1970). Furthermore, in certain cases lower-order compensators
which assign the desired poles can be determined. Our method makes it possible
to search easily for such lower-order compensators.

Example5.1: Let D(s) =s> -1, N(s)=s+2 and 10(s)| =

(s+ D(s—=1+j)(s—1-=jl), from  which n=v=2; r=1 and
deg|Q(s)|=2+r.Forr=1,s,=-1,1*jl and a; = a, = a3 = 1. Here

s?—1 0

a8 . R

st =1 | s+2 _ 1 3+l 3-j1

Hsj = [s + 2} Likei} = ss2 -1 | Ln=| o _3% it =3 -1

s(s + 2) -1 2+j4 2-j4

1+ =1-j2

Notice that L,; is a complex matrix. To solve (5.2) only the real part of L,
needs to be considered. A solution is M =([4 -1 -3 —1], that is
X(s)=—-3s+4and Y(s) = —(s + 1), where X "(s)Y(s) is proper. O

Example 5.2: Let

. Ts=2 1 L [s-1 0
D(”’[ 0 s+1} N(”"[ | 1]

with n = deg|D(s)| = 2. Here, there are deg| X (s)D(s) +
Y(s)N(s)| = n + mr =2 + 2r number of closed-loop poles to be assigned. Note
that r=v—-1=1-1=0.

(i) For r =0 and {(s;, aj). j = 1.2)} = {(=1,[1 0]'), (=2.[0 1]")},
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§— 2 0 -3 0

0 + 1 0 -1

L(S‘) = Lr(;s) = s—1 i 0 and Lr[ = -2 0
1 1 1 1

and a solution of (5.2) is

For this case, M = M(s) = [X(s), Y(s)].
(ii) For r =1, and
(5 @)s j = L4} = {1, [L 0). (=2.[0 1), (=3, [=1 0],

(=4,[0 1]}
M s-2 0 -3 0 5 0]
0 s+ 1 0 -1 0 3
s—1 0 =2 0 4 0
| 1 1 11 1 - -1
B = s = ) o | =] 3 o -15 o0
0 s(s + 1) 8 2 0 =13
s> — 13 0 2 0 -12 0
s s -1 -2 3 4]
a solution of (5.2) yields
_He=7 =i 12 s+1
[l Pl ‘[ 5 s+4 -6 s+ J
Note that X (s)~'Y(s) exists and is proper. a

Example 5.3: Consider the same problem as in Example 5.2. Now we would
like to add the following two constraints. First, that the leading coefficient
matrix of X (s) must be an identity matrix; second, that the first column of Y(s)
must be zero; that is, only the second output is used in the feedback loop.

For r=1, let X(s)=Xg+ Xys and Y(s)= Yy + Ys. From the above
constraints, X, = I and the first columns of Y, and Y, are zero vectors. Here
M =[X,. Yy, Xy, Y] and (5.2) is again

J

-3 0 5 0
0 -1 0 3
-2 0 4 0
1 1 -1 -1
MLrl’ = [Xﬂv Y(% Xls Yl] 3 0 -15 0 = [O]

0 2 0 -12
2 0 -12 0

| -1 -2 3 4 |

To find the solution M that satisfies the two extra constraints, L, is first
partitioned as
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(-3 0 5 0
L.
g 0 -1 0 3
Lrl = ﬁr!Z , Wwhere Lrll = ) 0 4 0
e 1 1 -1 -1

3 0 ~-IS 0 | 2 0 -12 0
erz“[o 2 0 -12 L’”—[—l ~2 3 4]

Since X, = I, the above equation can be rewritten as

L,
[Xo, Yo, Y] 1:L “] =L
ri3

To zero the first columns of Yy and Y, two additional columns are added to
the equation

[Xo, Yo, Yi] [Lyis, C] = L2y D]

where

0 0
, and D—[O O:’

jeoll i el e B an Ji )

0

0

L I

Lz = {Lr;,ﬂ y €= 0
0

0

Solving the last equation yields

[t =5 0 s 1 0 0 5
M—I:I 602010—1]

xo=["T1 U] me vo-[p 513

Clearly X "(s)Y(s) is proper and satisfies the constraints. O

or,

5.1.2. Q(s) = W(s)R(s). There are cases when the equation to be solved has the
form

X(s)D(s) + Y(s)N(s) = W(s)R(s) (5.4)

where R(s) is a given m X m non-singular matrix and W(s) is not specified;
D(s), N(s) are right coprime. It is necessary to preserve the freedom in W(s)
since X(s), Y(s) must satisfy additional constraints. An instance where this type
of equation appears is the regulator problem with internal stability when the
measured plant outputs may be different from the regulated outputs: in that case
X(s), Y(s) must also satisfy another diophantine equation (5.1) for pole
assignment. The problem here in (5.4) is to select X(s), Y(s) so that R(s) is a
right divisor of X (s)D(s) + Y(s)N(s). This problem can be easily solved using
the approach presented here. The approach is based on Corollary 4.8 (Theorem
4.9 for the non-square case) and it is illustrated below.
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Example 5.4: Let

2
M P

Solve (5.4) with
s+ 0
Ris) ‘[ 0 s+ 1]

To solve (5.4), determine first the appropriate (s;,a;). In this case,
deg|R(s)] =2 and s; = =1, a;; = [1 0]', ay =[0 1]". Note that R(s;)a; = 0 and
the problem is reduced to solving (5.2) with / =2 and r = 1. A solution can be

found as
s+ 32 12 s+l s
g = B 12 s+ 1/2} Yes) ‘[ s 1]

where X ~!(s)Y(s) is proper and
252 + 35 + 3 1
W(S)—1/2[2sz+s-+—3 —2s-+-3:] Ol

5.1.3. H(s) = N(s)D ' (s). In the pole assignment problem, if the desired closed
loop poles are different than the open loop poles (that is the poles of
H(s) = N(s)D~'(s)) then it is not necessary to use a coprime factorization
D(s), N(s) as the transfer function matrix can be used directly. In particular,
(5.1) can be written as X(s) + Y(s)N(s)D (s) = Q(s) D "!(s). Substituting s;
and postmultiplying by a; one obtains the equation to be solved

(X(s) + Y(spH(sj))a;j =0 j=1,1 (5.3)

Notice that the characteristic vector corresponding to s; is in this case D7Y(s)a;.

Example 5.5: Let the open loop transfer function be
+ 2
H(s) = 5
s —1

and |Q(s)| =s(s +2)(s +3)(s +4). If 5;=-2, =3, =4, 0 and a; =1, i =1, 4,
then a solution of (5.5) is

X(s) =s>+9s+ 14and Y(s) = 13s + 7 O

Example 5.6: Let the open loop transfer function matrix be

SRR, 1 0
mHisy= | * 1 1 and [Q(s)] = s(s + 2)(s + 3)(s + 4)(s + 5)

s—2 s+1

It {(sj.a),j=1,4} = {(=2,[1 0]'), (=3,[0 1)), (=4.[-10]), (=5,[0 —1]).
(0.[1 —1])}, then a solution is

L7728 w1 s _[Bls+43 Ts+15
= [ 76:25s s+ 1}’ ¥(s) = li—SOs + 44 65+ 14}
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Note that X ~!(s)Y(s) is proper. a

5.1.4. Static output feedback. This is a special case of the dynamic output
feedback discussed above. Interpolation was first used to assign closed loop
poles using static output feedback by Antsaklis (1977) and Antsaklis and
Wolovich (1977). It offers a convenient way to assign at least some of the poles
arbitrarily and study the locations of the remaining poles. The equations to be
solved here are

(D(sj) + KN(sp))a; =0, j=1,1 (5.6)

where K is a real matrix, the static output feedback gain matrix. Equivalently, it
can also be written as

(I + KH(sj))a; =0 j=1,1 (5.6a)
The example below illustrates the approach.

Example 5.7: Let the open loop transfer matrix be
s+ 1 s+2

2 2
H(s) = K} sc+1

g 2s + 3

s §% 42

and the desired poles are s, = —1, =2 with a; = [-26-456 92-16]’, [-0-4432 1].
From (5.6 a), KH(s;)a; = —a;. That is,

K[H(sy)ay, H(sy)as] = —[ay, a3]

K= [—157-08 73-39]

The solution is

32130 —150-49

Note that by choosing a; appropriately other poles can be assigned as well. The
above solution places the other two poles at —3 and —4. For details, see
Antsaklis and Wolovich (1977).

5.2. State feedback

Given a state space description ¥ = Ax + Bu, the linear state feedback
control law is defined by u = Fx. It is now known that if (A, B) is controllable
then there exists F such that all the closed loop eigenvalues, that is, the zeros of
|sl — (A + BF)| are arbitrarily assigned. It will now be shown that F which
arbitrarily assigns all closed loop eigenvalues can be determined using interpola-
tion.

Let A, B, F be n X n, n x m, m X n real matrices respectively. Note that
Isl = (A + BF)| = |sI — A|-|l, — (s — A)"'BF| = |s] — A|-|I,, — F(sI —
A)~'B|. If now the desired closed-loop eigenvalues s; are different from the
eigenvalues of A, then F will assign all n desired closed loop eigenvalues s; if

Fl(s] — A)'Baj] =4a; j=1,n 57

The m x 1 vectors a; are selected so that (s;/ — A)“Baj, j =1, n, are linearly
independent vectors.

Polynomial and rational matrix interpolation 387

Alternatively one could approach the problem as follows: let M(s) (n X m)
D(s) (m x m) be right coprime polynomial matrices such that

[sI — A, B] [_[gg; =0 (5.8)

That is (s/ — A)"'B = M(s)D~'(s). An internal representation equivalent to
¢ = Ax + Bu in polynomial matrix form is Dz = u with x = Mz. The eigen-
value assignment problem is then to assign all the roots of | D(s) — FM(s)|; or to
determine F so that

FM(S,’)(II' - D(s])a, ] =1,n (59)

Relation (5.9) was originally used in Antsaklis (1977) to determine F. Note that
this formulation does not require that s; be different from the eigenvalues of A
as in (5.7). The m x 1 vectors a; are selected so that M(s)a;, j=1,n, are
independent. Note that M(s;) has the same column rank as S(s;) = block
diag {[1, s, .. ., 5% 11"} where d; are the controllability indices of (A, B) (Wolo-
vich 1974, Kailath 1980). Therefore, it is possible to select a; so that M(si)a-,
j=1, n, are independent even when s; are repeated (see §2; choice of
interpolation points).

In general, there is great flexibility in selecting the non-zero vectors a;. Note
for example that when s; are distinct, a very common case, a; can almost be
arbitrarily selected in view of Lemma 2.4. For all the appropriate choices of a;
(M(s))a;, j =1, n, linearly independent), the n eigenvalues of the closed-loop
system will be at the desired locations s; j =1, n. Different a; correspond to
different F {via (5.9)) that produce, in general, different system behaviour; this
is a phenomenon unique to the multivariable case. This can be explained by the
fact that the vectors a; one selects in (5.9) are related to the eigenvectors of the
closed-loop system and although the closed-loop eigenvalues are at s;, for
different a; one assigns different eigenvectors, which lead to different behaviour
in the closed-loop system.

The exact relation of the eigenvectors to the a; can be found as follows:

[s/ = (A + BF)|M(s))a; = (sl — AYM(sp)a; — BFM(s))a;

where (5.8) and (5.9) were used. Therefore, M(s;)a; = v; are the closed-loop
eigenvectors corresponding to s;.

It is not difficult to see that the results in the Appendix can be used to assign
generalized closed-loop eigenvectors (that correspond to Jordan forms of a
certain type) using this approach. This is, of course, related to the assignment of
invariant polynomials of s/ — (A + BF) using state feedback, a problem origin-
ally studied by Rosenbrock. One may select a; in (5.9) to impose constraints on
the gain f; in F. For example, one may select a; so that a column of F is zero
(take the corresponding row of all g; to be non-zero), or an element of F,
f}, = 0. This point is not elaborated further here.

In §5.3 the problem of selecting a; to achieve additional objectives, beyond
pole assignment is discussed. Now, the relation to a similar approach for
cigenvalue assignment via state feedback (Moore 1976) is shown; note that this
approach was developed in parallel, but independently of, the interpolation
method described above.



388 P. J. Antsaklis and Zhigiang Gao

Consider s;/ — (A + BF) and postmultiply by the corresponding right eigen-
vector v; to obtain

[s,/ — A, B] [-Lz'fju,] =0 (5.10)

In view of this, determine a basis for the right kernel of [s/ — A. B] (Moore
1976), namely

M,
i — A, B L =0 5.11
[S] ][_Dl:l ( )

where the basis has m (independent) columns; note that rank[s/ — A, B] = n
since (A, B) is controllable. Since it is a basis, there exists mm X 1 vectors a; so
that M,a; = v; and D;a; = Fv;. Combining, we obtain

which, for j =1, n determines F (for appropriate a;). Note the similarity with
(5.9); they are exactly the same, in fact if we take M(s;)) = M, in (5.8) and
(5.11). The difference between the two approaches in Antsaklis (1977) and
Moore (1976) is that in Antsaklis (1977) a polynomial basis for the kernel of
[s1 — A, B] is found first and then it is evaluated at s =s;, while in Moore
(1976) a basis for the kernel of [s;/ — A, B] is determined without involving
polynomial bases and right factorizations.

Example 5.8: Consider

0O 1 0 0 0 0 O
0 0 1 0 0 0 0
A=|-1 2 0 =2 0 and B=|1 2
0O 0 0 0 1 0 0
o 0 3 -4 -1 0 1

and let the desired eigenvalues be s; = —0-1, —0-2, =2, —1 £ j1. Take

0 = 1-2648 1-67744 101 -7 - jlé -7 + j16
! -0-3391 |° | —0-15072 |° | —60 |’ 8 +j10 |° 8 —jl10
Then, the state feedback matrix that assigns the eigenvalues of (sI — (A + BF))
to the desired locations is obtained by solving (5.7)
P 1-16 0-64 17-76 9-44 6-6 -
-0-08 -1-32 -888 -322 -33
5.3. Assigmnent of characteristic values and vectors
In view of the discussion above on state feedback. the characteristic vectors
a; of (D(s) — FM(s)) or the eigenvectors v; = M(s;)a; of sI — (A + BF) can be
assigned so that additional design goals are attained, beyond the pols assignment
at s;, j = 1. n. Two examples of such assignments follow.

5.3.1. Optimal control. It is possible to select (s;, a;) so that the closed-loop
system satisfies some optimality criteria. In fact it is straightforward to select
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(5;. 4j) so that the resulting F calculated using the above interpolation method.
is the unique solution of a Linear Quadratic Regulator (LQR) problem; see for

example Kailath (1980).

5.3.2. Unobservable eigenvalues. It is possible, under certain conditions, to
select (s;.a;) so that s; become an unobservable eigenvalue in the closed loop
system. Suppose ¥ = Ax + Bu, y = Cx is equivalent to D(g)z=u, y = N(q)z;
f{(s) =C(s] - A)"'B = N(s)yD!(s). Let M(s) be such that

(sI = A)M(s) = BD(s)

is satisfied, or,
M(s)D7'(s) = (s] — A)"'B

Assume that it is possible to select (s;, a;) so that CM(s;)a; = N(s;)a; = 0. Now
if (s;.a;) is used in (5.9) or (5.12) to determine F, then s; will be an
unobservable closed-loop eigenvalue. This is because of the fact that its
eigenvectors M(s;)a; satisfy CM(sj)a; = 0; see the PBH test below. This can be
used to derive solutions for problems such as diagonal decoupling and disturb-
ance decoupling, among others.

Example5.9: Let H(s)=N(s)D7'(s) = (s + D/(s* +2s+2) with a cor-
responding state space model

A =[_02 _12] B=[01]. and C=[11]
Here, CM(s) = N(s) =s + 1 and CM(—1) =0. Obviously, if a desired closed-
loop pole is chosen at —1, it will be unobservable. Indeed, if the desired
closed-loop poles are —1 and —2, a solution of (5.7) or (5.9) is F= [0 -1],
which makes the eigenvalues of (A + BF) = {—1, —2}. The closed-loop transfer
function is 1/(s + 2). Clearly, the eigenvalue at —1 is unobservable. a

5.4. Characteristic value/vector tests for controllability and observability— PBH
test

It is known that s; is an uncontrollable eigenvalue if and only if rank-
[sf — A, B]<rank[s] — A, B] or if and only if there exists a non-zero row
vector v; such that v;[s;] — A, B]=0 (PBH controllability test, see Kailath
1980). The dual result is also true, namely that s; is an unobservable eigenvalue
if and only if rank [(s;/ — A)', C'] <rank[(s] — A)’, C’] or if and only if there
exists a non-zero column vector v; such that [(s/ — A)',C']" v;=0 (PBH
observability test). These tests can be rather confusing when there are multiple
eigenvalues in A: as it is not really clear which one of the multiple eigenvalues
is the one that is uncontrollable or unobservable. So instead, many times the
uncontrollable eigenvalues are defined by the roots of the determinant of a
greatest left divisor of the polynomial matrices s/ — A and B; this definition is
applicable to polynomial matrix descriptions as well (Rosenbrock 1970, Wolo-
vich 1974). The exact relation between these two different approaches can now
be derived. In particular, in view of the results in §4, (s;, v,) that satisfy
[(s;/ = A)", C')" v; = 0 define a square and non-singular polynomial matrix, that
is a right divisor of the columns in [(s/ — A)', C']’ (see Theorem 4.9); one may
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have to use the results in the Appendix when the multiplicities of the
eigenvalues in question cannot be handled by the results in § 4. Based on this
one can handle now cases of multiple eigenvalues using eigenvalue/eigenvector
tests (characteristic value/vector tests) [(s;/ — A)’, C']" v; = 0 without confusion.

5.5. Choosing an appropriate closed loop transfer function matrix

One of the challenging problems in practical control design is to choose an
appropriate closed loop transfer function matrix that satisfies all the control
specifications such as disturbance rejection, command following, etc which can
be obtained from the given plant by applying an internally stable feedback loop.
For example, in the SISO system control design, if the plant has a RHP zero,
then the desired close loop transfer function must have the same RHP zero,
otherwise, the closed loop system will be internally unstable. Selecting appropri-
ate closed loop transfer matrices is even more difficult for MIMO systems; note
that in this case it is possible to have both a pole and a zero at the same location
without cancelling each other. To prevent cancelling of the RHP zeros and to
guarantee the internal stability of feedback control systems, both locations and
directions of the RHP zeros must be considered. This can be best explained in
the context of the Stable Model Matching Problem (Gao and Antsaklis 1989):

Given proper rational matrices H(s) (p X m) and T(s) (p X q), find a
proper and stable rational matrix M(s) such that the equation

H(s)M(s) = T(s) (5.13)

holds. It is known that a stable solution for (5.13) exists if and only if T(s) has,
as it zeros, all the RHP zeros of H(s) together with their directions. Let the
coprime fraction representations of H(s) and T(s) be H(s) = N(s)D"'(s) and
T(s) = NT(s)D}l(s). The direction associated with a zero of H(s), s;, is given
by the vector a; which satisfies

aiN(s;) = 0 (5.14)

Furthermore, T(s) will have the same zero, s;, together with its direction if 7(s)
satisfies

aiN(s;)) =0 (5.15)

Thus, (5.15) must be taken into consideration when T (s) is selected.

Example 5.10: Consider a diagonal T(s); that is, the control specifications
demand diagonal decoupling of the system. Let

1 s—1 0
H(s)=s+1[1 1]

with a zero at s =1. Then aH(1) =0 gives a=[1 0] and T(s) must satisfy
aT(1) =[1 0]T(1) = 0. Since T(s) must be diagonal, ¢,,(1) = 0; that is the RHP
zero of the plant should appear in the (1, 1) entry of T(s). Certainly T(s) can be
chosen to have 1 as a zero in both diagonal entries. However, the RHP zeros
are undesirable in control and the minimum possible number should be included
inT. L]
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6. Rational matrix interpolation — theory and applications

In this section the results on polynomial matrix interpolation derived in
previous sections are used to study rational matrix interpolation. In the first
part, on theory, it is shown that rational matrix interpolation can be seen as a
special case of polynomial matrix interpolation. This result is shown in Theorem
6.1, where the conditions under which a rational matrix H(s) is uniquely
represented by interpolation triplets are derived. Theorem 6.1 is the rational
interpolation theorem that corresponds to the main interpolation, Theorem 2.1.
Constraints are incorporated in (6.5) and an alternative form of the theorem is
presented in Corollary 6.2. Theorem 6.3 shows the conditions under which the
denominator of H(s) can be specified arbitrarily. These results are applied to
rational matrix equations and results analogous to the results on polynomial
matrix equations derived in the previous sections are obtained.

6.1. Theory

Similarly to the polynomial matrix case, the problem here is to represent a
(p % m) rational matrix H(s) by interpolation triplets or points (s;, a;, b),j=1,
[, which satisfy

where s; are complex scalars and a;#0, b; complex (m x 1), (p X 1) vectors
respectively.

It is now shown that interpolation of rational matrices can be studied via the
polynomial matrix interpolation results developed above. In fact it is shown
below that the rational matrix interpolation problem reduces to a special case of
polynomial matrix interpolation.

Write H(s) = D~'(s)N(s) where D(s) and N(s) are (p X p) and (p X m)
polynomial matrices respectively. Then (6.1) can be written as N(s;)a; = D(s;)b;
or as

[N(s), - D(s))] {:Z’] =Q0(@)c;=0, j=1,1 6.2)
j

That is the rational matrix interpolation problem for a p X m rational matrix
H(s) can be seen as a polynomial interpolation problem for a p X (p + m)
polynomial matrix Q(s) := [N(s), — D(s)] with interpolation points (SL’,Cf’O)
= (s;, [a}, bj]',0), j=1,1. There is also the additional constraint that D~'(s)
exists. It should be pointed out here that this is a problem similar to the pole
assignment problem studied in § 5, where the characteristic values and vectors of
Q(s) defined in § 4 were used; the difference here is that Q(s) is not square and
non-singular, however results appropriate for such Q(s) have also been deve-
loped above, in §4. We shall now apply polynomial interpolation results to
(6.2).

Let the column degrees of Q(s) = [N(s), —D(s)] be d;, i=1, p+ m. By
Corollary 2.2 | = 2d; interpolation points (s;, [a}, bj]",0), j=1, [, together with
a given p x (p + m) leading coefficient matrix C. uniquely specify Q(s). It is
assumed here, (see Corollary 2.2) that the matrix Sy, has full rank. Since C, is
chosen, the columns which correspond to 5(3) can, of course, be arbitrarily
selected; for example, they could be taken to be any p X p non-singular matrix
or simply the identity /, thus guaranteeing that D ~'(s) exists.
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Alternatively, as it was done in (2.11) (B, = 0 case) the additional constraints
to be satisfied can be expressed as

[N, =D](S.. €] = [0, D] (6.3)

where [N(s), —-D(s)]= [N,-D] S(s) with S(s)=blkdiag{[1,s, ..., s3]y
=1, p+m

S = [SGers - - Sls)el] (6.4)

Here, ¢; = [aj, b}]’ and (s;, ¢;) are so that S, (2d; + (p + m)) x [ has full rank /
(see Theorem 2.1). Equations [N,—D]C = D express the k additional con-
straints on the coefficients; k is the number of columns of C or D and it is
taken to be k= (Zd;+ (p + m)) — [. Furthermore, C is selected so that
rank [$;, C] = /; in this way a unique solution exists for any D. Since D(s) is a
p X p matrix, it is possible to guarantee that the leading coefficient matrix of
D(s) is, say, 1, by using p equations (p columns of C). So the number / of
interpolation points can be [ = >d;+ m. These [ interpolation points, together
with the p constraints, guarantee that D ~'(s) exists and uniquely define
[N(s), — D(s)] and therefore H(s), assuming that [S;, C] has full rank; note that
full rank can always be attained if S; has full column rank. The following
theorem has been shown.

Theorem 6.1: Assume that interpolation triplets (s;, a;, b;), j=1, I, and non-
negative integers d;, i =1, p+m, with [ =>d;+ m are given such that S
Od;+(p+m))x 1 in (6.4) has full column rank. There exists a unique
(p X m) rational matrix H(s) of the form H(s) = D~Y(s)N(s) where the column
degrees of the polynomial matrix [N(s), —D(s)] are d; i =1, p+ m, with the
leading coefficient matrix of D(s) being I, (non-singular), which satisfies (6.1).

When the number of interpolation constraints / on H(s) is less than
>.d; + m, additional constraints can be used to impose other properties on
H(s). For example, additional linear equations of the form D(s;)a; = 0 can be
added in (6.3) so that H(s) has poles in certain locations. Similarly, for zeros of
H(s) (see Example 6.2 below). In view of Corollary 2.6 an alternative form for
(6.3) is
OfSa, C4] = [0, D4 (6.5)
where d is the degree of [N(s), —D(s)]; see Corollary 2.6 and the related
discussion for details. Here Sy is a ((p + m)(d + 1) X /) matrix. Similar to the
above, it is possible with p equations (p columns in C; or D,) to guarantee that
D~ '(s) exists. Therefore, one could have /= (p+ m)d + m interpolation
constraints together with the p additional equations to determine uniquely O in
(6.5) and therefore H(s). So, the following Corollary has been shown.

Corollary 6.2: Assume that interpolation triplets (s;, a;, b)), j=1, I, and non-
negative  integer d with [I=(p+m)d+m are given such that
Sa((p+ myd+1)x1) in (6.5) has full column rank. There exists a unique
(p X m) rational matrix H(s) of the form H(s)= D~ '(s)N(s) where the highest
degree of the polynomial matrix [N(s), — D(s)] is d, with the leading coefficient
matrix of D(s) being I, (non-singular), which satisfies (6.1).

Example 6.1: Consider a scalar rational H(s) (p = m = 1) with first degree

et
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numerator and denominator (d=1). Here, we can have up to
[=(p+ m)d+ m=2d+1=3 interpolation constraints and still guarantee that
the denominator exists and is of degree 1. Let

{(s;» @, B)j = 1, 2,3} = {(0, L, by), (1, L, ba), (—1, 1, b3)}
Also let H(s) = 5‘1(5)N(s) = (a5 + ap) " (Bys + By). Here

1 0
[N(s). ~D(s)] = (N. = DIS(s) = [Bo. Br. —ar. —a]| |
0 =
1 It 1
aT [b,]’ - [bz]’ "= [bj
and
1 1 1
8 1 =i f_
[N’ _D]SI = [ﬁOv ﬁlv — &g, —'a/l] bl b2 b3 = [O 0 O]
0 b, —by

A fourth equation representing additional constraints can be added (see (6.5)) to
guarantee, say,a; = 1. This is equivalent to solving

1 1 1
[Bo» Bi» =0l 0 1 =1 =[0 b, —b;] from which
b, by b
-1
(Bo, Br, —x] = TRy ey [b1(b3 — b3), 2byb3 — by(by + b3), by — b3

O

Example 6.2: Consider only the first two interpolation constraints of the
previous example and require that a(—3) + a9 = or that H(s) has a pole at —3
and a; = 1. Then

1 1 0 0
0 | 0 0
[/30» ﬂl’ &g, -“l] bl b2 1 0 - [O 00 1]
0 b, -3 -1
from which
. [Bo, B> —ap] = [3by, =3by + 4by, —3]
That is
(—3b1 + 4b2).§‘ + 3b1
H(s) =
(s) s+3
satisfies all constraints. Namely, H(0) = b,, H(l) = b, and the denominator of
H(s) has a zero at —3 (pole of H(s)) with leading coefficient equal to 1. a

Example 6.3: ansider a 2 x2 rational matrix H(s)= 5*'(s)ﬁ(s). Let
Q(s) = [N(s), = D(s)] and deg. Q(s) = {1 0 1 1}. For a solution Q(s) to exist,
one needs /< >d; + p+ m=3+4=7 interpolation triplets (Bis By By)s = Ls
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[. Suppose that two interpolation triplets of the form in (6.2) are given as:
{(1,[0 1 1 0),[00}), (2,[1 1 4/3 =1/12]’,[0 0])}. In addition, it is required
that H(s) has a zero at s =0 and poles at s = —1 and s = —2 with their
directions specified as N(O)[1 0]’ =[0 0], D(-1)[l —1]'=[00]' and
D(-2)[0 1]’ =[0 0]’. These constraints can be equivalently expressed as inter-
polation triplets: {(0.[1 0 0 0], [0 0]"), (-1,[00 1 —1},[0 O]),
(=2,[0 00 1],[0 0]'}. Now the problem becomes a standard polynomial
interpolation problem, i.e. to determine Q(s) subject to Q(s;)c; = b; =[0 0] for
].——'].,5‘ Let SJ= {S],...,S[}, C1=[C1,...,C1], Bl:[bl’---vbll- Then
OS5 = B (2.5) is to be solved where

o 0o 0o o0 o
SI={-2-101234}, BS—[O 0 0 0 o]
0 0 1 0 1
0 0 0 1 1
G=lo 1 0 1 4/3

1 -1 0 0 -1/12

The orthonormal basis of the left null space of S5 is found to be

Ny 2 0-0000 0-3173 0-2522  0-0650 -0-3173 0-7646  0-3823
57100000 —0-2726 —0-7151  0-4425 0-2726  0-3396  0-1698

Note that, in general, N is a ((D,d; + m)-rank {S,}) X (>, d; + m) matrix and
all solutions of (2.5) with B, = 0 can be characterized as Q = MNg where M is
any p X ((Q.d; + m)-rank {S,;}) real matrix. In this example M can be simply
chosen as the identity matrix, that is Q = Ng, since ((O d; + m)-rank {5,})
=7 ~5=2= p. Therefore,

Q(s) = OS(s)

_ 03173s 0-2522  —0-3173s + 0-0650  0-3823s + 0-7647
~ | -0-2726s  —0-7151 0-2726s + 0-4425  0-1698s + 0-3396

= [N(s). =D(s)]

It can be easily verified that the resulting transfer matrix H(s) = D '(s)N(s)
has a zero at s = 0 and poles at s = —1, —2.
To determine uniquely Q(s) in this example, two additional constraints in

the form of (6.3):{(3,[0 1 00],[2 1]), 4,[0 11 1]),[-3 -6])} are im-
posed which lead to

SI={-2-101234}, B7=[8 8 8 8 8 % :g:l

0 0 1 0 1 0 0
c.o=|0 0 0 1 1 1 1
Tlo 1 0 1 43 0 1

1 -1 0 0 -112 0 1

by solving (2.5),

and

Polynomial and rational matrix interpolation 395

Qo) = 05(s) = [(S) L Y s 2)]

therefore,
s 2
s+ 1 s+ 1

s+ 1 o | 2
T TR i A
s+ D(s+2) (s+D(s+2)

O

If it is desired that the denominator of H{s) be completely determined in
advance, then this can be expressed in terms of equations {(6.3) or (6.5). It is
also possible to show this result directly based on Theorem 2.1.

Theorem 6.3:  Assume that interpolation triplets (s, ¢;, b)), j =1, [, c;#0andm
non-negative integers d;, i =1, m, with | = >.d; + m are given together with an
(m x m) polynomial matrix D(s), |D(s;)| #0, such that the S; matrix in (2.2)
with a; .= [D(sj)]‘lcj has full rank. Then there exists a unique (p X m) rational
matrix H(s) of the form H(s) = N(s)D(s)"', where the polynomial matrix N(s)
has column degrees deg.,[N(s)] = d;, i = 1, m, for which

H(s)c;=b; j=1,1 (6.6)
Proof: Let N(s) = NS(s) as in Theorem 2.1. The proof is similar also. Notice
that (6.6) implies NS, = B; with a; = [D(s))] '¢; in S; of (2.2). m]

The m X m denominator matrix D(s) is arbitrarily chosen subject only to
|D(s;)| # 0. This offers great flexibility in rational interpolation. It should be
pointed out that the matrix denominator D(s) is much more general than the
commonly used scalar one d(s), since D(s) = d(s)/ is clearly a special case of
matrices D(s) with desired zeros of determinant; note that in this case
ID(s)| = d(s)™ that is, the zeros of | D(s)| are all the zeros of d(s) each repeated
m times.

Example 6.4: Consider ths scalar rational example discussed above. Here
I=>d;i+m=1+1=2 and S(s)=[1 s]’. Consider interpolation points
(0,1,b)) and (l,1,b,) as above and let the desired denominator be
D(s)= s+ 3. Then ¢; = D™ Y(0)a,; = 1/3, c; = D (1)a, = 1/4 and
/3 1/4

NS; = [Bo, Fil[S(0)cy, S(1)ez] = [Bo, ﬁl][é 1//4] = [by, b2] = B,
from which {8y, B1] = [3by, —=3b, + 4b,]. That is

(=3b, + 4by)s + 3by

H(s) =

(s) s+ 3

satisfies all the constraints. Note that it is the same H(s) as in Example 6.2 even
though the constraints were imposed via different approaches. ]

As was shown above, rational matrix interpolation results are directly
derived from corresponding polynomial matrix interpolation results and all
resutls of § 2 (§ 3-5) can therefore be extended to the rational matrix case. One
could, of course, use the results of Corollaries 2.5 to 2.7 and 2.8 to obtain
alternative approaches to rational matrix interpolation.
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6.2. Applications—rational matrix equations
Now consider the rational matrix equation:

M(s)L(s) = Q(s) (6.7)

where L(s) (¢t xm) and Q(s) (k X m) are given rational matrices. The
polynomial matrix interpolation theory developed above will now be used to
solve this equation and determine the rational matrix solutions M(s) (k X< t).
Let M(s) = D'(s)N(s). a polynomial fraction form of M(s) to be determined.
Then equation (6.7) can be written as:

[N(s) -D(s)] [ggg

Note that instead of solving (6.8) one could equivalently solve

=0 (6.8)

o =~ L,(s) ;
[N(s) -D(S)][ 3 =0 (6.9)
Op(s)

where [L,(s)'Q,(s)']' = [L(s)'Q(s)']'¢(s) a polynomial matrix with ¢(s) the
least common denominator of all entries of L(s) and Q(s); in general, ¢(s)
could be any denominator in a right fractional representation of [L(s)’, Q(s)']’".
The problem to be solved is now (3.1), a polynomial matrix equation, where
L(s) = [Ly(s)'Qp(s)']" and Q(s) = 0. Therefore, Theorem 3.1 applies and all
solutions [N(s) — D(s)] of degree r can be determined by solving (3.9) or (3.13).
Let s = s; and postmultiply (6.9) by a;, j =1, /, with a; and / chosen properly
(see below). Define

: L, (s) .
¢ =\ F a j=1,1 (6.10)
=gl e
The problem now is to find a polynomial matrix [N(s) — D(s)] which satisfies
[NGsj) =D(sple; =0 j=1,1 (6.11)

as in (6.2). In fact (6.11) is of the form of (3.11) with b; = 0.

Note that restrictions on the solutions can be easily imposed to guarantee
that D ~'(s) exists and/or that M(s) = D ~'(s)N(s) is proper; see also above in
this section, as well as §4 and 5. The existence of solutions of (6.7) and their
causality depends on the given rational matrices L(s) and Q(s) (see for example
Chen 1984, Gao and Antsaklis 1989 and references therein). Our approach here
will find a proper rational matrix of order kr in general when such a solution
exists. Additional interpolation type constraints can be added so the solution
satisfies additional specifications.

Example 6.5: This is an example of solving the Model Matching Problem (Gao
and Antsaklis 1989) using matrix interpolation techniques. Here L(s) and Q(s)
are given as:

1 l s s+ 1
s+ 1 32 s+3 s+ 3
L(s)=| -5 Q(s) = s 3s + 7

_1 e

s+ 1 s5+3 s+3
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The monic least common denominator of all entries is ¢{s) = s(s + 1)(s + 3) and
therefore

s(s + 3) (s + I)(s + 3)
L(s) 0 =2s(s + 1)(s + 3)
[QP(S) =] —s*(s +3)  —s{s+ )(s +3)
£ s2(s + 1) s(s + 1)?
-sH(s+ 1) —-@CBs+ s + s

{d; = deg.;Q(s)}= {0,0, 1, 1, 0}
[ =23d;i+t+ k=2+5=7,
{#, f= 1,85} = {~4, -2, 1, 2; &),
{aj j = 1.5 = {0, 1]", [1, 0", [1, 1]", [0, =1]". [=1, O]}
{b;=10,00.j =15}
from which ¢;, j = 1, 5, are obtained

3 =2 12 =15 ~-18
24 0 -16 60 0
[c1...,c5)=| 12 -4 -12 30 54
-3 -4 6 —18 =36
60 4 -2 78 36

Assunzie that two additional constraints are introduced in the form of:
{se, 57} = {45}, {c6,c7}={[01000),[00010]'} and {bg by}=
{{1 0}.[-1, —8]'}. Now, solving the polynomial matrix interpolation problem:
[N(s;) = D(sy)]c; = b;, j = 1,7, we obtained

_ ~ 0 1 0 -1 -1
(N(s) —D(s)]=[0 0 —(s+1) ~—(s+3) 0]

which gives
1 1Yo 1 0
Mz} = |:s +1 0] [o 0 —(s+ 1)] =

7. Concluding remarks

Some of the concepts and ideas presented here have appeared elsewhere. It
is the first time however that the theory of polynomial and rational matrix
interpolation in its complete form has appeared in the literature. The algorithms
have been implemented in Matlab and are available upon request.

Interpolation is a very general and flexible way to deal with problems
involving polynomial and rational matrices and the results presented here
provide an appropriate theoretical setting and algorithms to deal effectively with
such problems. At the same time it is also felt that the results presented here
have only opened the way, as there are many more results that can and need to
be developed to handle the wide range of problems it is possible to study, via
polynomial and rational matrix interpolation theory.
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Finally, it should be noted that the rational interpolation results presented
here complement results that have appeared in the literature. The exact
relationship is under investigation and new insights into the theory are certainly

possible.

Appendix

In this Appendix, the general versions of the results in § 4 that are valid for
repeated values of s;. with multiplicities beyond those handled in § 4, are stated.
Detailed proofs of these results can be found in the main reference for

characteristic values and vectors (Antsaklis 1980).

Let Q(s) be an (m x m) non-singular matrix and let Q(k)(sj) denote the kth
derivative of Q(s) evaluated at s = 5;. If 5; is a zero of |Q(s)| repeated n; times,
define n; to be the algebraic multiplicity of s;; define also the geometric

multiplicity of s; as the quantity (mm-rank Q(s;)).

Theorem A.1 (Antsaklis 1980, Theorem 1): There exist complex scalar s; and
2 T . -
Z,{':lk,»/ m X 1 non-zero vectors a}j, @igsw e s af}", i =1, l;, which satisfy

O(sp)aj =0

Q(s)aj; = -0 (s)a;
: (A1)

1 k—~1 1
TR A
with a}f, aéj. .. ‘,a}/j linearly indepena;ent if and only if Sj is a zero of |Q(s)|
with algebraic multiplicity (=nj)22,f=1ki]~ and geometric multiplicity (=(m-
rank Q(s;))) = /;.

It is of interest to note that there are /; chains of (generalized) characteristic
vectors corresponding to s;, each of length k;. Notice that Theorem 4.2 is a
special case of this theorem; it involves only the top equation in (A1) and it
does not involve derivatives of Q(s). The proof of Theorem A1 is based on the

following lemma.

k, =1
Q(spay = =@V (say™ + -+

Lemma A.2 (Antsaklis 1980, Lemma 2): Theorem A.l is satisfied for given
Q(s), s; and a;f,» if and only if it is satisfied for U(s)Q(s), s; and a,’fl where U(s)
is any unimodular matrix (that is |U(s)| = a, a non-zero scalar).

This lemma allows one to carry on the proof of Theorem A.l with a matrix
QO(s) which is column proper (reduced). The proof of Theorem A.l is rather
involved and it involves the generalized eigenvectors of a real matrix associated

with Q(s); it can of course be found in (Antsaklis 1980).
Given Q(s), if s; and a;‘» satisfy the conditions of Theorem A.l, then this

implies a certain structure for the Smith form of Q(s). First, let us define the
(unique) Smith form of a polynomial matrix.

Smith Form of M(s) (Rosenbrock 1970, Kailath 1980)
Given a p X m polynomial matrix M(s) with rank M(s) = r, there exist
unimodular matrices Uy, U, such that U,(s)M(s)U.(s) = E(s) where

b Y
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. A 0
E(s) = [/ (()5) 0] A(s) = diag[e(s), £x(s), . . ., £(5)] (A2)

Each ¢, i=1. r, is a unique monic polynomial satisfying e;(s)|e;(s). i =1
r— 1 Whe,r? p2lpy means that there exists polynomial ps; such that p, = pvp;:
that is e; divides £;,y. E(s) is the Smith form of M(s) and €,(s) are the invar-ia;z;
polvnomials of M(s). It can be shown that

€i(s) = D(s)/D;_y(s) i=1,r (A3)

where D,(s) is the monic greatest common divisor of all the ith order minors of
M(s); note that Dy(s) = 0. D(s) are the determinantal divisors of M(s).

L:??::?éj L"(A[ntsakllls 19280, Corgl]ar‘y 3): Giver.z Q(s), there exist a scalar 8
anc 3 ectors ay, ay,....ay i=1, I; which satisfy the conditions of
fheorerzz 4] if ar?d only if the Smith form of Q(s) contains the factors
(s — s}) ) 1_='1, lj in l; separate locations on the diagonal; that is (s — s,)% is a
factor in l; disunct invariant polynomials of Q(s). ]
Theorem A.1 and Corollary A.3 refer to th | ; i
i et i O the value s;, a root of |Q(s)| which
; | =1k times. If o distinct values s; are given, then the
following result is derived. Note that the deg |Q(s)| is assumed to be known

'I‘heprem A.4 (Antsaklis 1980, Theorem 4): Let n = deg|Q(s)|. There exist o
dzstmct c‘omplex scalclzrs s; and n non-zero vectors a.:, ag, ..., af i=1, I
/' =1, o with z;;,z,f:lk,vj = n with each of the o sets {]a{j,]aé-, ;i ’ - Z," + linez’zrl;
lzzdgpgndent for j =1, o that satisfy (A1) if and only if the zéros of ‘é(s)| have
o dzstmc.t values s;, j =1, o each with algebraic multiplicity (=n;) = Elf ki and
geometric multiplicity (= m-rank o(sp) = ;. ] =

Note that to each disti o
(! 2 g ol dlsztmct cl}zlaracterlstlc \'/al'ue s; there correspond
= in U’r.a.ni(' Ql(l )' Cr 8L By vy a[f/f} characteristic vectors; there are l;

= $;) = geom iplici "
j) = geometric multiplicity) chains of length ks kajy .., ky; for

B ! o
a total of 2{:1/(,»}» characteristic vectors equal to the algebraic multiplicity n;
.

Corollary A.5 (Antsaklis 1980, Corollary 5): ] ]

; (4 5 y 5): Given Q(s) with n = de

there exist o‘dzstznct complex scalars s; and vectors a{;, i=1,1, k=1 k% |]Q(=S)1|’

o, whzch ;ansfy the conditions of Theorem A.4 if and only if]the Smith l}’orm 0}

8(A9)lcor;szsts of factors (s - s;) Yii=1,1 in l; separate locations on the diagonal
=1, 0).

Note that in view of the divisibilit i i
' t y property of the invariant factors of Q(s
:lf] the copdnt:ons of Corollary A.5 or similarly of Theorem A.4 are satisin(ecz,
! § <Skmlti form of Q(s) is uniquely determined. In particular, for’
1) = K< ... =< kg, the Smith form of Q(s) in this case has the form

E(s) = diag (e (5] - . Em($))
Em(s) == Sj)kl'/( ')~ Em—l(‘g) = (S - sj)kl'-“( : )’ feen
Em-i-n(s) = (s = 5)"()  (A4)

x'vfhl F,,,_/j(s? =... =‘sl(s) =1. This is repeated for each distinct value of s,
J =1, o, until the Smith form is completely determined. :
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Example A.1: To illustrate the above results consider

5? -1
Q(S) = [O s
Notice that

QU(s) = [ZOS (1’] 0(s) = B 8] 0W(s) = 0 for k > 2
For s; =0 (j = 1), relations (A 1) become:
Leti=1. Q(O)a}l = 0 implies

ah=[{](a¢m

Note that no other linearly independent aly exists, so =1

~QM(0)al, implies a}; = [ﬁ] (B # 0)

0(0)a3,

0O)ah = ~10VO)a}s + 57 0P O)at] mmwan-[] (ay #0)

It can be verified that afl etc are zero. So k;;=3. Note that
m —rank Q(0) =2 — 1= 1= [;; that is, the geometric multiplicity of s; =0 is 1
and so no other chain of characteristic vectors associated with s; = 0 exists.

Assume that Q(s) is not known and it is given that s, =0 and a{‘l,
k=1,2,3, satisfy (A1l). Then, according to Theorem A.l, the algebraic
multiplicity of s; =0 is at least 3 (= ky;) and the geometric multiplicity is at
least 1 (=1/;). Furthermore, in view of Corollary A.3 the factor s>
(= (s — s1)*1) appears in one (= /,) location in the Smith form of Q(s).

Assume now that n = deg|Q(s)| =3 is also given together with s, =0 and
afy, k =1,2,3, which satisfy (A 1). Notice that here /; = 1, ky; = 3 (see above)
so ky; =3 = n which implies that 0 =1, or s; =0 is the only distinct root of
|Q(s)|. Theorem A.4 can now be applied to show that s; =0 has algebraic
multiplicity exactly equal to k;; =3 and geometric multiplicity exactly equal to
[y = 1. These can be easily verified from the given Q(s). In view of Corollary
A.S and (A 4) the Smith form of Q(s) is

6 o]

which can also be derived from Q(s) via pre and post-multiplication by
unimodular matrices. a

The following lemma highlights the fact that the conditions of Theorem A.4
specify Q(s) within a unimodular premultiplication; see also Lemma 4.6.

Lemma A.6: Theorem A.4 is satisfied by a matrix Q(s) if and only if it is
satisfied by U(s)Q(s) where U(s) is any unimodular matrix.

It is important at this point to discuss briefly and illustrate the results so far.
Assume that, for an (m X m) polynomial matrix Q(s) yet to be chosen, we have
decided upon the degree of |Q(s)| as well as its zero locations—that is about #,
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5; and the algebraic multiplicities n;. Clearly there are many matrices that satisfy
these requirements; consider, for example, all the diagonal matrices that satisfy
these requirements. If we specify the geometric multiplicities /; as well, then this
implies that the matrices Q(s) must satisfy certain structural requirements so
that m — rank Q(s;) = /; is satisfied; in our example the diagonal matrix, the
factors (s — s;) must be appropriately distributed on the diagonal. If k; are also
chosen, then the Smith form of Q(s) is completely defined, that is Q(s) is
defined with pre and post-unimodular matrix multiplications. Note that this is
equnvalent to imposing the restriction that Q(s) must sansfy n relations of type
(A1), asin Theorem A .4, without fixing the vectors a,] (see Example A.1). If,
in addition, a,, are completely specified then ((s) is determined within a
unimodular premultlpllcatlon see Lemma A.6.

Given (m x m) Q(s), let n=deg|Q(s)| and assume that Q(s) and s;, a,]
satisfy the conditions of Theorem A.4; that is they satisfy (A 1) for o dnstmct Sps
j=1,0.

Theorem A.7 (Antsaklis 1980, Theorem 6): Q(s) is a right divisor (r.d.) of
an (r X m) polynomial matrix M(s) if and only if M(s) satisfies the conditions of
Theorem A.4 with the Same 5 and a,’j, that is M(s) also satisfies the conditions
(A 1) with the same s;, a,, for a distinct s;, j =1, 0.

Proof:

Necessity. If Qisard. of M, M = MQ, then is can be shown directly that
(A 1) are also satisfied by M(s) with the same s; and a,]

Sufficiency. This is the same as the sufficiency proof of Theorem 4.9. a

In the proof of Theorem A.l (Antsaklis 1980), the Jordan form of a real
matrix A derived from Q(s) was used. Later in the Appendix, results concern-
ing the Smith form of Q(s) were described. It is of interest to outline here the
exact relations between the Jordan form of A and the Smith form of s/ — A and
o¢ Q(s). This is done in the following.

Relations between the Smith and Jordan forms
Given an m X m non-singular polynomial matrix Q(s) and a real n X n
matrix A, assume that there exist matrices B (n X m) and S(s) (n X m) so that

(s = A)S(s) = BQ(s) (A5)

where (s/ — A), B are left and S(s), Q(s) right coprime. Then there is a direct
relation between the Smith forms of (s/ — A) and Q(s), as will be shown. First
the relation between the Jordan form of A and the Smith form of (s/ — A) is
described.

Let A (nXxn) have o distinct eigenvalues s; each repeated n; times
(S n; = n); n; is the algebraic multiplicity of s;. The geometric multiplicity of s,
L, is defined as [;=n —rank (s;/ — A); that is, the reduction in rank in s/ — A
when s =y5;. There exists a similarity transformation matrix P such that
PA = JP where J is the Jordan canonical form of A.

J = diag[J]. J; = diag[J;] (A6)

where Ji(n; X n;), j =1, o is the block diagonal matrix associated with s;; J; has
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I (= n;) matrices J;(k; % k;;), i =1, [;, on the diagonal each of the form

5, 1 0...0
0 ; 1 ...0

Ji=1{ . i g g (A7)
0 0 s

j
where E{Ik,-j = n;

The structure of J is determined by the generalized eigenvectors Uff of A;
they are used to construct P. To each distinct eigenvalue s; correspond /; chains
of generalized eigenvectors each of length ky, 1 =1, [;, for a total of n; linearly
independent generalized eigenvectors.

Note that the characteristic polynomial of A, a(s), is

a(s) = Ul(s ~ st (= Isl = AD

while the minimal polynomial of A, an(s), is [T=1(s = sj)ﬁ/ where 7;:=
max; k;;, that is the dimension of the largest block in J associated with s;.

The Smith form of a polynomial matrix was defined above. It is not difficult
to show the following result about the Smith form of s/ — A, E,(s) (Antsaklis
1980): without loss of generality, assume that ky; < ky;<...< kij (= n), see
also (A.4). If E4(s) = diag[e,(s), €2(s), - - -, £,(s)], then

E,,(S) = (S - Sj)kl"(' )9 8n—l(s) = (S - Sj)klfl'(' )v cevy

En—qt-1)(8) = (s — s)ku(+)  (A8)
with E"‘Il(s) =...=g(s)= 1. That is, the n; factors (s — s;) are factors of the
l; invariant polynomials En—(-1)(8)s - - o £,(s); the exponents k; of (s —s;) are
the dimensions of the matrices J;, i =1, l; of the Jordan canonical form, or
equivalently they are the lengths of the chains of the generalized eigenvectors of

A corresponding to s;. The relations in (A 8) are, of course, repeated for each
distinct value of s;, j=1, 0, until the Smith form E4(s) is completely deter-

mined.

Example A.2: Let

Jut
A=J=[]1 J]—_- I
2 J

that iS, S|=“3, n|=3, [1:2 with k||=2, k2|:1; 52:—1,
ny = I, = ky; = 1. In view of (A.8), the Smith form of s/ — A is

1
ocoow
SO W~
owoo
-0 0o

12

£,(s) 1 1
£-5(s) s s—3

E4(s) = £+(s)
£4(s) x =37 ~ O

Here a(s) = |sI — A| = (s = 3)’(s — 1) and a,,(s) = (s — (s = 1). O
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It can be shown (Rosenbrock 1970, Wolovich 1974, Kailath 1980) that if
sl — A and Q(s) satisfy relation (A.5), then the matrices

I, 0 0

sl-A B n=m

[ ) O], 0 Q6 Iy
0 -S&s) O

are L}nimodularly equivalent and they have the same Smith forms. This implies
that if Eg(s) is the Smith form of Q(s),

Ly 0 ,

It is'now easy to show that Q(s) has o distinct roots s; of |Q(s)| each repeated
n; times (= algebraic multiplicity as defined before in Theorem A.l); the
geometric  multiplicity of s; defined by m — rank Q(sj)) equals [ since
l;=m — rank Ey(s). If I

Eo(s) = diag{&,(s), . . ., E,(s)), then (see also (A.4))
fOI' kll = kz, =,,. = kljj (= ’—l)

E,,,(S) = (S = sj)k/”(')’ Em—l(s) = (S - Sj)kl’ﬂ’(')’ LR
Em—(1,-1)(8) = (s — s () (A10)

th £,-;j(s) = ... = &/(s) = 1. Compare with the Smith form E 4(s) in (A 8). It
is cle'ar that Ep(s) and E4(s) or Q(s) and (s/ — A) have the same non-unity
mvarlant.polynomials as is, of course, clear in view of (A9). Note that the
characteristic polynomial of Q(s) is in this case 8(s) =|Q(s)| = [[7=s(s — 5,)"
(= a(s) = |sI — Al) while the minimal polynomial of Q(s) is ] '

o
6»:(3) = IQ(S)‘ = H(S - Sj)ﬁi (: am(s))
j=1
Example A.3: Let
0
A=|0
0
Note that if

1 0 0 0

S(s)=|s O and B=|1 0

0 1 0 1
"Ij)hen, (s] — A)S(s) = BQ(s) as in (A 5) with (s/ — A), B left coprime and S(s),
Q(s) right coprime. Notice that A is already in Jordan canonical form. In fact

A = J= i = b = = 1 i
et (A SJ)I with s, =0, [, =1, ky; =3 and n, = 3. The Smith form of s/ — A4 is

EA(S) =
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In view of (A 10), the Smith form of Q(s) is

o[} 9]

Note that this Q(s) was also studied in Example A.l. 0
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