
The Dependence Identification Neural Network Construction Algorithm
John 0. Moody and Panos J. Antsaklis
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

Abstract
An algorithm for constructing and training multilayer neural networks, dependence identification, is

presented in this paper. Its distinctive features are that (i) it transforms the training problem into a set of
quadratic optimization problems that are solved by a number of linear equations and (ii) it constructs an
appropriate network to meet the training specifications. The architecture and network weights produced
by the algorithm can also be used as initial conditions for further on-line training by backpropagation
or a similar iterative gradient descent training algorithm if necessary. In addition to constructing an
appropriate network based on training data, the dependence identification algorithm significantly speeds
up learning in feedforward multilayer neural networks compared to standard backpropagation.

1 Introduction
The main tool for training multilayer neural networks is gradient descent, as used by the backpropagation
(BP) algorithm developed by Rumelhart [7]. Gradient descent algorithms are susceptible to local minima,
sensitive to initial conditions, and slow to converge. Gradient descent can work quite well with the appropri-
ate set of of initial conditions and with a proper network architecture, but using random initial conditions
and guessing at the network architecture usually leads to a slow and ponderous training process. The de-
signer must specify the number of network layers and the number of neurons in the “hidden layers” when
using basic backpropagation. A method of quickly specifying a network architecture and set of intitial weight
values for possible further training through gradient descent would be extremely valuable.

The dependence identification algorithm (see also [4] and [5]) is proposed in section 2 of this paper.
Section 3 gives examples of neural network construction, and concluding remarks appear in section 4.

2 Dependence Identification
This section details a method called dependence identification (DI) for constructing multi-layer neural net-
works. The method is based on the ability to easily solve single layer neural network training problems. Many
methods exist [3] for training single layer neural networks including steepest descent, least mean squares,
and the “perceptron training algorithm” (for single layer classification problems). In [SI, Sartori and Antsak-
lis proposed quadratic optimization which transforms the nonlinear training cost function of a single layer
network into a quadratic one. This method reduces the problem to solving a set of linear equations and is
the method used in the examples of section 3.

The network is to be constructed and trained to approximate a function with m inputs and n outputs.
The training set consists of p input/output patterns. The training patterns are stored in the following
matrices:

U E wxm D E Etpxn

where U is the matrix of input patterns and D is matrix of desired output patterns. The network is
constructed one layer at a time, using the rules for single layer network construction. The desired hidden
layer outputs are equal to portions of the actual desired outputs. The hidden layer activations (outputs) for
a layer are used as the input matrix U for the next layer.

2.1 The Algorithm
To construct the network, first attempt to create a single layer neural network using an appropriate single
layer training algorithm. Compute the error of the single layer network. If the error is acceptable (less than a
given tolerance) then training is complete and the solution is a single layer network, otherwise create a layer
of hidden neurons each of which gets a subset of the complete set of training patterns matched correctly, i.e.,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

every p a t t e m should be classified correctly by at least one hidden layer neuron. To do this choose an m x m
portion of U (it is assumed that there are more training patterns than there are inputs, i.e., p > m.), and
the corresponding m x n portion of D . Use these patterns to solve a single layer neural network training
problem as above. It is guaranteed that a unique zero error solution to this problem exists if the m x m
portion of U is full rank; see [9]. &peat this procedure until every pattern is matched by at least one hidden
layer neuron. Patterns in U and D which are correctly matched by a single hidden layer neuron are linearly
dependent after being operated on by the nonlinear neural activation function. This is the reason for the
name dependence identification. The hidden layer outputs are then treated as inputs to form a new layer.
Layers may be added to the network until a maximum number of layers has been added or the network error
is within the desired tolerance.

Dependence identification is presented formally in Algorithm 2.1. The inputs to the algorithm include
the training patterns U and D as well as the neural activation function qi {qi : R + R}, the maximum
number of layers hm,, and two tolerances E N and cp. The acceptable error for the entire network is given
by EN. The other tolerance, eP, is used to determine whether the output of the network for an individual
pattern is within bounds. Larger values for eP give fewer hidden layer neurons as discussed in section 2.2.
The algorithm uses the notation @(A) to mean that every element of the matrix A should be operated on
by the nonlinear activation function qi.

Algorithm 2.1 (Dependence Identification).
input U € R p x m , DERPX", qi:R+R, E N , ~ p , hma,.

Set h = l
repeat

Solve minw, trace ((@(UWh) - D) T (@ (U W h) - D)), W h E IRYx".
Compute error:
e = trace ((@(UWh) - D)T(@(UWh) - 0))
if (e > E N) and (h < h m ,) then

Set G = empty matrix, 1 = 0

repeat
Set Uunmarked = U , Dunmarked = D

Choose U C Uunmarked, d C Dunmarked where U E Rmxm d E
Rmxn

if less than m patterns are unmarked then augment U
and d with previously marked patterns.

Solve :
min, trace ((@(ug) - d)T(@(ug) - d)) , g E RmX".
Add the solution g as new column(s) of G.
l t l + n
Hark all patterns which Satisfy Uunmarkedg = Vunmarked

within the tolerance cp.
until all patterns have been marked.
Find the hidden layer outputs:
H = @(UG) E Rpx'.
Add a zero column to G with a single nonzero element
corresponding to the constant input.

w h G
U t H
m c l
h + h + l

until (e s c N) or (h = h , ,)
output W i for i = l , ..., h and the error e

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

2.2 Hidden Layer Neurons
The dependence identification algorithm constructs a network which solves the single layer problem within
the desired accuracy, if such a solution actually exists. The number of layers created can be bounded with
the parameter h,,,. The number of hidden layer neurons depends on the number of layers and the desired
accuracy. Several authors have shown (with different degrees of ease and generality) that p neurons in the
hidden layer suffice to store p arbitrary patterns’ in a two layer network; see [l], [6] , and [9] for constructive
proofs.

The bound on the number of hidden layer neurons created by dependence identification is proportional to
the bound of p described above. Assume that the m x m portions of U are full rank and that the number of
network layers is limited to two (one hidden layer). The U matrix has p rows, so it will be broken into at most
ceiling($) linearly dependent groups2 in order to form the hidden layer neurons. This bound is achieved
when every group is made of at most m patterns. In practice the number of groups can be much smaller
than ceiling(:) since larger groups of linearly dependent patterns may be found. Every linearly dependent
groups yields n hidden layer neurons (one for each output). An extra neuron which has a constant output is
then added to the hidden layer in order to help form constant offsets and/or thresholds for the output layer.
Thus the dependence identification algorithm has an upper bound of ceiling(&)n+ 1 hidden layer neurons for
a two network and assuming the m x m portions of U are full rank. The dependence identification algorithm
assumes that one input is a constant used to form thresholds for the first layer’s neurons. Thus for a SISO
network m = 2 and n = 1 and the bound on the number of hidden layer neurons created by dependence
identification is approximately one half the bound of p .

There may be situations where dependence identification determines a number of neurons and/or layers
that may not be physically realizable due to hardware or software constraints. The number of layers may be
limited by the parameter h,,, in Algorithm 2.1, and the number of hidden layer neurons may be decreased
by increasing the tolerance cp. This value is used to determine whether a pattern should be considered
part of a linearly dependent set, i.e., if a pattern subset v , d and associate weight g satisfies @(ug) = d ,
then another pattern ii, d is considered “linearly dependent” if the elements of I @ (i i g) - d^(are all less than
cp. Linear dependence is written in quotes here because the nonlinear activation function is being used to
determine a pattern match. An example of hidden layer neuron reduction is given in section 3.2. Further
discussion and implementation concerns regarding dependence identification can be found in [4].

3 Examples
Programs are written in C to perform backpropagation (BP) and dependence identification (DI) and are
run on Sun SPARCstation 2 workstations. The single layer training problems are solved with quadratic
optimization [8] and the block conjugate residual algorithm [2], [4]. Section 3.1 shows a comparison between
networks constructed with dependence identification to networks trained through trial and error and back-
propagation. Section 3.2 shows how the number of hidden layer neurons may be reduced by increasing the
DI tolerance value c p . The overall error of the network is kept down, while the tolerance is increased, by
recomputing the weights after each linearly dependent set of training patterns is found. Section 3.3 shows
how dependence identification may be successfully used to construct a network architecture and set of initial
conditions for further training by backpropagation.

3.1 Function Approximation Examples
Dependence identification has been tested on several multi-input/multi-output functions with the number
of training patterns ranging as high as 2000. The functions were also trained using backpropagation with
random initial conditions.

The activation function for the networks created by backpropagation (BP) and dependence identification
(DI) for all three functions is 4(z) = tanh(z). The training results are summarized in table 1. The column

’The bound of p assumes that one input to the network is constant, if the neural thresholds are handled differently then the

2The notation ceiling(z) means the smallest integer greater than or equal to S.

bound is p - 1.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

for network architecture has entries of the form m - h - n where m is the number of network inputs, n is
the number of outputs, and h is the number of hidden layer neurons.

1 input/l output
Function

2 input/2 output
Function

3 input/l output
Function

Training Network Square Error Square Error Time to Solution
Method Architecture (Training) (Test Set) (seconds)

DI 2 - 9 - 1 0.2923 1.8023 0.0167
BP 2 - 1 0 - 1 0.9993 3.8570 274.8
DI 3 - 103 - 2 0.3547 1.5508 15.14
BP 3 - 1 0 3 - 2 0.7902 2.1196 4429.25
DI 4 - 286 - 1 0.4495 0.1221 291.13
BP 4 - 5 0 - 1 1.2661 0.2475 3026.93

Table 1: Comparative results of network training methods.

The process of determining BP learning parameters, the number of hidden layer neurons, and the stopping
requirement for backpropagation is a tedious trial and error procedure. The time required to actually
determine an appropriate set of parameters is not included as part of the solution time for backpropagation.
The times in table 1 are actual CPU times spent performing network construction and training. These times
illustrate that even when the learning rates and network architecture are known, dependence identification
computes an entire network with similar error in much less time than is required by the gradient descent
performed by backpropagation. However the most important contribution of dependence identification is
that the search for the appropriate parameters is eliminated and an appropriate network architecture is an
output of the algorithm, not an input.

3.2 Increased Tolerance and Recomputed Weights
Hardware and/or memory restrictions may limit the number of hidden layers or hidden layer neurons that
may be used in a particular neural network. Section 2.2 mentions that it is possible to decrease the number
of hidden neurons created by the dependence identification algorithm by increasing the tolerance, cp, used to
check whether or not a pattern should be included in a set of “linearly dependent” patterns. Unfortunately
as the parameter tp is increased and the number of hidden layer neurons decreases, the overall error of the
network tends to increase. The increase in network error can be combated by recomputing the weight matrix
g (see Algorithm 2.1) for the entire set of linearly dependent patterns after this set has been found. Figure
la shows how the number of hidden layer neurons decreases as the tolerance cp is increased from 0.05 to
5.00. The training patterns are for 1 input / 1 output function approximation example from section 3.1. The
network is constrained to have three layers3 (hma = 3). Note that in this example the dependence identi-
fication algorithm determines linear dependence on the basis of the quadratic error cost used by quadratic
optimization [8] which allows the error tolerance to be increased past cp = 2 up to cp = 5. Figure l a shows
that the number of hidden layer neurons can be successfully decreased with and without the recomputation of
the weights. The reason the number of hidden layer neurons is different when the weights are recomputed
is that a three layer network is being constructed. The inputs produce a set number of neurons in the
first hidden layer dependent on cp only, not on whether the weights are recomputed. The recomputation of
weights produces different hidden layer activations (outputs) than those produced when the weights are not
recomputed. Thus the second hidden layer may have a different number of neurons when the weights are
recomputed since the inputs to the second hidden layer are different.

Figure l b shows how the overall error of the network varies as the tolerance is increased. The network
error is the final value of e in Algorithm 2.1. The figure shows how recomputing the weight matraz helps
t o keep the overall error of the network from blowing up. It also shows that there is no simple relationship
between the overall error and the tolerance cp. For example, when cp increases from 3 to 4, the overall error
when the weights are not recomputed actually decreases from about 9.2 to 3.2. However the trend is that
the recomputation keeps the error down. The average error for the fourteen different tolerances used in the

3The networks in section 3.1 have two layers

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

a) Decrease of hidden layer neurons. b) Overall network error.

10

Figure 1: Effects of increasing tolerance cp.

figure is 3.47 when the weights are not recomputed and 1.25 when they are. It is possible that an error of
1.25 may be higher than the degree of approximation accuracy required for a particular problem. The next
section shows how dependence identification can be used to identify an appropriate network architecture and
set of initial conditions that will allow backpropagation to quickly decrease the overall network error.

3.3
Backpropagation is extremely sensitive to initial conditions and there are some problems that are inherently
very difficult for backpropagation to solve due to a large number of local minima and relatively flat sections
of the cost function. One of these difficult problems is the parity checker [lo]. A parity checker receives a
number of boolean inputs. In this example, the boolean values are 1 and -1. The parity checker has one
boolean output which should be 1 when there is an odd number of 1's at the input and -1 when there are
an even number of 1's at the input.

A six input parity checker is used in this problem. The number of network inputs is seven because
one input is constant and is used to create biases. The number of training patterns is 64 which includes
all possible combinations of six boolean inputs (26 = 64). Dependence identification is used to find an
appropriate two layer network architecture of 7 - 7 - 1. Networks are then trained using backpropagation
with random initial conditions and with the initial conditions obtained from dependence identification. Table
2 shows the results. Patterns are considered to be identified correctly if the network has the proper sign, i.e,
a desired output of 1 is classified correctly if the network output is positive and a desired output of -1 is
classified correctly if the network output is negative. The entry for "% Error" is calculated as the number
of missed patterns divided by 64.

The table shows that, by itself, dependence identification does not produce a very successful solution
to the problem. However the initial conditions it produces are quite good for improving the network with
backpropagation, bringing the error down from about 27% to just over 3%. When random initial conditions
are used, backpropagation is completely unsuccessful in learning the problem, misclassifying more than half
of the input space.

Dependence Identification for Backpropagation Initial Conditions

4 Conclusions
A new method of constructing feedforward multi-layer neural networks has been presented, and examples
show that it works well for creating neural network approximations of continuous functions as well as pro-
viding a starting point for further backpropagation training. Dependence identification is a faster and more
systematic method of developing initial network architectures than trial and error or pruning techniques
used with gradient descent. Network size and construction time are conserved since dependence identifica-

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

Training Method

BP with initial conditions from DI
Dependence Identification

I I

BP with random initial conditions I 30 I 53.12% I

% Error

62 3.12%
47 26.56%

Correctly Classified
Patterns

Table 2: Results of parity checker training

tion builds a small network up instead of whittling a huge network down, and because it relies on the ability
to quickly solve single layer training problems instead of ponderous gradient descents on entire multilayer
networks.

Dependence identification relaxes the constraint that neural activation functions be continuously differ-
entiable (assuming this is not a requirement of the particular single layer training method), and it determines
the number of hidden layer neurons and layers as part of its operation. Dependence identification does not
require trial and error with learning rates like backpropagation does. There may well be situations with
specific applications where DI indicates a number of hidden layer neurons that can not be physically imple-
mented (due to memory or hardware constraints). The number of hidden layer units can be decreased by
increasing the tolerance cp in Algorithm 2.1. The number of layers can also be limited with the parameter
Itmm. The speed of DI makes it appropriate for creating neural network architectures and initial weight
values to be used in real applications.

References
[l] Baum E. B., “On the Capabilities of Multilayer Perceptrons,” J. Complexity, vol4, pp 193-215,1988.

[2] Elman, H. C., “Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations,” Ph.D.
thesis, Computer Science Dept., Yale University, New Haven, CT., 1982.

[3] Hertz, J., Krogh, A. and Palmer, R. G., Introduction to the Theory of Neural Computation, Addison-
Wesley Publishing Company, 1991.

[4] Moody, J. O., “A New Method for Contructing and Training Multilayer Neural Networks,” Master’s
thesis, Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, IN., 1993.

[5] Moody, J. O., Antsaklis, P. J., “The Dependence Identification Neural Network Construction Algo-
rithm,” Technical report ISIS-93-005 of the ISIS Group at the University of Notre Dame, Notre Dame,
IN., 1993.

[6] Nilsson N. J., Learning Machines, McGraw-Hill, 1965.

[7] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., “Learning Internal Representations by Error Prop-
agation,” in Rumelhart, D. E. and McClelland, J. L., eds. Parallel Distributed Processing: Explanations
in the Microstructure of Cognition, vol 1: Foundation, pp. 318-362, MIT Press, 1986.

181 Sartori, M. A. and Antsaklis, P. J., “Neural Network Training via Quadratic Optimization”, Proc of
ISCAS, San Diego, CA, May 10-13, 1992.

[9] Sartori, M. A. and Antsaklis, P. J., “A Simple Method to Derive Bounds on the Size and to Train
Multi-Layer Neural Networks”, IEEE Trans. on Neural Networks, Vol 2, No 4, pp. 467471, July 1991.

[lo] Tesauro, G. and Janssens, B., “Scaling Relations in Backpropagation learning”, Complex Systems, Vol
2 pp. 39-44, 1988.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:52 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction
Algorithm,” 1 994 I nternational C o nference o n N eural N etwork s , Vol VII, pp 4799-4804, Olrando, FL,
June 26-July 2, 1994.

