
Feedback

ooo5-1098(95)00103-4
Auromocica, Vol. 32, No. 1, pp. 15-28, 19%

Copyright 0 1995 Ekvier Science Ltd

Printed in Great Britain. All tights reserved

cooslo%/% 515.00 + 0.00

Control of Petri Nets Based on Place

Invariants”

KATERINA YAMALIDOU,? JOHN MOODY,? MICHAEL LEMMONt and
PANOS ANTSAKLISt

A computationally efficient method for constructing Petri net controllers is
presented. The method is derived using place invariants and is able to
enforce logical and algebraic constraints containing elements of the marking

and firing vectors.

Key Words-Discrete event systems; Petri nets; invariants; supervisory control.

Abstmt-This paper describes a method for constructing a
Petri net controller for a discrete event system modeled by a
Petri net. The controller consists only of places and arcs, and
is computed based on the concept of Petri net place
invariants. The size of the controller is proportional to the
number of constraints that must be satisfied. This method is
computationally efficient, and can accommodate constraints
written as Boolean logic formulas in the conjunctive normal
form or algebraic inequalities that contain elements of the
marking and/or the firing vectors.

1. INTRODUCTION

Petri nets (Peterson, 1981; Reisig, 1985; Murata,
1989) are an appropriate tool for the study of
discrete-event dynamical systems because of
their modeling power and flexibility. In this
paper a method for computing a feedback
controller for a discrete-event system modeled
by a Petri net is proposed. In particular, it is
shown how a Petri net can be computed to
restrict the behavior of a plant using a simple
equation involving the plant’s Petri net model
and the constraints that are to be enforced. The
computation involves little more than a single
matrix multiplication. The computational
efficiency of the method lends itself as a practical
approach to controller synthesis for large and
complex discrete-event systems.

Many researchers have used Petri nets as a
tool for modeling, analysing and synthesizing

*Received 9 May 1994, revised 17 November 1994;
received in final form 5 May 1995. This paper was not
presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate
Editor Peter Fleming under the direction of Editor Yaman
Arkun. Corresponding author Dr John Moody. Tel. +l
219 631 54X)/5792; Fax +l 219 631 5480; E-mail
antsakli@saturn.ee.nd.edu.

t Department of Electrical Engineering, University of
Notre Dame, Notre Dame, IN 46556, U.S.A.

15
AUTO 31-i-8

control laws for discrete-event systems (DES).
Murata et al. (1986) defined C nets as an
extended form of safe Petri nets, and used them
to construct station controllers for sequencing
control with quick response time in real-time
control. Boissel (1993) used simulated annealing
to compute a Petri net controller for a
discrete-event system modeled by a Petri net.
Zhou and DiCesare (1989) proposed an adaptive
design of Petri net controllers for automated
manufacturing systems. They defined the con-
troller as the control logic based on the Petri net
model of the process, and used the model to
generate a supervisory controller by successive
augmentation. Holloway and Krogh (1990) used
controlled Petri nets to control systems that can
be modeled as cyclic controlled marked graphs,
which are a special class of Petri nets. Boucher
and Jafari (1992) have presented a method of
transforming controller designs using the ‘struc-
tured analysis and design technique’ and the
‘integrated computer manufacturing definition
0’ into Petri nets in order to take advantage of
their graphical and computational efficiencies.
Giua and DiCesare (1994) have done work on
language control and realization with Petri nets,
extending some of the control synthesis ideas for
automata developed by Ramadge (1989) and
Wonham (1987). An informative study of Petri
net control issues can be found in Holloway and
Krogh (1994).

The control method presented in this paper
uses place invariants, a structural Petri net
property, to compute a feedback controller.
Valette et al. (1985) and Valette (1986) have
explored the use of Petri nets as analytical and
computational models for the representation of

16 K. Yamalidou et al.

discrete event system controllers, and have used
Petri net place invariants as an analysis tool. In
this paper invariants are not used to analyze, but
rather to actually synthesize controls that
enforce linear constraints on the marking
behavior of the Petri net that is to be controlled.
The constraints handled by the proposed method
are the same type of constraints discussed by Li
and Wonham (1993, 1994) in their recent work
on Petri net control, where they concentrate on
controllability issues and discuss other problems
such as formal language realization and dynamic
state feedback. The method they present for
controller synthesis involves solving a set of
linear integer programming problems. The
emphasis of this paper is on the efficient
computation of Petri net controllers given an
appropriate set of constraints rather than the
actual controllability of the plant or feasibility of
the constraints.

In order to compute a Petri net controller
using place invariants, it is necessary that the
constraints be linear inequalities composed of
elements of the Petri net marking vector.
Fortunately, it is possible to transform many
other constraints on a plant’s behavior into such
inequalities. Yamalidou and Kantor (1991) have
shown how constraints written as Boolean
expressions can be transformed into sets of
linear inequalities involving the firing and
marking vectors. It is shown here how
constraints that involve the firing vector can be
transformed, using two different methods, into
constraints that involve only making vector
elements. Thus the control method can be
applied to systems whose constraints can be
expressed as inequalities, inequalities or logic
expressions, and may involve elements of the
marking and/or the firing vector.

The controller derived using the approach in
this paper is maximally permissive in that it
forces the set of constraints to be obyed, while
allowing any action that is not directly or
indirectly forbidden by the constraints. If the
constraints on a net’s performance are written in
terms of the firing vector then there are
situations in which the maximal permissiveness
of the controller can only be guaranteed if the
net is safe. The control method is general and
also computationally very efficient, since it
involves little more than a matrix multiplication.
For this reason, feedback controllers can be
derived for very large Petri net models, opening
the way to the design of feedback control
systems for large and complex industrial
applications.

The paper is structured as follows. The control
design method is presented in Section 2, along

with a brief discussion of Petri net place
invariants and some examples. Different kinds of
constraints and constraint transformations are
discussed in Section 3. An example is presented
in Section 4 that includes constraint transforma-
tion as well as controller computation. Conclud-
ing remarks are given in Section 5.

2. DESCRIPTION OF THE METHOD

The system to be controlled is modeled by a
Petri net with II places and vii transitions, and is
known as the plant or process net. The incidence
matrix of the process net is D,. It is assumed that
all the enabled transitions can fire. It is possible
that the process net will violate certain
constraints placed on its behavior-hence there
is a need for control. The controller net is a Petri
net with incidence matrix D, made up of the
process net’s transitions and a separate set of
places. The controlled system or controlled net is
the Petri net with incidence matrix D made up of
both the original process net and the added
controller. The control goal is to force the
process to obey constraints of the form

r-l

where p, is the marking of place p,, and the I,
and p are integer constants. For example, we
might wish to enforce the constraint p, + p2 5 1,
which means that at most one of the two places
p, and p2 can be marked, or, in other words.
both places cannot be marked at the same time.
This inequality constraint can be transformed
into an equality by introducing a nonnegative
slack variable pC into it. The constraint then
becomes F, + pZ + pu, = 1, or, in general,

The slack variable in this case represents a new
place pC, which holds the extra tokens required
to meet the equality. It ensures that the weighted
sum of tokens in the process net’s places is
always less than or equal to p. The place that
maintains the inequality constraint is part of a
separate net called the controller net. The
structure of the controller net will be computed
by observing that the introduction of the slack
variable introduces a place invariant for the
overall controlled system defined by (2). A brief
review of Petri net place invariants is given in
Section 2.1, before the actual controller com-
putation is presented in Section 2.2. The
maximal permissiveness of the control method is

Control of Petri nets using invariants 17

examined in Section 2.3, and the ‘cat-and-mouse’
problem of DES literature is used as an example
of controller construction in Section 2.4.

2.1. Place invariants
One of the structural properties of Petri nets,

i.e. properties that depend only on the
topological structure of the Petri net and not on
the net’s initial marking, are the net invariants.
Here we are interested in place invariants; Petri
nets may also contain transition invariants
(Reisig, 1985; Murata, 1989). Invariants are
important means for analyzing Petri nets, since
they allow the net’s structure to be investigated
independently of any dynamic process (Lauten-
bath, 1987).

Place invariants are sets of places whose token
count remains constant for all possible markings.
A single invariant is represented by an n-column
vector x, where n is the number of places of the
Petri net, whose nonzero entries correspond to
the places that belong to the particular invariant
and zeros everywhere else. A place invariant is
defined as every integer vector x that satisfies

T
x p=x

T
PO,

where p. is the net’s initial marking, and p
represents any subsequent marking. Equation
(3) means that the weighted sum of the tokens in
the places of the invariant remains constant at all
markings, and this sum is determined by the
initial marking of the Petri net. The place
invariants of a net can be computed by finding
the integer solutions to

xTD = 0, (4)

where D is the n X m incidence matrix of the
Petri net, with n being the number of places and
m the number of transitions of the net. It is
easily shown that every linear combination of
place invariants is also a place invariant for the
net. Below, it is described how place invariants
can be used to simply compute a controller for a
plant modeled by a Petri net.

2.2. Controller computation
Each constraint of the type (1) enforced on

the net will have a slack variable associated with
it, and each slack variable will be represented in
the controller net as a place. Thus the size
(number of places) of the controller net is
proportional to the number of constraints that
are to be enforced. Every place used to control
the process nets adds one row to the incidence
matrix D of the controlled system. Thus D is
composed of two matrices, the original n x m
matrix D, of the process model and the
incidence matrix of the controller, called 0,. The

arcs connecting the controller place to the
original Petri net of the system will be computed
by the place-invariant equation (4), where the
unknowns are the elements of the new row of
the matrix D and the vector x is the desired
place invariant defined by (2), i.e. xT =
[Z1 12 . . . 1, 11.

The control problem can be stated in general
as follows. All constraints of the type (1) can be
grouped and written in matrix form as

b+, 5 b, (5)

where Z+, is the marking vector of the Petri net
modeling the process, L is an n, X n integer
matrix, b is an n, X 1 integer vector and n, is the
number of constraints of the type (1). Note that
the inequality is with respect to the individual
elements of the two vectors Lpp and b, and can
be thought of as the logical conjunction of the
individual ‘less than or equal to’ constraints. All
place-invariant equations of the type (2),
generated after the introduction of the slack
variables, can be grouped in matrix form as
follows:

L/%++c=b, (6)

where p, is an n, X 1 integer vector that
represents the marking of the controller places.

Each place invariant defined by (6) must
satisfy (4):

XTD = [L I][2] = 0,
c

LD,+ D,=O,

where X is a matrix representing the n, different
invariants and Z is an n, X n, identity matrix,
since the coefficients of the slack variables in the
constraints are all equal to 1. The matrix D,
contains the arcs that connect the controller
places to the transitions of the process net. So,
given the Petri net model of the process (D,) and
the constraints that the process must satisfy (L
and b), the Petri net controller D, is defined by

D, = -LD,. (7)

Since our method admits the structure of the
process net as well as a set of specifications, it
can control transitions that participate in
self-loops in the process net. This is because the
constraints on these transitions are part of the
specifications. Note that when an element of D,
is zero, there are no arcs at all connecting the
given place and transition, i.e. there are no

18 K. Yamalidou et al.

cancelling self-loops in the controller structure.
Self-loops may occur if the graph transformation
techniques discussed in Section 3.5 are used.

The initial marking of the controller Petri net
CL,{, is calculated so that the place-invariant
equation (6) is initially satisfied. Given (3), (6)
can be written for the initial marking vector

Therefore
LF.,,,, + F=,, = b.

(8)

Example. Consider the simple Petri net of Fig.
1, which is acyclic and nonsafe. Its incidence
matrix is

D,=

-1 0 0 1 0

1 l-l 0 I

0 -1 1 -1 0

0 0 0 0 -I

while its initial marking is

I
D, is rank 3; thus it has one place invariant that
includes the entire net, i.e. x“D, = 0. where
rT = [l 1 1 11. The objective is to control the
net so that places p2 and p3 never contain more
than one token; i.e. we wish to enforce the
constraint

p> + fJ3 5 1. (9)

Using the matrix notation of (S), we have

L=[O 1 1 01,

h = I.

The process net will not satisfy the desired
constraint without an external controller. A slack
variable CL, is introduced, and the inequality (9)
becomes an equality:

/+f/-++&= 1. (w
The slack variable p= denotes the marking of the
place pc that belongs to the controller. Equation
(10) represents the desired invariant XT =

Fig. I. Process Petri net for the example of Section 2.2. Fig. 2. The Petri net of Fig. 1 with controller.

[O 1 1 0 11, which will be forced on the
controller system. The incidence matrix of the
controller net is computed using (7);

DC= -LD,=[-1 0 0 1 -11.

The initial marking of the controller place is
computed from (8):

I&,, = - L/J.,,= 1.

The Petri net graph of the controlled system is
shown in Fig. 2. The controller arcs are shown
with dashed lines, and the control place is drawn
thicker than the process places.

2.3. Maximal permissiveness
The control method can be shown to be

maximally permissive by examining the place
invariants of the controlled system. Let X, be an
integer matrix of linearly independent columns
representing a basis for the place invariants of
the (uncontrolled) process net. Then X, satisfies
the equation

X;D, = 0,

where the columns of X, are linearly indepen-
dent, and the number of columns of X, (and
thus the number of invariants) is equal to
n - rank D,, since D, is an n X m matrix and X,
forms a basis for the null space of II,. Note that
if rank D, = n then the uncontrolled plant has no
place invariants.

A controller is constructed using (7). The
incidence matrix of the controlled net is then

Note that, since the rows of D, are linear
combinations of the rows of II,,, rank D =
rank D,. Thus the number of invariants of the
controlled system is equal to n + n, - rank Dr.
All of these invariants are accounted for by the
uncontrolled plant invariants, and the forced

P3

Control of Petri nets using invariants 19

constraint invariants as shown below. First note
that

[x; O][21 = xp, = 0.
c

Thus the invariants of the uncontrolled plant are
also invariants of the controlled plant. This is
true for any Petri net control scheme that only
adds places and arcs in order to control the
plant. From the construction of the control law,
we also know that

[L 4[Dgp] = LD,+D,= LD,- L&=0,
C

and thus all n + II, - rank Dp invariants of the
controlled net are given by XTD = 0, where

xc= XP L
[1 0 I’

The rank (and number of columns) of X, is
n + n, - rank D,, since X, is rank IZ - rank D,
and Z is an IZ, X n, identity matrix.

There are no new or unexpected invariants
forced on the system as a result of the control
law. The control law is maximally permissive,
since no action is prohibited that is not a result
of the plant structure itself or the constraints
forced on the plant.

2.4. Example: the cat-and-mouse problem
The ‘cat-and-mouse’ problem, introduced by

Wonham and Ramadge (1987), is a popular
example in the field of discrete event system
control. The problem involves a maze of five
rooms where a cat and a mouse can circulate.

T Mouse

The rooms are connected with doors through
which the animals can pass, as shown in Fig. 3.

The problem is to control the doors so that the
cat and the mouse can never be in the same
room at the same time. The controller should be
maximally permissive in the sense that it should
grant maximum freedom of movement to both
the cat and the mouse. The simple Petri net
model of the cat-and-mouse problem is taken
from Boissel (1993) and is shown in Fig. 4. The
upper net concerns the cat, while the lower net
concerns the mouse. Each net has five places,
which model the five rooms of the maze. The
transitions model the ability of each animal to
pass from one room to the other according to
Fig. 3.

The incidence matrix of the Petri net model
for thi s system is

--1 0 l-l 0 10

l-l 0 0 0 0 -1

0 l-l 0 0 0 0

0 0 0 l-l 0 1

0 0 0 0 l-l 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

-1 0 0 0 0

0 0 0 0 0

0 -1 0 1 -1

0 0 1 -1 0

0 l-l 0 0

0 0 0 0 0

0 0 0 0 1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

-1

0

7

There is one token only in each of the subnets,
since there is one cat and one mouse. The
presence of a token in a place indicates that the
animal modeled by the token is in the room
modeled by the particular place. Initially the cat
is in room 3 and the mouse is in room 5, so the
initial marking is

Z-&= [p1 CL2 *. . /d

= [O 0 1 0 0 0 0 0 0 l]?

D, is rank 8; this it has two place invariants. The
first consists of all five places of the upper Fig. 3. The cat-and-mouse maze.

20 K. Yamalidou et al.

Room4, p9

v
L

Rooml, p6

me

Y4

Fig. 4. The Petri net model of the cat-and-mouse problem.

subnet, and the second consists of all five places
of the lower subnet.

Assume that all the doors of the maze are
controllable. The control goal is to ensure that
the cat and the mouse are never in the same
room simultaneously. This means that each pair
of places, one from the upper net and one from
the lower net, that model the same room must
never contain more than one token. This
requirement is translated into the following five
constraints:

cL,+ll.t,~l! ru*+EL,41. /-%+/-+~I,

cL‘i+llg(l, /Gf/-Qo~l.
(11)

The constraints are forced into equalities by
introducing slack variables

/11+ /-Ql + t&, = 1, CL2 + P7 + i+ = 1,

P.3 + Px + PC, = 1, &I + P1Lg + ELq = 1, (12)

Fs+P10+Pc5=1.

The five slack variables correspond to five new
places, which belong to the controller, i.e.

CLC = [EL,, ILCZ CLCj I+ k,lT.
Using the matrix notation of (6), we have

The portion of the matrix D associated with the
controller is given by (7).

DC=-LD,

!

1 0

-1 1

= 0 -1

0 0

0 0

0

0

0

1 1

0 0

1 0

0 -1

0 0

0 -1

-1 1

1 0

0 0

0 0

o-1 0 0

0 0 1-l

0 0 0 0

1 O-l 1

-1 0 0 0

1 0 -1

0 0 0

0 0 0

o-1 1

-1 1 0 1

. (13)

The initial marking of the slack places is given by

(8).
/.k,, = 1 - Lp,,, = [l 1 0 1 O]T.

The incidence matrix and initial marking of the
controlled system are

The new net prevents the cat and mouse from
evern entering the same room, but allows all
other legal moves. The controlled cat-and-mouse
system is shown in Fig. 5. Once again, dashed
lines and thick-lined places are used to represent
the elements of the controller Petri net.

The ‘cat-and-mouse’ problem presented in
Wonham and Ramadge (1987) specifies that
transitions c7 and c8 are uncontrollable. This was
not considered in the example above, because
the focus of this paper is not on controllability
but on efficient controller computation given an
appropriate set of constraints. It is posssible to
specify constraints in the form (5) to realize the
solution of this problem even with the
uncontrollable transitions; however, the con-
straints themselves are not as straightforward as
those used above. This issue is briefiy discussed
below.

Suppose we wish to write an appropriate set
of constraints such that the cat and the mouse
never meet and so that each animal is able to
find its way back to its original room. This goal
must be met while accounting for all valid initial
conditions and the uncontrollability of transi-
tions c7 and c8. First note that, because of the
uncontrollability, the cat cannot be prevented
from moving back and forth between rooms 2
and 4. So at most one animal should be allowed
in rooms 2 and 4 at any time. Now suppose that
initially the mouse is in room 4 and the cat is still
at its normal starting position in room 3. If the
cat is allowed to move to room 1, both animals

Control of Petri nets using invariants 21

Slack 1

MOUSQ

Fig. 5. The cat-and-mouse Petri net and its Petri net controller.

will be stuck, because the cat cannot be allowed
to go into room 2 since it could then catch the
mouse in room 4, and the only exit door from
room 4 for the mouse is into the cat’s current
position in room 1. Thus, if we are to be certain
that the animals can return to their starting
rooms, we must make sure that no more than
one animal inhabits rooms 1, 2 and 4 at any
given time. In order to complete that set of
constraints for this example, we include the
remaining two constraints in (11) concerning
rooms 3 and 5 respectively, to obtain

At this point, the controller can be computed
using the method shown above (Yamalidou et
al., 1994).

3. CONSTRAINT TRANSFORMATIONS

Since the method presented here is based on
the concept of place invariants, the constraints
must be expressed as a weighted sum of ps so
that the controller can be constructed as
discussed in Section 2. However, not all

constraints are initially written in this form, so all
other types of constraints must be first
transformed to the form that the method can
handle. This section examines diffeent types of
constraints, and describes approriate transfor-
mations for each of them, based on the concept
of replacing an element of the firing vector q
with the sum of the input places of the
corresponding transition. Three general cate-
gories are distinguished: logical constraints
written as Boolean logic formulas in the
conjunctive normal form, inequality constraints
and equality constraints. Several cases are
considered within each category. In addition, a
graphical transformation method is briefly
described.

3.1. Logical constraints
If a constraint can be written as a well-formed

Boolean formula in the conjuctive normal form

A+@I~(P2~. . .A$, (15)

where A is a propositional variable and each of
the <pi is an elementary disjunction of the form

@i=Yi,vYi2v.. .VYih, (16)

and each of the Yi, is a propositional variable,

22 K. Yamalidou er al.

then it has been proved (Yamalidou and Kantor,
1991) that it can be translated to an equivalent
set of g simultaneous linear inequalities

(1 -‘I’,,) + (1 - W,,) +. . . + (1 - Y ,,,,) + A

sh, fori=1,2 ,..., g. (17)

The set of all inequalities (17) will now represent
the constraint that the system must satisfy. The
system of inequalities should be refined after
this transformation in order to eliminate those
inequalities that appear more than once. The
inequalities produced from the transformation of
(15) can then be handled as described in the
approriate sections below.

3.2. ‘Less than or equal to’ constraints
3.2.1. Constraints containing marking vector

elements only. Assume that the constraints that
must be satisfied by the system can be written as
a sum of elements of the marking vector:

This means that the sum of tokens in

Pl,P2,~.., pr of the Petri net should

(18)

places
never

exceed the integer k. This type of constraint is
already in the desired form, since it is an
inequality similar to that shown in (1). By
introducing a slack variable Pi, it can be forced
to become an equality:

c p, + p, = k.
,=I

(19)

The method then applies as described in Section
2. Constraints that contain a weighted sum of pus.

are treated in the same way. The integer
coefficients f, will be contained in L.

Note that the constant k in (18) and (20) does
not play any role in the structure (i.e. the
number of places or arcs) of the controller. It
defines the constant token count of the invariant
described by (19), and should be taken into
account when the Petri net is initially marked.

3.2.2. Constraints containing both marking and
firing vector elements. Such constraints link the
occurrence of events to part or all of the current
state vector, and they denote the actions allowed
by the system’s state. Since the method
described in this paper applies to expressions
containing elements of the marking vector only,
constraints that contain elements of both the
marking and the firing vectors must be
transformed to an appropriate equivalent form.
Below, we show how this is done, and we
distinguish various cases. Note that these

transformations produce a maximally permissive
controller for safe Petri nets only, i.e. for nets
whose places can receive at the most one token.

Consider constraints that contain only one
element of the firing vector and have the form

c P, + 4, 5 r, (21)
i=l

where the number of ps involved in the
constraint is equal to the constant of the right
side r. This constraint means that tj cannot fire if
all the places p,, p2, . . . , pr are marked. Using
the enabling condition of Petri net theory, which
states that a transition can fire if and only if all
its input places are marked, we may replace qj in
(21) with the sum of its input places and modify
the right part of the inequality accordingly. The
transformed constraint becomes

where c, is the number of input places of tj. The
constraint in its new form will not allow more
than r + c, - 1 of the places in the left-hand side
of (22) to be marked. So, if all the places
pI,pz,..‘, p, are marked then not all the input
places of transition tj may be marked, and
consequently tj cannot fire. On the other hand, if
all the input places of t, are marked then at the
most r - 1 of the places p,,p2,. . . ,pr can be
marked. The constraint in its new form (22)
contains only elements of the marking vector.
Note that some of the input places of qj may be
involved in the sum of marking elements in (21).
This is taken into account in (22) since they are
counted twice in the right side, in both r and cj.

If the constraint has the form

C P; + qj 5 k, (23)
,=I

where k <r, then two cases must be distin-
guished. If the transition tj has only one input
place, p,, then qj in the above expression can be
replaced by the marking pj of that input place,
and the constraint becomes

The transformed constraint (24) is equivalent to
(23) but contains only marking vector elements.

If the transition tj has more than one input
place then the constraint (23) must first be
replaced by an equivalent set of constraints that
list all the cases not allowed by (23) each of

Control of Petri nets using invariants 23

which is in a form that can be transformed to
(18). This set will have the form

Par,t 1 2 pi 5 k,
i=l

Part 2

%l+P2+... +pk-1 +P/c +qjsk,

pr-ktl + pr-k+2 +. . * + Pr-I + /Jr + qj s k.

(25)

The inequality in the first line of (25) is already
in the form of (18). The second line contains as
many inequalities as are the combinations of r
elements taken by k. Each of these inequalities
involves k marking elements from the original T
of (23) and qj, and is in the form of (21), SO it
can be further transformed as shown above.

Lastly, the constraint may have the more
general form

(26)
i=l j=l

where k < r + g. This type of constraint must be
first replaced by an equivalent set of constraints,
i.e. a set of inequalities that describe all the
forbidden situations contained in (26), each of
which will be in one of the forms described in
this section and will contain at the most one
marking element qj, j = 1, . . . , g. Each can then
be transformed appropriately, as shown else-
where in this subsection.

3.2.3. Constraints involving firing vector ele-
ments only. The constraints refer to the
simultaneous occurrence of two or more events.
All the possible cases are considered. The
transformations are valid for safe nets only.

Assume that the constraint is of the type

iqjSr-l, (27)
j=l

which indicates that not all transitions

41,927. * * 9 4r can fire simultaneously. The
enabling condition of Petri net theory suggests
that the constraint can be transformed into an
equivalent constraint by replacing each transition
with the sum of its input places in the left-hand
side of the inequality (27) and by modifying the
right-hand side appropriately. The constraint
then becomes

i P-j, + Pj2 +. . . + /AC, s i Cj - 1, (28)
j=l j=l

where pj,, pj2, . . . , CL,, are the input places of the
transition tj, while Cj denotes their number. The
transformed constraint does not allow all of the
input places of all transitions to be marked
simultaneously, so it ensures that not all
transitions can fire together and it contains only
elements of the marking vector.

Any other type of constraint containing only
elements of the firing vector has the form

2 qj 5 k,
j=l

(29)

where k 5 r - 2. This must be first replaced by
an equivalent set of inequalities of the type (27)
each of which will contain k + 1 firing vector
elements:

41+ 92 + *. * +qk+qr~k

92 + 93 +. . . +qk+l +9k+z<k, (30)

92 + 93 +. . . +qk+l +qrsk,

qr-k+qr-k+,+...+qr-,+q,<k.

Each inequality in the above set is in the form
(27) and can be transformed as shown earlier.

3.3. ‘Greater than or equal to’ constraints
3.3.1. Constraints containing marking vector

elements only. In some cases it is necessary to say
that a set of places contains at least k tokens.
This is expressed by the constraint

(31)

This means that at least k of the r places must be
marked. This constraint can become an equality
if we add an excess variable pe to its left-hand
side:

i: pi - CL, = k. (32)
i=l

As in the case of the slack variable, the excess
variable CL, introduces a place that belongs to the
controller and forces an invariant formed by

places CLI, CL~, . . . , pL, and pe in the controlled
Petri net. As shown by (32) it is the weighted
sum of the tokens in the places of the invariant
that remains constant. Since the constraint has
been brought into the form of an invariant, it
can be treated similarly to (19), the only
difference being that the coefficients of the slack

24 K. Yamalidou et al.

variables are now - 1. The structure of the
controller net is computed as

[L -1][9,] = 0,
c

LD, - D, = 0;

therefore

D, = LD,, (33)

while the initial vector of the controller places is

3.3.2. Constraints containing both marking and
firing vector elements. The transformations
described in this section are valid for safe Petri
nets only.

The first case considered is the constraint
containing one element of p and one element of

4:

p, + 9,z 1. (35)

This expression means that whenever p, is not
marked, t, should fire, and whenever t, does not
fire, CL, should be marked. In order to transform
this constraint to an expression containing
elements of the marking vector only, we must
first express the constraint as a well-formed
Boolean formula. It can be replaced by the
following logical expression, since they are
logically equivalent:

l/J; + 4,. (36)

This simply means that whenever EL, is not true
(i.e. pi is not marked), qj must be true (i.e. t,
must fire), and whenever qj is not true (t, does
not fire), p, must be true (i.e. p, must be
marked). According to Petri net theory, a
transition can fire if and only if all its input
places are marked. This allows us to replace q,
in (36) with the conjunction of all its input
places. It then becomes

-V+~./,A~,~~.“A/-&,r (37)

where Cj is the number of input places of t,. This
contains only elements of the marking vector. It
is a well-formed formula of the type (1.5) and,
as shown in Section 3.1, it is equivalent to and
can be replaced by the following set of
inequalities:

(l- Pj,) + Cl- PI)~~IISII,,+ P, ?l,

(1 - l-4 + (1 - /A> 22 13 11,2 + P! 2 1, (38)

(l-cL,;)+(1--,)11~/1~;+~,~1.

The term T/.L(has been replaced by 1 - CL,,

because the net is safe. This substitution holds,
because lp, and 1 - pi have the same value:

for IL, = 1 up, = 0 and 1 - p, = 0,

for p,=O lp,-l and l-p,=l.
(39)

All the inequalities in (38) have the form (31).
and can be dealt with accordingly.

The general form of the constraints in this
category is

(40)

Following the reasoning for the case of (35), the
above constraint must first be written as a logical
expression with the same meaning. Then each of
the parts of the logical expression must be
manipulated as shown above. Care should be
taken to simplify the set of well-formed Boolean
formulas in order to avoid redundancy.

3.3.3. Constraints containing jiring vector ele-
ments only. The last case in this section is the
case when the constraint contains elements of
the firing vector only. The general form is

2 q,rk.
,- I

(41)

This implies that at every firing instant at least k
of the g transitions t,, t2, , tg must fire. These
constraints must be first replaced by logical
expressions having the same meaning, as in
Section 3.3.2, before any further transformation
is possible. In this case also, the transformations
are valid for safe nets only.

As an example, consider the simpler case

41 +q221. (42)

This means that at any given firing instant one of
the two transitions t, and t2 must fire. Logically,
this can be expressed as

~91+4?. (43)

Each of the qs in (43) can be substituted by the
conjunction of the markings of its input places.
The above then becomes

where pl,, E-L~~, , pu,, and p2,, p22, . . . , I-+, are
the sets of input places of the transitions t, and tz
respectively. The expression in (44) can be
written as

t7/1c, -+ i-b A l-b, A. . A ,L&,).

Control of Petri nets using invariants 25

Each of the above has the form (15), and each
can be substituted by a set of inequalities, as
shown in Section 3.1.

3.4. Equality constraints
The last general case that remains to be

considered is the case where the constraints are
written as plain equalities. Different sub-
categories are discussed.

3.4.1. Equality constraints containing marking
vector elements only. These constrints are written
as

2 Pi = k. (46)

This equation means that places p,, p2, . . . ,pr
must always form a place invariant. This is really
a specification for the system, and should have
been incorporated into the Petri net model. If
this invariant is not already part of the Petri net
model, it should become part of it at this point.
This is done by modifying the incidence matrix
D, of the Petri net so that (4) holds, where X
contains the place invariant defined by (46). The
new elements of D, represent the arcs that
should be added to the Petri net so that the
place invariant becomes part of it.

3.4.2. Equality constraints containing both
marking and firing vector elements. Assume that
the constraint is of the type

(47)

This constraint means that at all times all of

PI, CL27 f.. I pk should be marked and all of

91, q2,. . . , qg should fire. It is rare that such a
requirement is imposed on a system, but it may
occur. The constraint can be transformed by
substituting each of qj with the sum of its input
places and by modifying the right part
accordingly. The transformation is valid for safe
Petri nets only. The transformed constraint is

g CLi + 2 i /Jj, = k + 2 c/j (48)
j=ls=l j=l

where cj is the number of input places of
transition tj. The constraint now has the form

(46).
3.4.3. Equality constraints containing firing

vector elements only. Some equality constraints
may contain only elements of the firing vector. A
simple example is

qi + qj = 1. (49)

This means that one of the two transitions
should fire at every instant. In other words, if qi

will not fire next then qj must fire, and vice versa.
This can be written as a logical formula

(4i+ 14j)A(1qi+qj)* (50)

The same concept can be expressed by means of
the input places of the two transitions:

(~[~LLilAEl.izA...A~=~~CLj,AILj2h...hCL,,).

These formulas should be separated, and each
should be brought into the form of (15) and
then replaced by inequalities. All constraints of
this type should be analyzed as shown above.
This transformation is valid for safe Petri nets
only.

3.5. Graph transformations of the Petri net
Another way of transforming constraints that

contain elements of the firing vector based on a
transformation performed on the Petri net graph
itself is now described. Assume that a system
modeled by a Petri net must satisfy the
constraint

/.L, + qj 5 1. (52)

This means that transition tj cannot fire if place
pi is marked, and vice versa. In order to bring
this constraint into a form that contains elements
of the marking vector only, a graph transforma-
tion is performed on the process Petri net. The
transition tj is replaced by two transitions tj and
ti and a place p/ beteeen them, as shown in
Fig. 6.

The incidence matrix D, of the process Petri
net is increased by one column and one row,
since the overall number of transitions and
places of the Petri net has each been increased
by one. This transformation is artificial, and does
not add to or subtract anything from the Petri
net model of the process. Its sole purpose is to
introduce the place pi that records the firing of
the transition tj.

The marking pi of the place p,! replaces qj in
the constraint (52), which becomes

/.Li + /_L; 5 1. (53)

The constraint now contains only ps, and the
controller can be computed as described in
Section 2. Since the method produces a
controller consisting of places and arcs only, no
part of the controller is connected directly to the
place p,’ of the transformation. After the

Fig. 6. Graph transformation of a transition.

26 K. Yamalidou et ~11.

controller structure has been computed by the
method, the two transitions and the place of the
transformation collapse to the original transition.
The same transformation is performed on each
and every transition that appears in the
constraints. Constraints that contain only ele-
ments of the marking vector are treated in the
same way.

Note that the graphical transformations do not
unfold those constraints that contain elements
of the firing vector, as the algebraic transforma-
tions described in Section 3 do. So the original
number of constraints is conserved. However,
this way of transforming constraints produces a
controller that is connected directly to the
corresponding transitions and does not allow
these transitions to fire even if they are enabled.
when their firing violates the constraint. This
requires that the transitions be controllable. If
they are not then the computation of the
controller based on the graph transformation is
not valid, and the constraints must be trans-
formed using the algebraic methods described
previously.

Parts Station

Fig. 7. The automated guided vehicle Petri net

4. EXAMPLE

The example used to illustrate the controller
computations introduced in this paper concerns
a flexible manufacturing cell, used by Holloway
and Krogh (1990) and Li and Wonham (1994). It
consists of three workstations: two part-receiving
stations and one completed-parts station. There
are five automated guided vehicles (AGVs) that
can transport material between the stations. The
Petri net model of this system, taken from
Holloway and Krogh (1990) is shown in Fig. 7.
The vehicles and the parts are modeled by
tokens, and the marking of the Petri net
corresponds to the actual state of the system.
The shaded areas represent the zones in which
the vehicles’ trajectories cross on the floor of the
plant. A forbidden situation arises when two
vehicles are present in a zone at the same time.
In order to demonstrate the constraint transfor-
mation techniques described in Section 3, we
introduce an additional specification for this
system that is not in Holloway and Krogh (1990).

The constraints that concern the presence of
the vehicles in the dangerous zones are
expressed by the inequalities

where Z, is the set of indices of places that make
up zone j. These constraints contain only
marking vector elements, so slack variables are
introduced and the inequalities become
equalities:

c pu,+&,=l. c ~,+/.+=I,
it %, ,E.?Z (55)

c /J,+/&;=1. c /-&+/&=I.
i+y; IF/l

The four slack variables define four places for
the controller. Each place controls the access of
a zone.

The additional specification concerning the
input parts stations can be written as

q1+425 1, (56)

where f, and t2 are the transitions indicating that
a part has been removed by an AGV from input
parts stations 1 and 2 respectively. The
constraint of (56) contains firing vector elements
only has the form of the expression in (27), and
must be transformed as described in Section
3.2.3. Both q, and q2 are replaced by the sum of
their input places, indicated as F,, F~, pJ and p_,
in Fig. 7:

Control of Petri nets using invariants 27

LzI$g3
Fig. 8. The controlled AGV Petri net.

The above will not allow all four places pl, p2, p3
and p4 to be marked at the same time. An
additional slack variable makes the transformed
constraint an equality, and introduces a fifth
controller place:

~.1+cL2+113+cL~+I*c5=3. (58)

The incidence matrix of the process is
increased by five rows which correspond to the
five controller places and constitute the in-
cidence matrix D, of the controller net. After
computing 0, and pc, from equations (7) and
(8), the appropriate arcs are added to connect
the controller places to the appropriate transi-
tions of the Petri net of the process. The
controlled Petri net is shown in Fig. 8.

5. CONCLUSIONS

This paper has presented a particularly simple
method for constructing feedback controllers for
untimed Petri nets given a set of constraints. The
method is based on the idea that specifications
representing desired plant behaviors can be
enforced by making them invariants of the

controlled net. In this paper a technique has
been derived which uses place invariants
representative of logical design specifications.
The resulting controller consists only of places
and arcs, and its size is proportional to the
number of constraints. The method can accom-
modate a variety of constraints containing
marking and/or firing vector elements. The use
of place invariants makes the approach transpar-
ent and facilitates the extension of these results
to more general control problems. Note that this
method produces controllers identical to the
monitors of Giua et al. (1992), which were
independently derived without use of the notion
of place invariants.

The method uses two different ways of
transforming constraints that contain firing
vector elements to the desired form. The first,
based on algebraic manipulations of the
constraints, can be applied to both controllable
and uncontrollable transitions. In certain cases,
discussed above in detail, it unfolds one
constraint, replacing it by a set of constraints
that have the appropriate form, thus increasing
the controller size; in certain other cases this
transformation technique is applicable to safe
Petri nets only. The second approach is based on
a graphical transformation, and it conserves the
initial number of constraints. It is able to
compute double-pointed arcs, and is valid for
nonsafe nets as well. Its drawback is that it
cannot be applied to uncontrollable transitions.

The significance of this particular approach to
Petri net controller design is that a feedback
controller can be computed very efficiently by a
single matrix multiplication. The resulting
controlled system will generally not be optimal
in terms of minimizing the number of its places
in the controller net. However, owing to the ease
of computation, it can represent a good initial
point in subsequent controller optimization.
Consequently, the proposed approach appears to
offer significant promise in designing Petri net
feedback controllers for industrial systems.

Another advantage of the method is that it can
be used to design Petri net controllers in a
modular way. Assuming that the specifications
on the controlled system’s behavior can be
decomposed into a collection of place invariants,
it may be possible to realize the specifications by
switching the system’s marking vector between
the various place invariants. The methodology
presented in this paper represents a numerically
efficient manner of finding controllers which
enforce place invariants. This technique is
therefore useful in the modular design of Petri
net controllers.

There are three important characteristics of

28 K. Yamalidou et nf.

this approach. First, this method is able to
construct a feedback controller without any state
enumeration. This is very important, since it is
now possible to design feedback controllers for
very large systems. Second, the method designs a
feedback controller modeled by a Petri net that

is attached to the Petri net model of the process
and closes the loop. The closed-loop system
satisfies the control specifications. This is in

contrast to other methods, which compute a
control logic instead, which regulates the
transition firings. Third, the method can compute
controllers for general simple, untimed Petri net
models, and is not restricted to cyclic or

bounded Petri nets only. This is true, although

some of the constraint transformations product
maximally permissive controllers only for safe
Petri nets, as is indicated in Section 3.

There are several areas in which the control
method based on the place invariants is oepn for

further research. First the method should hc
expanded to deal with timed Petri nets. since
these networks have added modeling power.
Another important future research goal is a
systematic method for transforming a set of
constraints into an equivalent set when transi-
tions in the process net are uncontrollable or

unobservable.

Acknowledgmlenr~--rhis research was supported 1n part b!
NSF-92-16559 and IRI-91.092YX.

REFERENCES

Boissel. 0. (1993). Optimal fccdhach control design I’oI-
discrete-event process systems using simulated annealing.
MS thesis. University of Notre Dame.

Boucher, T. 0. and M. A. Jafari (1992). Design ol a factory
floor sequence controller from a high level system
specification. J. Manuf: Sysr., 11, 401-417.

Giua, A. and F. DiCesare (1994). Blocking and cofl-
trollability of Petri nets in supervisory control. IEEI:
Trans. Autom. Control. AC-39, 818-823.

Giua. A.. F. DiCesare and M. Silva (I9Y2). Generalized
mutual exclusion constraints on nets with uncontrollable
transitions. In froc. I902 IEEE.’ Infernrrtionrd (‘orrfewnw
on Systems, Mun. und C~hernerrcr. Chicago. II ,. pp.
974-979.

Holloway. L_ E. and 8. H. Krogh (1990). Synthesis of
feedback logic for a class of controlled Petri nets. IEEE
Trurcrrl.7. Autom. Control, AC-35 5, 514-523.

Holloway. L. E. and B. H. Krogh (1994). Controlled Petri
ncta: a tutorial survey. In G. Cohen and J.-P. Quadrat
(Eds). Proc. I Iih International Conf: on Analysis and
C‘onrrol. Discrete Event Systems. pp. 158-168. Lecture
Notes m Computer Science. Vol. 199. Springer-Verlag,
Berlin.

I.autcnbach. 0. (1987). Linear algebraic techniques for
place/transition nets. In Advunces in Petri Nefs. Part
I--Petri Nets: C‘entrul Mod& and Their Properties, pp.
142~~167. Lecture Notes in Computer Science. Vol. 254.
Springer-Verlag. Berlin.

LI. Y. and W. M. Wonham (1993). Control of vector
discrctc-event systems I-the base model. IEEE Trans.
Aurom. Control. AC-38, 1214-I 227 (Corrigendum (1994)
AC-39, 1771).

1.1. Y. and W. M. Wonham (1994). Control of vector
discrete-cvcnt systems II--controller synthesis. IEEE
li-crns Aufom. C’ontrol, AC-39, 5 12-530.

Murata. T. (IYXY). Petri nets: properties. analysis. and
,lpplications. Proc. IEEE, 77, 541-580.

Murata. ‘I‘.. N. Komoda. K. Matsumoto and K. Haruna
(IYXh). A Petri net-based controller for flexible and
maintainable sequence control and its applications in
factory automation. IEEEE Trams. Ind. Electron.. IE-33,
I -s.

Peter\un. J. L. (I YHI). Pciri Ner 7hrorv und fhe Modrhng of
.Sr.~tc,/?~.c. Prentice-Hall, Englewood dliffs. NJ.

Kamadpc. P. J. G. and W. M. Wonham (19X9). The control
of discrete event systems. Proc. IEEE, ?7, Si-97.

Reisig. W. (IYXS). Petri Nets. Springer-Verlag, Berlin.
Sifakis. J. (1977). USC of Petri nets for performance

evaluation. In H. Beilner and E. Gelenbe (Eds).
~Wwsurmg. Modelling, and Evaluating Computer Systems.
North-Holland. Amsterdam.

L’alcltc. R. (IYXh). Nets in production systems. In AduanccJ,\
l/r Petrr Net.5 Purt II-Petri Nets: Applications and
Krlrrrorr.\ 10 O/her Mode1.s of (‘oncurrency. pp. I91 -217.
L.ecture Notes in Computer Science. Vol. 255, Springcr-
\‘crlag. Berlin.

\‘alL,ttc‘. R.. M. (‘ourvoisicr, H. Dcmmou, J. M. Bigou and C.
l)e\clau\ (lYX5). Putting Petri nets to work for controlling
Ilcxihle manufacturing systems. In Proc. /SCAS ‘85.
Kyoto. pp. 929-932.

Wonham. W. M. and P. J. Ramadgc (1987). On the supremal
controllable sublanguage of a given language. SIAM J.
~‘rmm~l Oprim.. 25, 637-659.

Ynmalidou. E. and J. <‘. Kantor (lY91). Modelling and
optimal control of discrete-event chemical processing using
Petri nets. Comput. Chem. Engng, 15, 503-519.

Yamalidou. E.. J. 0. Moody. M. D. Lemmon and P. J.
Antsaklis (I 904). Feedback control of Petri nets based on
place invariants. Technical Report ISIS-94-002.2, ISIS
(lroup. University of Notre Dame.

Thou. M. <‘. and F. DiCcsare (1989). Adaptive design of
Petri net controllers for error recovery in automated
manufacturing systems. IEEE Trans. Sysr. Man.
(~~wrrwtic~.~, 19, 96%Y73.

