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Abstract. Hybrid control systems contain two distinct types of sys-
tems, continuous state and discrete-state, that interact with each other.
Their study is essential in designing sequential supervisory controllers for
continuous- state systems, and it is central in designing control systems
with high degree of autonomy.

After an introduction to intelligent autonomous control and its rela-
tion to hybrid control, models for the plant, controller, and interface are
introdunced. The interface contains memoryless mappings between the
supervisor's symbolic domain and the plant’s nonsymbolic state space.
The simplicity and generality afforded by the assumed interface allows
us to directly confront important system theoretic issues in the design
of supervisory control systems. such as determinism, quasideterminism,
and the relationship of hybrid system theory to the more mature theory
of logical discrete event systems.

1 Introduction

Hybrid control systems contain two distinct types of systems, continuous and
discrete-state, which interact with each other. An example of such a system is
the heating and cooling system of a typical home. Here the furnace and air
conditioner together with the home's heat loss dynamics can be modeled as
continuous-state, (continuous-time) system which is being controlled by a dis-
crete-state system, the thermostat. Other examples include systems controlled
by bang-bang control or via methods based on variable structure control.

Hybrid control systems also appear as part of Intelligent Autonomous Control
Systems. Being able to control a continuous-state system using a discrete-state
supervisory controller is a central problem in designing control systems with high
degrees of autonomy. This iz further discussed below.

The analysis and design of hybrid control systems requires the development of
an appropriate mathematical framework. That framework must be both powerful
and simple enough so it leads to manageable descriptions and efficient algorithms
for such systems. Recently, attempts have been made to study hybrid control
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systems in a unified, analytical way and a number of results have been reported
in the literature [Benveniste 1990] [Gollu 1989] {Grossman 1992] [Holloway 1992
[Kohn 1992} [Lemmon 1993b] [Nerode 1992] [Passino 1991b)] {Peleties 1988] [Pele-
ties 1089] [Stiver 1991a] [Stiver 1991b] [Stiver 1991c] [Stiver 1992] [Stiver 1993].

In this chapter, a novel approach to hybrid systems modeling and control is
described. Descriptions of the plant to be controlled, the controller and the in-
terface are given in Section 3. The important role of the interface is discussed at
length. In Section 4, certain system theoretic questions are addressed. In partic-
ular, the concepts of determinism and quasideterminism are introduced and re-
sults are given. It is then shown how logical Discrete Event System {DES) models
can be used to formulate the hybrid control problem, thus taking full advantage
of existing results on DES controller design [Cassandras 1990] [Ozveren 1991]
[Passino 1989a] [Passino 1989b] [Passino 1991a] [Passino 1992a} [Ramadge 1987]
[Ramadge 1989) [Wonham 1987) for hybrid control systems. When the system to
be controlled is changing, these fixed controllers may not be adequate to meet
the control goals. In this case it is desirable to identify the plant and derive
the control law on line, and this is addressed in the companion chapter in this
volume titled “Event Identification and Intelligent Hybrid Control.” Inductive
inference methods are used to identify plant events in a computationally efficient
manner.

In Section 2, after a brief introduction to Intelligent Autonomous Control,
the important role hybrid control systems play in the design of Autonomous
Control Systems is discussed and explained. In this way, the hybrid control
problem can be seen in the appropriate setting so that its importance in the con-
trol of very complex systems may be fully understood and appreciated. Further
discussion can be found in [Antsaklis 1993b}; for more information on intelli-
gent control see [Albus 1981] [Antsaklis 1989] [Antsaklis 1991} [Antsaklis 1993b]
[Antsaklis 1993a) {Antsaklis 1993c] [[EEE Computer 1989] [Passino 1993] [Saridis
1979) [Saridis 1985) [Saridis 1987] [Saridis 1989a] [Zeigler 1984).

2 On Intelligent Autonomous Control Systems

It is appropriate to first explain what is meant by the term Intelligent Au-
tonomous Control {Antsaklis 1989] [Antsaklis 1993b]. In the design of controllers
for complex dynamical systems, there are needs today that cannot be success-
fully addressed with the existing conventional control theory. Heuristic methods
may be needed to tune the parameters of an adaptive control law. New con-
trol laws to perform novel control functions to meet new objectives should be
designed while the system is in operation. Learning from past experience and
planning contro! actions may be necessary. Failure detection and identification
is needed. Such functions have been performed in the past by human operators.
To increase the speed of response, to relieve the operators from mundane tasks,
to protect them from hazards, a high degree of autonomy is desired. To achieve
this autonomy, high level decision making techniques for reasoning under uncer-
tainty must be utilized. These techniques, if used by humans, may be attributed
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to intelligence. Hence, one way to achieve high degree of autonomy is to utilize
high level decision making techniques, intelligent methods, in the autonomous
controller. In our view, higher aqutonomy is the objective, and intelligent con-
irollers are one way to achieve it. The need for quantitative methods to model
and analyze the dynamical behavior of such autonomous systems presents signif-
icant challenges well beyond current capabilities. It is clear that the development
of autonomous controllers requires significant interdisciplinary research effort as
it integrates concepts and methods from areas such as Control, Identification,
Estimation, Communication Theory, Computer Science, Artificial Intelligence,
and Operations Research.

Control systems have a long history. Mathematical modeling has played a
central role in its development in the last century and today conventional control
theory is based on firm theoretical foundations. Designing control systems with
higher degrees of autonomy has been a strong driving force in the evolution of
control systems for a long time. What is new today is that with the advances
of computing machines we are closer to realizing highly autonomous control
systems than ever before. One of course should never ignore history but learn
from it. For this reason, a brief outline of conventional control system history
and methods is given below.

2.1 Conventional Control - Evolution and Quest for Autonomy

The first feedback device on record was the water clock invented by the Greek
Ktesibios in Alexandria Egypt around the 3rd century B.C. This was certainly
a successful device as water clocks of similar design were still being made in
Baghdad when the Mongols captured the city in 1258 A.D.! The first mathe-
matical model to describe plant behavior for control purposes is attributed to
J.C. Maxwell, of the Maxwell equations’ fame, who in 1868 used differential
equations to explain instability problems encountered with James Watt's flyball
governor; the governor was introduced in the late 18th century to regulate the
speed of steam engine vehicles. Control theory made significant strides in the past
120 years, with the use of frequency domain methods and Laplace transforms in
the 1930s and 1940s and the development of optimal control methods and state
space analysis in the 1950s and 1960s. Optimal control in the 1950s and 1960s,
followed by progress in stochastic, robust and adaptive control methods in the
1960s to today, have made it possible to control more accurately significantly
more complex dynamical systems than the original fiyball governor.

When J.C Maxwell used mathematical modeling and methods to explain
instability problems encountered with James Watt's flyball governor, he demon-
strated the importance and usefulness of mathematical models and methods in
understanding complex phenomena and signaled the beginning of mathematical
system and control theory. It also signaled the end of the era of intuitive inven-
tion. The performance of the fiyball governor was sufficient to meet the control
needs of the day. As time progressed and more demands were put on the device
there came a point when better and deeper understanding of the device was
necessary as it started exhibiting some undesirable and unexplained behavior, in
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particular oscillations. This is quite typical of the situation in man made systems
even today where systems based on intuitive invention rather than quantitative
theory can be rather limited. To be able to control highly complex and uncertain
systems we need deeper understanding of the processes involved and systematic
design methods, we need quantitative models and design techniques. Such a need
is quite apparent in intelligent autonomous control systems and in particular in
hybrid control systems.

Conventional control design methods: Conventional control systems are de-
signed today using mathematical models of physical systems. A mathematical
model, which captures the dynamical behavior of interest, is chosen and then
control design techniques are applied, aided by Computer Aided Design (CAD)
packages, to design the mathematical model of an appropriate controlter. The
controller is then realized via hardware or software and it is used to control the
physical system. The procedure may take several iterations. The mathematical
model of the system must be “simple enough” so that it can be analyzed with
available mathematical techniques, and “accurate enough” to describe the im-
portant aspects of the relevant dynamical behavior, It approximates the behavior
of a plant in the neighborhood of an operating point.

The control methods and the underlying mathematical theory were devel-
oped to meet the ever increasing control needs of our technology. The need to
achieve the demanding control specifications for increasingly complex dynamical
systems has been addressed by using more complex mathematical models and
by developing more sophisticated design algorithms. The use of highly complex
mathematical models however, can seriously inhibit our ability to develop con-
trol algorithms. Fortunately, simpler plant models, for example linear models,
can be used in the control design; this is possible because of the feedback used
in control which can tolerate significant model uncertainties. Controllers can for
example be designed to meet the specifications around an operating point, where
the linear model is valid and then via a scheduler a controller emerges which can
accomplish the control objectives over the whole operating range. This is in fact
the method typically used for aircraft flight control. When the uncertainties in
the plant and environment are large, the fixed feedback controllers may not be
adequate, and adaptive controllers are used. Note that adaptive control in con-
ventional control theory has a specific and rather narrow meaning. In particular
it typically refers to adapting to variations in the constant coefficients in the
equations describing the linear plant: these new coefficient values are identified
and then used, directly or indirectly, to reassign the values of the constant co-
efficients in the equations describing the linear controller. Adaptive controllers
provide for wider operating ranges than fixed controllers and so conventional
adaptive control systems can be considered to have higher degrees of autonomy
than control systems employing fixed feedback controllers. There are many cases
however where conventional adaptive controllers are not adequate to meet the
needs and novel methods are necessary.
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2.2 Intelligent Control for High Autonomy Systems

There are cases where we need to significantly increase the operating range of
control systems. We must be able to deal effectively with significant uncertainties
in models of increasingly complex dynamical systems in addition to increasing
the validity range of our control methods. We need to cope with significant un-
modeled and unanticipated changes in the plant, in the environment and in the
control objectives. This will involve the use of intelligent decision making pro-
cesses to generate control actions so that a certain performance level is main-
tained even though there are drastic changes in the operating conditions. It is
useful to keep in mind an example, the Houston Control example . It is an ex-
ample that sets goals for the future and it also teaches humility as it indicates
how difficult demanding and complex autonomous systems can be. Currently, if
there is a problem on the space shuttle, the problem is addressed by the large
number of engineers working in Houston Control, the ground station. When the
problem is solved the specific detailed instructions about how to dea! with the
problem are sent to the shutile. Imagine the time when we will need the tools
and expertise of all Houston Control engineers aboard the space shuttle, space
vehicle, for extended space travel.

In view of the above it is quite clear that in the control of systems there
are requirements today that cannot be successfully addressed with the existing
conventional control theory. They mainly pertain to the area of uncertainty,
present because of poor models due to lack of knowledge, or due to high level
models used to avoid excessive computational complexity.

The control design approach taken here is a bottom-up approach. One turns
to more sophisticated controllers only if simpler ones cannot meet the required
objectives. The need to use intelligent autonomous control stems from the need
for an increased level of autonomous decision making abilities in achieving com-
plex control tasks. Note that intelligent methods are not necessary to increase the
control system’s autonomy. It is possible to attain higher degrees of autonomy
by using methods that are not considered intelligent. It appears however that
to achieve the highest degrees of autonomy, intelligent methods are necessary
indeed.

2.3 An Intelligent High Autonomy Control System Architecture
For Future Space Vehicles

To illustrate thé concepts and ideas involved and to provide a more concrete
framework to discuss the issues, a hierarchical functional architecture of an in-
telligent controller that is used to attain high degrees of autonomy in future
space vehicles is briefly outlined; full details can be found in [Antsaklis 1989},
This hierarchical architecture has three levels, the Execution Level, the Coor-
dination Level, and the Management and Organization Level. The architecture
exhibits certain characteristics, which have been shown in the literature to be
necessary and desirable in autonomous intelligent systems.

It is important at this point to comment on the choice for a hierarchical
architecture. Hierarchies offer very convenient ways to describe the operation of
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complex systems and deal with computational complexity issues, and they are
used extensively in the modeling of intelligent autonomous control systfems. §uch
a hierarchical approach is taken here (and in [Passino 1993]) to study intelligent
ous and hybrid control systems.
wt?dnrf!::tecture Oti:miew: The overall functional architecture for an auton(.)m_oua
controller is given by the architectural schematic of tl}e figure below. T}}IS isa
functional architecture rather than a hardware processing one; tht?refore, it does
not specify the arrangement and duties of the hardware used to implement the
functions described. Note that the processing architecture a.lso depenfis on the
characteristics of the current processing technology; centrallzec.i or dlstnt.mted
processing may be chosen for function implementation depending on available

computer technology.

Pilot and Crew/Ground Station/OnBoard Systems

Upper Management
Managcment and Control Executive Decision Making and
Organization Level Learning
t Middle Management

Control Manager Decision Muking, Leaming,

Coordination Level e and Algorithms
Control Imp. Supervisor Lower Management
Adaptive Control & | Algorithms in
Execution Level Identification Hardware and Software
Vehicle and Environment

Fig. 1. Intelligent Autonomous Controller Functional Architecture
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The architecture in Figure 1 has three levels; this is rather typical in the
Intelligent Control literature. At the lowest level, the Execution Level, there is
the interface to the vehicle and its environment via the sensors and actuators.
At the highest level, the Management and Organization Level, there is the in-
terface to the pilot and crew, ground station, or onboard systems. The middle
level, called the Coordination Level, provides the link between the Execution
Level and the Management Level. Note that we follow the somewhat standard
viewpoint that there are three major levels in the hierarchy. It must be stressed
that the system may have more or fewer than three levels. Some characteristics
of the system which dictate the number of levels are the extent to which the
operator can intervene in the system’s operations, the degree of autonomy or
level of intelligence in the various subsystems, the hierarchical characteristics of
the plant. Note however that the three levels shown here in Figure 1 are ap-
plicable to most architectures of autonomous controllers, by grouping together
sublevels of the architecture if necessary. As it is indicated in the figure, the low-
est, Execution Level involves conventional control algorithms, while the highest,
Management and Organization Level involves only higher level, intelligent, de-
cision making methods. The Coordination Level is the level which provides the
interface between the actions of the other two levels and it uses a combination
of conventional and intelligent decision making methods. The sensors and actu-
ators are implemented mainly with hardware. Software and perhaps hardware
are used to implement the Execution Level. Mainly software is used for both
the Coordination and Management Levels, There are multiple copies of the con-
trol functions at each level, more at the lower and fewer at the higher levels.
See [Antsaklis 1989] [Antsaklis 1993b] for an extended discussion of the issues
involved.

Hybrid control systems do appear in the intelligent autonomous control sys-
tem framework whenever one considers the Execution level together with con-
trol functions performed in the higher Coordination and Management levels,
Examples include expert systems supervising and tuning conventional controller
parameters, planning systems setting the set points of local control regulators,
sequential controllers deciding which from a number of conventional controllers
is to be used to control a system, to mention but a few. One obtains a hybrid
control system of interest whenever one considers controlling a continuous-state
plant (in the Execution level) by a control algorithm that manipulates sym-

bols, that is by a discrete-state controller (in Coordination and/or Management
levels).

2.4 Quantitative Models

For highly autonomous control systems, normally the plant is so complex that it
is either impossible or inappropriate to describe it with conventional mathemat-
ical system models such as differential or difference equations. Even though it
might be possible to accurately describe some system with highly complex non-
linear differential equations, it may be inappropriate if this description makes
subsequent analysis too difficult or too computationally complex to be useful.

g, 1993.
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The complexity of the plant model needed in desigtlx depends on both 'the com-
plexity of the physical system and on how demanding the desngg specifications
are. There is a tradeoff between model complexity and our ability to perform
analysis on the system via the model. However, if the control performance spec-
ifications are not too demanding, a more abstract, highe.r level, n‘lodel can be
utilized, which will make subsequent analysis simpler. This model intentionally
ignores some of the system characteristics, specifically those tha.t: neefl not be
considered in attempting to meet the particular performance speclﬁca.tlons.;. For
example, a simple temperature controller could ignore almost all dynamics of
the house or the office and consider only a temperature threshold model of the
stem to switch the furnace off or on. ' .
¥ The quantitative, systematic techniques for moc!eling, analysis, :?nd design
of control systems are of central and utmost practical importance in conven-
tional control theory. Similar techniques for intelligent a.utonomqus controllers
do not exist. This is mainly due to the hybrid structun'a (non‘umform, .nonho-
mogeneous nature} of the dynamical systems under con{slderatlo:}; they mf:lude
both continuous-state and discrete-state systems. Modeling techmflueé for intel-
ligent autonomous systems must be able to support a Macroscopic view of t?e
dynamical system, hence it is necessary to represen.t bot..h numeric and symbolic
information. The nonuniform components of the intelligent contro!ler all take
part in the generation of the low level control inputs to t.he dynamical syste:;],
therefore they all must be considered in & complete a.ma.lysls..Tl{erefore the stu. y
of modeling and control of hybrid control systems is essential in understanding
highly autonomous control systems {Antsaklis 1989].

3 Hybrid Control System Modeling

The hybrid control systems considered here consist of three cl.ist.inct lgvels; see
Figure 2. The controller is a discrete-state system, a seq.uentaal m.a.chme, Seeg
as a Discrete Event System (DES). The controlle_r receives, manipulates an
outputs events represented by symbols. The pla.nt‘ls a contlpupus:,tate syste:n
typically modeled by differential/difference equations and it is the sy§terln 0
be controlled by the discrete-state controller. The plant receives, ma.r.upu egtes
and outputs signals represented by real variables tlTat. are .typlcal}y {piecewise)
continuous. The controller and the plant communicate via the interface that
translates plant outputs into symbols for the controllfar to use, afld controller
output symbols into command signals for the plant input. The interface can
be seen as consisting of two subsystems: the generator that senses the plant
outputs and generates symbols representing plant gventg, and the a.ctuatm: that
translates the controller symbolic commands into piecewise constant plant input
signals. ' - -
To develop a useful mathematical framework we keep the interface as simp
as possible; this is further discussed below. The interface detem?mes the events
the controller sees and uses to decide the appropriate contr(?l action. If the plant
and the interface are taken together the resulting system is a DES, called the
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Fig. 2. Hybrid Control System

DES Plant, that the controller sees and attempts to control. Another way of
expressing this is that the DES controller only sees a more abstract model of the
plant; a higher level less detailed plant model than the differential / difference
equation model. The complexity of this more abstract DES plant model depends
on the interface. It is therefore very important to understand the issues involved
in the interface design so that the appropriate DES model is simple enough so to
lead to a low complexity controller. It should be noted that this lower complexity
is essential for real time adaptation of hybrid control systems. All these issues
pointed out here are discussed in detail later in this chapter.

It is important to identify the important concepts and develop an appropriate
mathematical framework to describe hybrid control systems. Here the logical
DES theory and the theory of automata are used. The aim is to take advantage
as much as possible of the recent developments in the analysis and control design
of DES. These include results on controllability, observability, stability of DES
and algorithms for control design among others. We first present a flexible and
tra'cta.b]e way of modeling hybrid control systems. Our goal is to develop a model
whlcl? can adequately represent a wide variety of hybrid control systems, while
remaining simple enough to permit analysis. We then present methods which
can be used to analyze and aid in the design of hybrid control systems. These
methods relate to the design of the interface which is a necessary component of
a hybrid system and its particular structure reflects both the dynamics of the
plant and the aims of the controller.

Below, the plant, interface and controller are described first. The assumptions
made and the generality of the models are discussed. In Section 4, the DES plant
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mode! is then derived and the concepts of determinism and quasideterminism
are introduced and certain results are shown. The description of the generator in
the interface is discussed. Controllability of the DES plant model is studied. The
selection of the interface is discussed at length and the fundamental issues are
identified. Connections to Ramadge-Wonham model are shown, the difficulties
involved are indicated, and some recent results are outlined. Simple examples
are used throughout to illustrate and explain. Note that most of these results
can be found in [Stiver 1992].

A hybrid control aystem, can be divided into three parts, the plant, interface,
and controller as shown in Figure 2. The models we use for each of these three
parts, as well as the way they interact are now described.

3.1 Plant

The system to be controlled, called the plant, is modeled as a time-invariant,
continuous-time system. This part of the hybrid control system contains the en-
tire continu-ous-time portion of the system, possibly including a continuous-time
controller. Mathematically, the plant is represented by the familiar equations

% = f(x,r) (1)
z = g(x) (2)

where x € ®", r € ®™, and z € R? are the state, input, and output vectors
respectively. f : B* x R™ — R and g : R — R? are functions. This is the
common plant model used in systems and control. In our theory, developed
below, it is only necessary to have a mathematical descripiion where the state
trajectories are uniquely determined by the initial state and the input signals.
For the purposes of this work we assume that z = x. Note that the plant input
and output are continuous-time vector valued signals. Bold face letters are used
to denote vectors and vector valued signals.

3.2 Controller

The controller is a discrete event system which is modeled as a deterministic au-
tomaton. This automaton can be specified by a quintuple, {8, 2,R,$, ¢}, where
§ is the (possibly infinite) set of states, Z is the set of plant symbols, R is the
set of controller symbols, 4 : § x Z = § is the state transition function, and
$:5 = R is the output function. The symbols in set R are called controller
symbols because they are generated by the controller. Likewise, the symbols in
set Z are called plant symbols and are generated by the occurrence of events in
the plant. The action of the controller can be described by the equations

§n) = 8(3[n — 1], Z[n]) (3)
7[n) = ¢(3ln]) (4)
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where &[n] € S,#[n] € Z, and 7[n] € R. The index n is analogous to a time
index in that it specifies the order of the symbols in a sequence. The input
and output signals associated with the controller are asynchronous sequences
of symbols, rather than continuous-time signals. Notice that there is no delay
in the controller. The state transition, from 3fr — 1] to 3[n), and the controller
symbol, #[n], occur immediately when the plant symbol Z[n] occurs.

Tildes are used to indicate that the particular set or signal is made up of
symbols. For example, Z is the set of plant symbols and z{n] is a sequence of
plant symbols. An argument in brackets, e.g. Z[n], represents the nth symbol in

the sequence Z. A subscript, e.g. %;, is used to denote a particular symbol from
a set.

3.3 Interface

The controller and plant cannot communicate directly in a hybrid control system
because each utilizes a different type of signal. Thus an interface is required which
can convert continuous-time signals to sequences of symbols and vice versa. The
interface consists of two memoryless maps, v and a. The first map, called the
actuating function or actuator, ¥ : & = R™, converts a sequence of controller
symbols to a piecewise constant plant input as follows

r(t) = ¥(fln}) (5)

The plant input, r, can only take on certain constant values, where each value ig
associated with a particular controller symbol. Thus the plant input is a piecewise
constant signal which may change only when a controller symbol occurs. The
second map, the plant symbol generating function or generator, a: " = Z, is
a function which maps the state space of the plant to the set of plant symbols
as follows

#[n] = a(x(t)) (6)

It would appear from Equation 6 that, as x changes, 7 may continuocusly
change. That is, there eould be a continuous generation of plant symbols by the
interface because each state is mapped to a symbol. This is not the case because
o is based upon a partition of the state space where each region of the partition
is associated with one plant symbol. These regions form the equivalence classes

of a. A plant symbol is generated only when the plant state, x, moves from one
of these regions to another.

3.4 Comments on the Generality of the Model

The model described above may appear at first to be too limited but this is not
the case. The simplicity of this model is its strength and it does not reduce its
flexibility when modeling a hybrid control system. It is tempting to add com-
plexity to the interface, however this typically leads to additional mathematical
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difficulties that are not necessary. Consider first the function v which maps con-
troller symbols to plant inputs. Our model features only constant plant inputs,
no ramps, sinusoids, or feedback strategies. The reasons for this are two fold.
First, in order for the interface to generate a nonconstant signal or feedback
signal it must contain components which can be more appropriately included
in the continuous time plant, as is done in the model above. Second, making
the interface more complex will complicate the analysis of the overall system.
Keeping the function «y as a simple mapping from each controller symbol to a
unique numeric value is the solution.

_The interface could also be made more complex by generalizing the definition
of a plant symbol. A plant symbol is defined solely by the current plant state, but
this could be expanded by defining a plant symbol as being generated following
the occurrence of a specific series of conditions in the plant. For example, the
interface could be made capable of generating a symbol which is dependent upon
the current and previous values of the state. However, doing this entails including
dynamics in the interface which actually belong in the controller. The controiler,
as a dynamic system, is capable of using its state as a memory to keep track of
previous plant symbols.

The key feature of this hybrid control system model is its simple and un-
ambiguous nature, especially with respect to the interface. To enable analysis,
hybrid control systems must be described in a consistent and complete manner.
Varying the nature of the interface from system to system in an ad hoc manner,
or leaving its mathematical description vague causes difficulties.

3.5 Examples

Example 1 - Thermostat/Furnace System This example will show how
an actual physical system can be modeled and how the parts of the physical
system correspond to the parts found in the model. The particular hybrid control
system in this example consists of a typical thermostat and furnace. Assuming
the thermostat is set at 70 degrees Fahrenheit, the system behaves as follows.
If the room temperature falls below 70 degrees the furnace starts and remains
on until the room temperature exceeds 75 degrees. At 75 degrees the furnace
shuts off. For simplicity, we will assume that when the furnace is on it produces
a constant amount of heat per unit time.

The plant in the thermostat/furnace hybrid control system is made up of the
furnace and room. It can be modeled with the following differential equation

x = .0042(T — x) + 2step(r) (N

where the plant state, x, is the temperature of the room in degrees Fahrenheit,
the input, r, is the voltage on the furnace control circuit, and Tp is the outside
temperature. The units for time are minutes. This model of the furnace is a
simplification, but it is adequate for this example.

The remainder of the hybrid control system is found in the thermostat which
is pictured in Figure 3. As the temperature of the room varies, the two strips of
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metal which form the bimetal band expand and contract at different rates thus
causing the band to bend. As the band bends, it brings the steel closer to one
side of the glass bulb. Inside the bulb, 2 magnet moves toward the nearest part
of the steel and opens or closes the control circuit in the process. The bimetal
band effectively partitions the state space of the plant, x, as follows

Hif x<70
ax)=< HifT0<x<T75, (8)
Bif x>75

where the three symbols correspond to 1) steel is moved against the left side of
:.)htibbulb, 2) band is relaxed, and 3} steel is moved against the right side of the
ulb.

Inside the glass bulb is a magnetic switch which is the DES controller. It has
two states because the switch has two positions, on and off. The DES controller
input, Z, is a magnetic signal becanse the symbols generated by the generator
are conveyed magnetically. The state transition graph of this simple controller

is shown in Figure 4. The output function of the controller is essentially the
following

¢(5,) = ¥ & close control circuit 9)
#(32) = 72 < open control circuit (10)
steel
magnet
glass bulb
switch
control
circuit .
bimetal band
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Fig. 4. Controller for Thermostat/Furnace System

z3

The contacts on the switch which open and close the control circuit can be
thought of as the actuator, although there is no logical place to separate the
actuator from the DES controller. The commands from the controller to the
actuator are basically a formality here because the controller and actuator are
mechanically one piece. With this in mind, the actuator operates as

i)} =0 (11)
~y(F) = 24 (12)

Example 2 - Surge Tank This is another example to illustrate how a simple
hybrid control system can be modeled. The system consists of a surge tank
which is draining through a fixed outlet valve, while the inlet valve is being
controlled by a discrete event system. The controller allows the tank to drain to
a minimum level and then opens the inlet valve to refill it. When the tank has
reached a maximum level, the inlet valve is closed. The surge tank is modeled
by a differential equation,

x=r-x'1 (13)

where x is the liquid level and r is the inlet flow. The interface partitions the
state space into three regions as follows

Hif x>mazx
a(x) =< #Hifmin <x <mazx , (14)
Z if X < min

Thus when the level exceeds maz, plant symbol Z is generated, and when
the level falls below min, plant symbol Z; is generated. The interface provides
for two inputs corresponding to the two controller symbols 7| and 73 as follows
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. liff =+
") = {o if7 =7 (15)
Since r = +(f), this means the inlet valve will be open following controller
symbol 7, and closed following controller symbol 7.
The controller for the surge tank is a two state automaton which moves
to state §; whenever Z3 is received, moves to state 3, whenever 3; is received
and returns to the current state if Z; is received. Furthermore ¢(5,) = #, and

#(32) = fa.

4 System Theoretic Issues

4.1 The DES Plant Model

If the plant and interface of a hybrid control system are viewed as a single com-
ponent, this component behaves like a discrete event system. It is advantageous
to view a hybrid control system this way because it allows it to be modeled as
two interacting discrete event systems which are more easily analyzed than the
system in its original form. The discrete event system which models the plant and
interface is called the DES Plant Model and is modeled as an automaton simi-
lar to the controller. The automaton is specified by a quintuple, {P,Z,R,%,\},
where P is the set of states, Z and R are the sets of plant symbols and controller
symbols, ¥ : P x  — P is the state transition function, and A : P — Z is the
output function. The behavior of the DES plant is as follows

pln + 1) = ¢(B[n], 7[n]} (16)
Z[n} = A(p[n]) (17)

where j[n] € P,#[n] € R, and Z[n] € Z. There are two differences between the
DES plant model and the controller. First, as can be seen from Equation 16, the
state transitions in the DES plant do not occur immediately when a controller
symbol occurs. This is in contrast to the controller where state transitions occur
immediately with the occurrence of a plant symbol. The second difference is that
the automaton which models the DES plant may be non-deterministic, meaning
B[n + 1] in Equation 16 is not determined exactly but rather is limited to some
subset of P. The reason for these differences is that the DES plant model is a
simplification of a continuous-time plant and an interface. This simplification
results in a loss of information about the internal dynamics, leading to non-
deterministic behavior.

The set of states, P, of the DES plant is based on the partition realized in
the interface. Specifically, each state in P corresponds to a region, in the state
space of the continuous-time plant, which is equivalent under . Thus there is
a one-to-one correspondence between the set of states, P, and the set of plant
symbols, Z, It is this relationship between the states of the DES plant model and
the plant symbols which forms the basis for the work described in this section. It
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can be used to develop an expression for the state transition function, 1. Starting
with the continuous-time plant, we integrate Equation 1 to get the state after a
time t, under constant input r = ()

x(t) = Fi(xo,t) (18)

Here xg is the initial state, ¢ is the elapsed time, and 7, € R. Fy(xy,t) is obtained
by integrating f(x,r), with r = (7). Next we define

Fk(xCi) = Fk("oJ): (19)
where
7o = inf{r]a(F(xo, 7)) # a(xo)} (20)
and
t=19+4+c¢ (21)

for some infinitesimally small €. .
Equation 19 gives the state, x, where it will cross into a new region. Now the
dynamics of the DES plant model can be derived from Equations 5, 6, 19.

#n + 1] = A@(p{n], ln]) (22}
E[n + 1] = a(Fx(x0)) (23)
B(p(n}, Fln]) = A~ (a(F(x0))) (24)

where 7[n] = 7, and xo € {x}a(x} = A(p[n])}. As can be seen, the f)nly uncer-
tainty in Equation 24 is the value of xo. X i8 the state of the continuous-time
plant at the time of the last plant symbol, #[n], i.e. the time that the DES plant
entered state p[n]. xo is only known to within an equivalence class of a. The
condition for a deterministic DES plant is that the state transition function, ¥,
must be uneffected to this uncertainty.

Definition 1. A DES is deterministic iff for any state and any input, there is
only one possible subsequent state.

"The following theorem gives the conditions upon the hybrid control system
such that the DES plant will be deterministic.

Theorem 2. The DES plant will be deterministic iff given any p[n] € Ii and
#x € R, there exists pln + 1] € P such that for every Xo € {x|a{x) = M#n))}
we have a(Fi(x0)) = A(pln +1]).

Proof: Notice that the set {x|a(x) = M#[n])} represents the set of all states, x,
in the continuous-time plant which could give rise to the state p[r] in the DES
plant. The theorem guarantees that the subsequent DES plant state, Pin+1l,is
unique for a given input and thus the DES plant is deterministic.

To prove that the theorem is necessary, assume that it does not hold. There
must then exist a pfn] € P and #, € R such that no [n + 1] exists to satisfy
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Fhe condition: a(Fi(x0)) = A(Bn + 1)) for every xp € {x|a(x) = A(f[n])}. This
is not a deterministic system because there is uncertainty in the state transition
for at least one state and input. o

Theorem 2 states that the DES plant will be deterministic if all the state
trajectories in the continuous-time plant, which start in the same region and are
driven by the same input, move t¢ the same subsequent region.

4.2 Double Integrator

To illustrate the DES plant model, an example of a hybrid control system con-
taining a double integrator is given. Double integrators often arise in systems.
For example, a satellite equipped with a thruster will behave as a double inte-
grator when the thrust is considered the input and the velocity and position are

the two states.
. _|o1 0
x= ool x+]{|* (25)

The general control goal in this system, which motivates the design of the inter-
face, is to move the state of the double integrator between the four quadrants
of the state-space. In the interface, the function a partitions the state space into
four regions as follows,

Hif 2,22>0
L if g <0,22>0

ox) = Zif z,19<0 (26)
Z if 2, >0,z <0
and the function v provides three set points,
-10 if F=7
’Y(‘F) = 0 if F= fg N (27)
10 if F=13

So whenever the state of the double integrator enters quadrant 1, for example,
the plant symbol Z; is generated. When the controller {which is unspecified)
gelnt;ara.tes controller symbol #;, the double integrator is driven with an input of

Now we know that the DES plant will have four states because there are four
regions in the state space of the actual plant. By examining the various state
trajectories given by Equation 28, we can find the DES plant which is shown in
Figure 5. Equation 28 is obtained by integrating Equation 25 and adding x(0).

=[]+ #]o

As can be seen in Figure 5, the DES plant is not deterministic. If we consider
pln] = P2 and 7{n) = 7, there exists no uniquely defined j[n + 1}, it could be
either 5, or §3. This could present a problem in designing a controller for this
system because it is not entirely predictable. In the following section a possible
remedy for lack of determinism is presented and this example is revisited.

Fig. 5. DES Plant Model for Double Integrator

4.3 Partitioning and Quasideterminism

A particular problem in the design of a hybrid control system is the selectign of
the function a, which partitions the state-space of the plant into various regions.
Since this partition is used to generate the plant symbols, it must be cho§eu to
provide sufficient information to the controller to allow control without being so
fine that it leads to an unmanageably complex system or simply degenerates the
system into an essentially conventional control system. .

The partition must accomplish two goals. First it must give the cc_mt.roller
sufficient information to determine whether or not the current state is in an
acceptable region. For example, in an aircraft these regions may cor.respond to
climbing, diving, turning right, etc. Second, the partition must provide enough
additional information about the state, to enable the controller to drive the plant
to an acceptable region. In an aircraft, for instance, the input required to cause
the plane to climb may vary depending on the current state of tht_a plane. So to
summarize, the partition must be detailed enough to answer: 1) is the current
state acceptable; and 2) which input can be applied to drive the state to an
acceptable region.

In a hybrid control system, the controller needs information ahout the plaqt
for two reasons. First the controller must be able to assess whether the plant is
operating as desired or if some new control action is needed. Second, if control
action is called for, the controller needs to know which control action will achieve
the desired effect. Both of these tasks require information about the plant. Con-
sider for example a climate control system in a building. To assess the cul:re:nt.
condition, the controller needs to know whether the temperature and humidity
fall within a certain range of acceptable values. If not the controller needs ad-
ditional, more detailed, information about which condition is unacceptable and
how much and in which direction it must be changed to reach the desired range.
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To design a partition, we can start by designing a primary partition to meet
the ﬁrs.t goal r'nentioned above. This primary partition will identify all the desired
operating regions of the plant state space, so its design will be dictated by the
cont.rc.)l goal.':,. The final partition will represent a refinement of the primar
partltl?n which enables the controller to regulate the plant to any of the desire:;
ope;atmg regiot::}s; thus meeting the second goal.

no .vious oice for the final partition is one which mak
d'et.ermlmstic and therefore guarantees that the controller will lt::\f: :ufl)glsfo]::;ﬁf
tlo‘n a.bm.lt the behavior of the plant. In addition to being very hard to meet
this requirement is overly strict because the controller only needs to regulate the:
plant to the regions in the primary partition, not the final partition. For this
reason we define quasideterminism, a weaker form of determinism. In. the DES
plant, the states which are in the same region of the primary partition can be
grouped together, and if the DES plant is deterministic with respect to these
groups, then we say it is quasideterministic. So if the DES plant is quasideter-
ministic, then we may not be able to predict the next state exactly, but we will

be e to e Of t Trim al'tlth whethel Or not it
n alld thus

Definition 3. The DES plant will be i inistic iff o ~ 5

el )t plant quasideterministic iff given any #[n] € P

;nd i € R, there enst.:_; Q C P such that for every xp € {x}a(x) = ,\JE;[’L}])} we

_g%a”(F" (x0)) = Ap(pln + 1]} where p[n + 1] € @ and Ap(g) is the same for all
g .

(]

"The functions a,, and A, are analo
th p gous to o and A but apply to the primar
partltlop. They are useful for comparing states but they are never implemente?ir
and their a?tua.l values are .irreleva.nt. For example, if arp(x1) = ap(x2), then x;
ta;l;l X3 a.re'mt::le same region of the primary partition. Or, if ap(x)) = Ap(fy),
0 Xy 13 1t the same region of the primary partition as 5, i
When used with a, we define F' as i the DES plant

Fr(x0) = Fi(xo,1), (29)
where
0= iEf{TIap(F(inr)) # a,(xo}} (30)
and
t=7+e¢
as before. ' o

We would like to find the coarsest partition which meets the conditions of

Definition 1 for a given primar iti iti
' Yy partition. Such a partition i
equivalence classes of e are ag follows, P " i formed when the

E{a] = inf{ E]a,}, Ela, o F})|7, € R} (32)
Where we use E[s] to denote the equivalence classes of ». The infimum, in

this case, means the coarsest iti ich i
« partition which is at least
partitions in the set. 2 fine as any of the
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Theorem 4. The regions described by Equation (32) form the coarsest partition
which generates a quasideterministic DES plant.

Proof: First we will prove that the partition does, in fact, lead to a quasideter-
ministic system. For any two states, x; and x,, which are in the same equivalence
class of a, we apply some control r = 7(Fx). The two states will subsequently
enter new regions of the primary partition at Fj(x;} and Fi.(x2) respectively.
The actual vegions entered are a,(Fi(x:}) and ap(Fi(x2)). Now according to
Equation 32, if x) and x; are in the same equivalence class of a, then they are
also in the same equivalence class of o, o Fi.. Therefore ap(Fi(x1)) = ap(Fi(x2))
and the system is quasideterministic.

Next we will prove that the partition is as coarse as possible. Assume there
is a coarser partition which also generates a quasideterministic system. That is,
there exists two states, X3 and x4, in the same region of the primary partition
such that a(xs) # a{x,), but ap(Fi{xs)) = ap(Fi(x4)) for any possible k. These
two states would lie in the same equivalence class of ap o F for all 7 € R and
therefore in the same equivalence class of inf{E[a,], Elay © Fx|#» € R}. This
violates the assumption that x3 and x4 do not lie in the same equivalence class
of &, so two such states could not exist and therefore a coarser partition can not
exist. a

Quasideterminism accomplishes its goal by causing the trajectories of the
various states within a given region of the final partition, under the same control,
to be invariant with respect to the regions of the primary partition.

We can return now to the double integrator discussed previously and use it to
illustrate quasideterminism. The state space of the.double integrator had been
partitioned into the four quadrants and this gave rise to the nondeterministic
DES plant shown in Figure 5. Using those four regions as the primary parti-
tion, a final partition can be obtained according to Theorem 4. This partition
is shown in Figure 6 and the resulting DES plant is shown in Figure 7. The
final partition refined the regions in quadrants II and IV, and the DES plant is
now quasideterministic (in fact it is deterministic but unfortunately that is not
generally the result).

Note that the partition described in Equation 32 and discussed in Theorem 4
is not dependent upon any specific sequence of controller symbols. It is intended
to yield a DES plant which is as “controllable” as possible, given the continuous-
time plant and available inputs. If the specific control goals are known, it may

be possible to derive a coarser partition which is still adequate. This can be done
in an ad hoc fashion, for instance, by combining regions which are equivalent
under the inputs which are anticipated when the plant is in those regions.

Selection of Control Action In hybrid control systems, the choice of the plant
inputs which make up the range of the actuator, v, play an important role in
defining the system. At this time we have no way of gystematically deriving a set
of control actions which will achieve the desired control goals, either optimally
or otherwise. We can assume that the control actions available are determined
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Fig. 8. State Space Partition for Double Integrator

by the plant (positions of the various val i
. ves, switches, ete.) and
a constraint on the controller design. ’ et Hhus represent

4.4 Connections to Existing DES Control Theory

A significant amount of work has been done on the analysis and design of discrete
e?'ent systems, especially the design of controllers for discrete event systems
Since the controller of a hybrid control system is a DES and we can use a'.
DES to rfepresent the plant in a hybrid control system, we can apply many of
the theories and techniques, which were developed for DES’s, to hybrid control
systems. In this section, we draw on some of this work. ’

Stability: Several papers have been written dealing with the stability of dis-
crete event systems, e.g. [Passino 1992a} and [Ozveren 1991]. In [Passino 1992a)
the 1d‘eas of Lyapunov stability are applied to discrete event systems. These same
techniques can be applied to the DES plant in a hybrid system. The states of
the DES plant which are considered “desirable” are identified and a metric is
defined on the remaining “undesirable” states. With a metric defined on the
state space, finding a Lyapunov function will prove that the DES is stable. In
the case of a hybrid control system, this interpretation of definition Lyapu;'uov
stability means the following. The state of the plant will remain within the set of
states “-'hlch were deemed “desirable™ and if it is perturbed from this area, the
state will return to it. A detailed application of these resulis to hybrid cor'ltrol
systems can be found in [Stiver 1991b).
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Fig. 7. DES Plant Model for Double Integrator

In {Ozveren 1991} the stability of a DES is defined as the property that
the state of the DES will visit a certain subset infinitely often. This subset is
analogous to the “desirable” set mention above. In a hybrid conirol system, this
would imply that the state of the plant could leave the subset of states but would

eventually return.

Controllability: Work has been done on the controllability of discrete event
systems using the Ramadge-Wonham framework [Ramadge 1987] [Ramadge 1989}
[Wonham 1987]. The DES models used in the Ramadge-Wonham framework dif-
fer from the models developed for hybrid control systems as described in this
chapter, therefore the theorems and techniques cannot be applied directly, but
must be adapted to work with a slightly different model.

The model developed by Ramadge and Wonham (henceforth RWM) features
a generator and a supervisor, both DES’s, which are analogous to the DES plant
model and DES controller, respectively. There are, however, several differences
which must be addressed first.

In the generator, the state transitions are divided into two sets, those which
are controllable and those which are uncontrollable. The controllable state tran-
sitions, or symbols, can be individually enabled by a command from the super-
visor, while the uncontrollable state transitions are always enabled. Also, the
effect of the supervisor commands is not changed by the state of the generator.
This is in contrast to our DES plant model where commands from the DES
controller can enable one or more state transitions depending on the current
state. The general inability to enable symbols individually and the dependence
of DES controller commands upon the state of the DES plant model, are what
differentiate the DES models used our work on hybrid control systems from the

RWM.
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The reason for the differences between the RWM and the model used for
hybrid control systems is chiefly due to the fact that the RWM is suited to mod-
eling actual discrete event systems, while the DES plant model is an abstraction
of a continuous-time system. This means that a particular state of the DES plant
corresponds to more than one state in the continucus-time plant,

Controllability in a DES can be characterized by the set of symbol sequences
which can be made to occur in the DES plant, [Ramadge 1989]. This set is
referred to as the language of the particular DES. When under control, the DES
will exhibit behavior which lies in a subset of its language. A theorem has been
developed to determine whether a given RWM DES can be controlled to a desired
language and if not, what is the greatest portion of the desired language which
can be achieved via control. With appropriate modifications this theorem can be
applied to the DES plant to determine whether a given control goal is possible.

If a desired behavior (i.e. language) is not attainable for a given controlled
DES, it may be possible to find a more restricted behavior which is. If so, the least
restricted behavior is desirable. [Wonham 1987) provides a method for finding
this behavior which is referred to as the supremal sublanguage of the desired
language.

When a controllable language has been found for a DES plant, designing a
controller is straight-forward. The controller will be another DES which produces
the desired controllable language. The output from the controller enables only
the symbols which are in the controller. The exact form of the above results
together with their proofs are not presented here due to space limitations; they
are available from the authors.

5 Concluding Remarks

This chapter has introduced a model for hybrid systems which has focused on the
role of the interface between the continuous-state plant and discrete-event super-
visor. An especially simple form of the interface was introduced in which symbolic
events and nonsymbolic state/control vectors are related to each other via mem-
oryless transformations. It was seen that this particular choice dichotomizes the
symbolic and nonsymbolic parts of the hybrid system into two cleanly separated
dynamical systems which clearly expose the relationship between plant and su-
pervisor. With the use of the proposed interface, quasi-determinism can be used
to extend controllability concepts to hybrid systems. The clear separation of
symbolic and nonsymbolic domains allows the formulation of hybrid controller
methodologies which are directly based on equivalent DES control methods. Fi-
nally, the acknowledgement of the different roles played by symbolic and nonsym-
bolic processing in hybrid systems allows the proper formulation of the hybrid
system’s identification problem found in the companion chapter in this volume
titled “Event Identification and Intelligent Hybrid Control” [Lemmon 1993c].
The work outlined in the preceding sections is indicative of the breadth of
work currently being pursued in the area of hybrid systems as a means of mod-
eling and designing supervisory and intelligent control systems. In spite of the
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great strides being made in this area, there are significant issu&s' which remain
to be addressed in future work. These issues include a more rigorous exami-
nation of the traditional control concepts of controllability, ObSEFVﬂbl]lty, anfl
stability with regard to hybrid systems. To some extent, thg nfmons of quasi-
determinism and the event identification problems are preliminary eﬁ'ort§ to
codify these extensions. Future work, however, remains before these extensions

are fully understood.
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