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ABSTRACT

A general version of the tracking and regulation problem in linear
multivariable systems is considered and the class of output dynamic
compensators C which regulate and at the same time internally stabilize
the closed loop system is parametrically characterized. The solution is
obtained by first considering the class of all stabilizing compensators
and then restricting this class to achieve regulation as well. It is
shown that if a solution exists, C must be of the form Gd_l C Gn where
Gd’Gn depend on the system parameters and the exogenous signal to be re-

jected while ¢ depends on the desired closed loop characteristic polynomial.
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I. INTRODUCTION

A general version of the regulator problem with internal stability in
multivariable systems is studied in this paper. Specifically it is assumed
that the system is described by (1) where y and Z are the measured and
regulated outputs respectively. The objective is to determine a suitable
controller C so that the transfer matrix from d to z, Tzd is stable, i.e.,

regulation, while internal stability is attained, i.e., the closed loop is

stable and no unstable cancellations take place. Note that d represents the
bounded part of the exogenous signal w = Qd-ld whose effect must be eliminated
from z exponentially.

Less general versions of this problem have been studied by a number of
authors. In particular, the state-space representation and the geometric
approach were used in [1],[2] (solution via state-variable feedback). In
[3] a slightly more general model was used to directly derive an output com—
pensator using polynomial matrix factorizations of transfer matrices under
the assumption that the system is stabilizable and detectable. Clearly this
assumption is not restrictive since if it is not satisfied, the system can't
even be stabilized, let alone regulated. The model used in these papers
represents a special case of the formulation used here as it implies specific

R , _ a1
interelations among Hl’HZ’Gl’ and G In particular, Hl—Cl(S Al) Bl+C3,

¢
H.=D, (5-A.) \B.+D,, G.=[C, (s-A) “A,+C.}(s-A.) T, G.=[D,(s-A ) 1A 4D ](s-a )"t
271 1 173 71 1 3 72 2 > 2 1 1 3 72 2
(d=x2(0)) to use the notation of [3]. In [4] the case where the measured
outputs are those to be regulated (y=-z in our formulation) was studied using
for the first time polynomial matrix factorizations although polynomial
matrices had been used earlier [5] to study this problem (y=-2z) for step

disturbances only. The characterization, via a stable rational matrix K,

of all stabilizing output compensators introduced in [17] was used in [6]
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to solve the regulation problem with internal stability when H1=FP and H2=P.
In {7] the case when y=T42, where Tg a stable sensor, was considered (-H1=TSH2,
1

- . . I =l T -
Gl_TsGZ) while in {8] and [9] the case —Hl—VlT Ul’ H2-V2T Ul’ G1 VlT lU2R lM

and G2=V2T-1U2R-1M, where all new symbols represent matrices, was studied using
the transformation *=1/(s-a). It should also be noted that a number of aurhors
have studied the problem of regulation with internal stability under small plant
perturbations (state-space model or y=-z using transfer matrices), i.e.,
with robusteness (see for example [10]1,[11]1,[%2]1,[13]). The problem of
robusteness is not addressed here although a number of relevant observations
are made in the form of brief comments.

In this paper given (1), necessary and sufficient conditions are derived
for regulation with internal stability. The class of all appropriate com—
Pensators C is parametrically characterized and it is shown that C must be

of the form G -1 c Gn where G Gn depend on the system parameters and the

d a’
exogenocus signal to be rejected while E depends on the desired closed loop
characteristic polynomial. This structure is imposed on C because of the
requirement for regulation. The problem is solved using the characterizationm,
via two polynomial matrices A and B, of all internally stabilizing output com—
pensators introduced in [14]. Then the requirement for intermnal stability is re-
placed by |A| being a stable polynomial. A new problem RPS1 is defined inm
terms of A and B which is equivalent to the regulation problem with internal
stability, RPS, except the properness requirement for C. RPS1 is first solved
and then it is shown that one can always cobtain a proper compensator C from
the class of solutions A, B of RPS1. The necessary and sufficient conditions
for the sclution of RPS are therefore the conditions for the solution of RPS1.

Note that while internal stability implies B arbitrary and lAI stable, if

regulation in addition to internal stability is required then B should be-
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long to an appropriate class of matrices. It should be noted that the methed
used in the proofs resembles that of [6] while results involving poly-
nomial matrices are drawn heavily from [14].

If the present work is to be compared with other published studies of
the regulator problem with internal stability the following should be pointed
out: A complete parametric characterization of all compensators C which solve
a more general version of the problem is given. It is shown that the ob-
jective of regulation is translated into restrictions only on the matrix B
where A(|A] stable) and B fully characterize all internally stabilizing com-
pensators. The dual role of the compensator C then becomes quite apparent.
If regulation, in addition to internal stability is required, C must intro-
duce in the loop characteristics of the exogenous signal so that appropriate
signals are generated to cancel the exogenous ones while internal stability
is maintained. In particular C must be of the form Gd-l 6 Gn’ but the
existence of Gd’ Gn in C is only a necessary condition for regulation in this
general case (when y = -z it is mecessary and sufficient); it is sufficient
as well only when certain conditions are satisfied (|Gd[|Gn|=a|a1|)- The
properness of C is also studied. It had been intuitively known for quite
sometime that if the order of C is "high enough", there will be enough co-
efficients to be evaluated so that the design objectives can be achieved with
a proper C. This is formally shown here to be true. In addition, comments
and remarks throughout this paper are included to clarify the meaning and stress
the significance of internal stability, the necessary and sufficient condi-
tions and the structure of the compensator.

This paper is organized as follows: The problem is formulated in section

IIT while in IV internal stability is discussed and the internally stabilizing
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output compensators are characterized via the polynomial matrices B and A
(IAl stable). 1In Section V a new problem, RPS1, is introduced and solved
(Theorem 1, and Corollaries 2 and 3). RPS1 is then shown to be equivalent

to the regulator problem with intermal stability, RPS, in Theorem 4. This

is done by proving that a proper compensator C can always be derived from the
solution A, B of RP51. The structure of C is discussed in Section VI and an
illustrative example is given. In Section VII the important special case

y = -2 is studied while in VIII the necessary and sufficient conditioms for
the solution of RPS are discussed. Note that certain results appearing in

this paper have been presented in [15].
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II. PRELIMINARIES

A rational matrix Hj can be written as H1=N1D1”1=51‘1ﬁ1 where (Nj,Dy) are
relatively right prime (rrp) and (ﬁl,ﬁl) relatively left prime (rlp) polynomi-

al matrices [16]. Then, there exist polynomial matrices Xl,Yl,il and ?1 such

that [14]
XjDyp + YNy = I DjXy + YN} = I
—Xli{l + Ylil = 0 DYy - ?lﬁl =0
5 _ o {Pl1)
-N]_D]_ + DlNl = { lel - X]_Nl = 0
ﬁ].?l + ﬁlil =1 NlYl + ilﬁl =T

Notice that |A| denotes the determinant of the square matrix A and o(A)
the collection of roots of the polynomial |Al. ¢+ and ¢~ denote the closed
right half and open left half of the complex plane., Stable polynomial p means
that all the roots of p are in ¢" and stable rational matrix H means that the
characteristic polynomial of H is stable (the poles of H are in p‘). (W) 4+
represents the part of a partial fraction expansion of the rational matrix H
with poles in ¢+ [4]. H can always be written as H = (H)4 + (H)_.

It should be noted that the results of this paper are still valid if ¢+
and ¢' are taken to denote instead any disjoint partition of the complex plane
i.e., $rUE™=C, ¢\ ¢™=¢ where ¢~ is symmetric with respect to the real axis
and contains at least one real point. In this case, ¢“ and ¢+ are the "good"
and the "bad" regions respectively instead of the stable and the unstable

regions. Appropriate charges should then be made throughout.
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ITT. PROBLEM FORMULATION

Consider the system

y = -Hju + Gjd
z = Hou + Gopd (1)
u = Cy

where y is the (pxl) vector of the measured outputs, z is the {rxl) vector of
the outputs to he regulated, u is the (mxl) vector of the control inputs and d
a (qx1) vector representing the disturbances; Hy, Hy, G; and G; are transfer
matrices of appropriate dimensions. u=Cy is the control law and C the compen-
sator to be determined. Substituting we obtain

z = [HoC[I+H C]™1 ¢ + Gpld = Tpyd (2)
The objective is to determine a suitable compensator C such that Ty4q is stable

(regulation) while internal stability in the closed loop is also attained.

Note that d corresponds to the bounded part of the known exogenous signal w; w
has been expressed as w = Qd’ld and Qd'l(o(Qd)C¢+) has already been included
in Gy and G9 in (1).
Let H; = N;py~! = ;-1 (3)
HyDj = Dy~ 1Ny (&)
where (Nj;, Dj) are rrp and (N, Dy), (ﬁz, ﬁz) are rlp polynomial matrices.
Let also C be represented by a fraction of two rlp pelynomial matrices.
C = D.~IN, (5)
Using the identity C(I + H;C)~l = (I + CHy)~IC and substituting the above in
(2), we obtain
T,q = Dol No[D.D; + NeNp1™1 NoGp + 65 (6)

It will be assumed in the following that Iﬁzl is a stable polynomialT. This

TIf m=1 this assumption is not necessary as the techniques presented in this
paper can still be applied directly.
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assumption, which has been implicitly or explicitly made in all other pub-
lished studies of the regulator problem, greatly simplifies the analysis. It
simply means that all the unstable poles of H, also appear as poles of Hj (to-
gether with some similarity in structure). Considering that one must be able
to observe through y the unstable modes which affect the trajectory of z in
order to regulate z, it is clear that this assumption is not unreasonable. If
the problem were solved without this assumption it can be conjectured in view
of the conditions derived in this paper, that the new necessary and sufficient
conditionswould involve, in general, more intricate structural relations among
Hy, H9, G; and G, than at present.

In the following sections, the internal stability of the system is dis-
cussed and the regulator problem with internal stability is precisely stated

and solved,
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IV. INTERNAL STABILITY

The system will be called internally stable if |D.Dj + N.Njl is a stable
polynomial i.e. a polynomial with roots in ¢'. Therefore, for internal

stability N .
D.Dy + NNy = A (7

where A 1s any square polynomial matrix of appropriate dimensions with |Al
a stable polynomial.

To explain this, let d=0 in (1) and consider y=-Hju, u=Cy i.e., H; com-
pensated by output feedback. The loop will be stable to an outside observer
if the numerator of |I+H1C| is a stable polynomial (loop stability). It is
possible though, to have unstable cancellations in HjC with loop stability
present. If no such unstable cancellations take place and loop stability is
present, the system is called internally stable. Internal stability is there-
fore the property to aim for in practice since if the loop is stable but un-
stable cancellations take place, system components will saturate (because of
imprecise cancellations) and the system will behave in a manner other than in-
tended. A number of internal stability criteria have appeared in the litera-
ture, If, for example, |Dj||D.||I+H;C| is a stable polynomial or if H=[H; ;]
where Hj =(I+H;C)~1, Hyy=CHj;, Hyp=(T+CH;)~l, Hj,=-H;Hyy is a stable transfer
matrix then, as it can be easily seen using (3) and (5), no unstable cancella-
tions take place and the system is internally stable. Clearly the danger of
unstable cancellations remaining undetected arises from the use of transfer
matrices or external descriptions in the analysis. An internal description,
the polynomial matrix representation, was used to derive (7) in [14] in a
straightforward manner. Note also that criterion (7) directly leads to the
full characterization of all stabilizing compensators. In particular, since

(N1,D)) are rrp, there exist polynomial matrices X;,Y; such that
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XDy + YN, =1 (8)

In view now of [14], (7) becomes

D, = AX, - BN, Lo

. or [DC,N ] = [A,B]U (9)
AY. + BD ¢
[l 1 1

=
]

where (ﬁl,ﬁl) are rlp (see (3)), B is an arbitrary polynomial matrix and

al %1t
US| o7 = is a unimodular matrix. (9) can also be written as
i1
DD, + NN =A
¢l el or (a,8] = [B_,8 Ju™" (10)
—DCYl + Nch =B
(Y 5
where the unimodular matrix U | N % with Yl’Xl appropriate polynomial
17
matrices satisfying
DX, + NY, =1 (11)

as well as (P1). As it was shown in [14], C=ﬁc-1ﬁc where ﬁc’ﬁc from (9) with

B and A(IAIstable) any polynomial matrices such that [5C|¢0, fully characterizes
all internally stabilizing compensators, proper and nonproper (a method to
obtain proper compensators by choesing B and A is given in a later section).

It should be noted that the characterization of all compensatcrs achieving
internal stability was first given by [17] and it involved both polynomial and
rational matrices (C=(X1—Kﬁl)_l(Yl+Kﬁl) where K any stable rational matrix).
Later, in [14], the equivalent characterization (9) (and (10)) which involves
polynomial matrices only, was derived in a natural way from the polynomial matrix
representation of the system. Recently, in [18], it has been shown that this
latter characterization is also valid when more general rings, than the ring of
polynomials, are considered.

In the above, all stabilizing compensators were effectively parametrized
by the matrices B and A (|A| stable) via (9) and (10). Note that |A| is the

characteristie polynomial of the closed loop. This parametrization will now
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problem by the restriction that IA| is stable, thus simplifying the analysis.
In this setting, it will be shown that the regulation requirement implies re-
strictions only on the matrix B. That is, it will be shown that if regulation
in addition to internal stability is required, (9) and (10), still characterize
all appropriate compensators, where A is any matrix such that |A| stable; B

is not arbitrary any longer but it must satisfy certain conditions imposed by

the regulation requirement (see (18)).

10
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V. THE REGULATOR PROBLEM WITH INTERNAL STABILITY (RPS)

In view of the above, RPS can now be precisely stated:

RPS Determine C = 5c“1ﬁc proper such that

a) Tpq = 52‘1ﬁ2[ﬁcD1 + ﬁch]'lﬁcGl + Go is stable (regulation) (6)
and b) DgD] + NoNj = A where |A| stable (internal stability) (7

Using (7) and (9), (6) becomes
T,q = Dy~ }[NpA~=1BD;G; + (Np¥;G; + DyGy)] (12)
Let D1(6)+ = P10yt = 71y
(13)
(NpY G + DyGy)+ = PpQy~1
where (P1,Q;), (P),Qy) are rrp and (ﬁl,él) rlp polynomial matrices. Note that
g(Q) = 0(61) and 0(Qp) are in ¢+. Since |521 is stable by assumption, T,4q is
stable if and only if
T) = NoA™lBPiQ;~! + PyQy~! (14)
is stable. Define now a new problem, RPS1, related to RPS.
RP31 Determine polynomial matrices B and A, Al stable, so that Ty is stable.
Note that 1f RPS has a solution so does RPSl, If RPS] has a solution A,B
then RPS also has a solution provided that a proper C can always be determined
from A and B, 1In the following, RPS will be solved by first solving RPS1 and
then showing that a proper C always exists.
Since (P;,Q;) and (51,61) in (15) are rrp and rlp respectively, there

exist polynomlal matrices Xg, Yg, iG and QG which satisfy

XQp + YpPp = 1

. . (15)
QXg + P1¥g = 1
and relations (Pl).
Theorem 1: RPS1 has a solution if and only if
a) Q2‘1Q1 = Q a polynomial matrix (16)

and b) there exist polynomial matrices ay and aj so that

11
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Nya + asQp = PyQ¥g (17)
If solution exists then
A = any polynomial matrix (|Al stable) (18)
and B = -Aa) +my;

where (a],ap) is a solution of (17) and (mj,m;) any solution of

Nomj + mpQ) = 0 (19)
where ﬁzAfl = ﬁ'lﬁz with (ﬁz,ﬁ) rlp polynomial matrices.
Proof: Assume that RPSI has a solution, that is B and A (lA| stable) have been

found so that T; is stable., Let ﬁzA‘l = Eflﬁz where (A,ﬁz) rip. Then (14)

implies that
NoBP1Q;~! + APyQy~1 = ¥ (20)

a polynomial matrix. This is because if M were not a polynomial matrix, it
would have been a rational matrix with all of its poles in F+ in which case a
premultiplication by A1 would have shown that T) = R‘lM is not stable contrary
to the assumption. Postmultiplying (20) by Q)

NoBP; + AP,QylQp = MQ; (21)
which, in view of the fact that (P;,Qp) are rrp and U(A)C:t‘, o(QZ)C:t+, implies
that Q2‘1Q1 = Q a polynomial matrix i.e., (18). Substituting and rearranging

(-NgB)P] + (M)Q; = AP9Q (22)
Since (P;,Q;) are rrp, in view of (15) and {14}, (22) implies

-ANzB (RPzQ)YG + Wa]_ (23a)

M = (AP,Q)Xg - WP] (23b)
where W an appropriate polynomial matrix ,(23a) can be rewritten as

Np(B) + (N)Q = -A(P2QYg) (24)
or No(B) + A(PpQYg) = -WQ (25)
Note that (ﬁz,ﬁ) are rlp, so there exist polynomial matrices Xj and Yji such

that AXA + ﬁzYﬁ = I, Let 3‘1ﬁ2(=ﬁ2A'1) = ﬁéﬁ?l where (ﬁi,z) are rrp.

12
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(25) now implies
B = YA(-WQp) + AV (26a)
PyQYg = Xa(-WQp)-NoV (26b)
where V 1s an appropriate polynomial matrix. (26b) shows that if RPS1 has a
solution, there exist polynomial matrices aj and ay so that
Noa| + an(; = P,QY¥g (27)
Note that ﬁz = EZG, A = AG where o(G)CC™ and that 0(61)C¢+. Thig, in view
of [6, Lemma 7] implies that if (27) is satisfied, there exist polynomial
matrices a) and ap so that
Noaj + a3Q) = PpQY¥g (17
To show sufficiency, assume that the conditions of the thecrem are satisfied.
Choose any polynomial matrix A of appropriate dimensions such that |A| stable
and determine (ﬁz,ﬁ) rlp from ﬁzAfl = ﬁ‘lﬁz. Premultiply (17) by -A to obtain
Np(-8a1) + (-Aap)qy = -A(PyQYg) (28)
noticing that ﬁﬁz = ﬁzA. Comparing with (24), let -Aa; = B, -Aaz = W and de-
fine M from (23b). Postmultiplying (23a) and (23b) by P; and Qj respectively
and adding, (22) is obtained and finally in view of (16), T = A-IM which is
stable.
Before showing that the general solution is given by (18), the following
corollary is in order,
Corollary 2: RPS1 has a solution if and only if
a) Q~1Q; = Q a polynomial matrix (16)
and b) there exist polynomial matrices bj and b5 so that
Nobj + byQq = ~A(PQYg) (29)
where (ﬁz,ﬁ) are rlp determined from ﬁZA‘l = E‘lﬁz with A an arbitrary (|Al
stable) polynomial matrix., If a solution exists, this A and B = b1, where

(bj,bp) any solution of (29), is the solution to RPSI.

13
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Proof: There exist by and b, which satisfy (29) if and only if there exist a;
and aj which satisfy (17) of Theorem l. This was actually shown in the proof
of the first part of the theorem (read by, b, instead of B, W in (24)).
Therefore, since condition b) of the corollary 1s equivalent to condition b) of
the theorem, RPSl has a solution if and only if (16) and (29) are satisfied.
To show the second part of the corollary, notice that if RPS1 has a solution B
and A (|A]| stable) then (24) is satisfied or (29) with by = B. Conversely,
choose any A such that |A| stable and any solution (bj,bp) of (29); consider b)
and by instead of B and W in (24). Backtracking (as in the sufficiency proof
of the theorem) T; = A~1M = Npa~1b1PyQ;~! + PyQy~! stable. That is A and b
are the solution A and B of RPSl. Q.E.D.

Proof of Theorem 1 (Cont.): The solution bj of (29) can be written as the sum

of a particular solution and any solution of (19). 1In the sufficiency proof of
the first part of the theorem it was shown that -Aa;, where aj a solution of
(17), is a particular solution of (24) or (29). Therefore, in view of
Corollary 2, any solution to RPS] is given by (18). This concludes the proof
of the theorem.

Another set of necessary and sufficient conditicns is given by the
following corollary,
Corollary 3: RPS1 has a solution if and only if

a) Q~1lg; = Q a polynomial matrix (16)
and b) there exist polynomial matrices ¢) and cp so that

Nocy + c2Q1 = P2Q (30)

If solutions exist then

A

any polynomial matrix (|A| stable)
(3D

It

B -Ac1Yg + m

where (cj,cp) a solution of (30) and mj any solution of (19).

14
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Proof: Assume that (30) is satisfied. Postmultiply by Y; to obtain

Ny(e1Yg) + (e2¥g)Q = P2Q¥g
in view of (15) i.e., (17) is satisfied with (aj,ap)=(cYg, CZ?G). Assume
that (17) is satisfied and postmultiply by Pj to obtain

No(a)Py) + a2Q1P; = P2Q¥gP;
or Ny(a)P)) + (a2P1)Q) = PoQ(I-%¢Q1)
or No(a1P1) + (agP] + PoQ¥g)Q = P2Q
in view of (15) and (Pl), i.e., (30) is satisfied. Therefore (30) has a
solution if and only if (17) has a solution. Corollary 3 then directly follows
from Theorem I, Q.E.D.

Three equivalent sets of necessary and sufficient conditions for the

solution of RPS1 were presented above. Note that the conditions in Theorem 1
and Corollary 3 do not depend on the choice of A(|A| stable is the
characteristic polynomial of the closed loop). (17) and (30) involve, in
general, matrices of different dimensions. Dimensional considerations
therefore might play the decisive role in choosing between them. The
conditions in Corollary 2 are dependent on A but the solution B is directly
given by the solution of (29).

Stability and Regulation: As it will be shown in Theorem 4, A and B can always

be chosen to give a proper compensator C while satisfying (18). It should be
noted at this point that the formulation used in this paper to solve the
regulator problem with stability, clearly reveals the distinction between the
requirements imposed to the system structure and the compensator, due to the
two inportant design objectives, internal stability and regulation. 1In
particular, if internal stability is the only objective then all stabilizing
compensators C = ﬁc"lﬁc satisfy (9) or

D.Dp + N.Nj = A (10a)

L5
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-D.¥j + N.X; = B (10b)
where |A| is the desired closed loop characteristic polynomial and B any poly-
nomial matrix. (10b) therefore does not imply any restriction on Bc and ﬁc
and this is why (10a) appears in the literature as the only equation to be
satisfied when internal stability is the only issue. If in additiomn, regula-
tion 1s to be achieved, B in (10b) is not arbitrary any longer but it must be-
long to an appropriate class of matrices (described here by (18)) which de-
pends on the particular model representation used. Equation (10b) therefore
corresponds to regulation (actually regulation with internal stability
present), while (10a) to stabilization; it is (10b) which imposes, as it will
be shown, certain structure on the output compensator and consequently on the
closed loop system so that appropriate signals are generated in the loop to
cancel the undesirable exogenous ones. Finally, note that if other design ob-
jectives are sought, in addition to internal stability, they will again be
translated into requirements for B (and maybe A) to belong to a certain class,
that is (10) are the design equations when internal stability is required.

Before showing that RPS has a solution if and only if RPS1 has a solution
{Theorem 4) the form of the compensator C = ﬁc‘lﬁc, given by (9) with |Al
stable and B=-Aaj+mj;, will be studied. In particular, substituting (18) into

(9) and (10):

De = AX) - m)N} R _
- - - or [DCINC] = [A,mI]U (32)
Nc = AYI + mlDl
DD + NNy = A L. -
L2 L= or [A,my) = [De,Ne U™l (33)
=DcY) + NeXp = my
A ~ A - A~ -

where )E]_ = X1 + a)Np, ?1 = Y - a;Dy, )-(1 = X; + Njaj, Y3 = ¥ - Djay

and
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_ )_(1 ‘—Il 1 -a; XY 1 ~ay
U= - . = - . = U
-N; Dy 0 1 -N; Dy 0 1
1l a Dy -§1 1 ag D -il
ﬁ-l = U-l = = -
01 Nl il 0 1 Nl Xl

Clearly, U and U~! are unimodular matrices. (32) (or (33)) give appropriate

~

Deo» ﬁc for any solution mj of
lﬁzml + mz‘bl =0 (19)
A rather large class of solutions is given by (mj,mp)= (Wﬁl,-ﬁ2W) where W is

any polynomial matrix of appropriate dimension. Substituting,

Do = AX} - WQIN

~ ~

or [DesNo] = [A,WQ;]U (32a)

-~

N. = AY; + WQ;Dg
and

A

DDy + NoNj

or [4,WG;] = [B,N.]Ul (33a)

- ¥y + NXp = WG
For any W, (32a) gives appropriate ﬁc,ﬁc which define C. It will now be shown
that if RPSl has a solution, then among the solutions A and B one can always
choose a palr which produces a proper C = ﬁé‘lﬁc; that is one can always
choose W approprilately in (32a) to obtain a proper C.
Theorem 4: RPS has a solution if and only if RPS1 has a solution.
Proof: From the definition of RPS and RPS1 it is clear that if RPS has a so-
lution (C = Bc'lﬁc proper) so does RPS] with A and B uniquely determined from
bc:ﬁc via (10), Assume now that RPS1 has a solution given by (18). To each
solution palr (A,B) there corresponds a unique pair (bc,ﬁc) determined from
(9) (or (33)); if ID.|#0, C=D.~IN. will make T,q stable and the closed loop
internally stable. Since RPS requires C to be proper, to show that in this
case RPS has a solution, it suffices to show that one can always choose a so-

lution pair A,B (or an A and a W in (32a) or (33a)) so that C=bc“1ﬁc exists
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and it is properT.

A
Proper C: let R = C(I + H;C)~1 = (I + cHj)~lc. Then

C=R(I - {yR)"! (34)
If C=Bc“lﬁc with Bc»ﬁc from (32a) (|5c|$0) then

R = DjA~1(AY; + wQ; D)) (35)
Conversely, if (35) is used and C is determined from (34) then it is equal to C=
Dc~IN, with (D.,N.) given by (32a). Note that if D! exists, so does (I-HjR)~!
and vice-versa, Therefore, the relations (35) and (34) with II-HlRI#O can be used
to determine C instead of the relations (32a) and C=D,~IN; with ID. 1#20. It can
be shown that if H; is proper (strictly proper) and R is strictly proper (proper)
then C from (34) exists (|I-H1R|¢0) and it is proper. In the following it will
be shown how to choose A and W in (35) so that R is proper (strictly proper).

Let G, be a greatest common right divisor (gerd) of ¥;,§;D;. Note that
U(Gn)Ct+ since they are some or all of the roots of |61| (?1,51 are rlp). Let
¥1(Q;Dy)~1=N3D3~1 with (N3,D3) rrp and A=AsAgA; where (AgAjN3,D3)rrp, degla;|>
deg|D1|, deg|A2|>deg|Gn| and A3 to be determined. Then

R = (D;A;"Lyar~1a3~! N3lG, (36)
where ﬁ3gA3(A2A1N3)+WD3. Since (A7A;N3,D3) rrp, there exist polynomial matrices
¥1s%x] such that yj(AjAN3) + x)D3 = I. The equation for ﬁ3 is then equivalent

[14] to:

Ay 1-43)71 + ﬁﬁ'_:, (37a)

1)

Nax; — Wi3 (37b)
where (A2A1N3)D3”l=ﬁ3"1ﬁ3 with (ﬁ3,ﬁ3) rlp. Note that in (37a) y; and ﬁ3 are
rrp. So A3, with |A3| stable, and N3,W can always be found so that (37a) is sat-
isfied with A3“1ﬁ3 proper (see [16]). TUsing (37b), W is also determined, Notice

that AZ‘I[A3‘1ﬁ3]Gn in (36) is proper since A3‘1ﬁ3 proper, deglA,|>deglG,| and

1(32), for Iﬁc|¢o, generates a more general class of solutions C which includes
nonproper compensators as well,
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0(Gy)CEt while o(A349)CE™. Since Dja~! was also chosen proper, (36) implies that
R is proper (or strictly proper if deg|Ajl>deglD;l, deglAyl>deglGyi). Using this
R in (34) C exists and it is proper. Q.E.D,

The above constructive proof of the existence of proper C formally shows a
result which had been intuitively known for rather a long time. This is the fact
that properness can always be achieved by choosing the compensator C of "high
enough” order in which case the number of coefficients to be determined is large
enough to satisfy the design objectives and keep C proper. Clearly this corre-—
sponds to choosing deglA| (the number of closed loop poles) large enough which is
exactly the result obtained above, Note that the above construction implies that
deg|Al=deg|AjAsA) | will be greater than deg]63|+deglcnl+deg|Dl|=deg|61|+deglﬁl|+
deg|Dj|=2n+deg|Qj| where n is the order of Hj which, in view of (33a), implies
that the order of € will be greater than n+deg|61|. Proper compensators C can be
determined from (33a) using an alternative, and computationally more efficient
method, which involves substitution of real values in the indeterminate of the
polynomials. This method will be presented in a future paper. Finally, it is of
interest to notice that the procedure described in Theorem 4 to construct a
proper C which solves RPS, gives a proper C which just internally stabilizes the
gsystem 1if §1 and 61 are taken to be Y| and I respectively i.e., B in (9) and (10)
is taken to be the polynomial matrix W determined in the theorem.

It was shown that the regulator problem with internal stability (RPS) has a
solution if and only if the conditions of Theorem 1 (or Corollaries 2,3) are
satisfied. The class of proper and nonproper compensators C which regulate and
internally stabilize is characterized by (9) or (10) where A,B are determined in
Theorem 1 (or Corollaries 2,3). Relations (32), (32a) or (34) define such
appropriate compensators. Proper compensators C can be determined via Theorem 4,

In the following, the structure of the compensators C will be studied.
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VyI. THE STRUCTURE OF THE COMPENSATOR

(32a) implies that ﬁc, ﬁc must have certain structure which is independent
of the particular choice of A and W. In particular, let Gg and G, be greatest

common right divisors (gcrd) of (il,dlﬁl) and (ilsdlﬁl) respectively. Then (32a)

directly implies that

D. = D.Gq, No = NeGp (38)
and -
C=¢63"1cCogy (39)
Ba 2
where C=D,~18.. G, and Gq are independent of the choice of A and they are intro-

duced because of the requirement for regulation. Note that if internal stability

~ ~
k5 .

were the only objective 61=I, X1=Xy, Yj=Y; and G =I, Gg=I. D, N or ¢ clearly
depend on A or the stable but arbitrarily chosen closed loop characteristic poly-
nomial |A|l. Notice that (il,ﬁl) and (?1,51) are rrp; this implies that the zeros
of 1G4l and |G| are some or all of the (unstable) zeros of IQIIT, which, in view
of (13), are those unstable poles of G) that do not cancel with unstable poles of
Hj. That is, for regulation, C must introduce into the loop those elements of
the exogenous signal which are not present in the system. It should be pointed
out that there are cases where due to certain structural similarities between ﬁz
and 61 (ml,m2)=(W61,~ﬁ2W) is not the general solution of (19). (38) is still
valid in this case however, if G4, G, are taken to be gcrds of X1,31ﬁ1 and Yp,
alﬁl respectively where Q1=Qlal, that is 51 some appropriate right divisor of Qj.
This means that in these cases C must introduce into the loop fewer elements of
the exogenous signals than before because of the structure of Hy, Hj and Gj.

In general, the role the compensator C plays in regulation is to introduce
into the loop enough characteristics of the exogenous signal so that the closed
loop system contains a duplicate model, an internal model, of the exogenous sig-

nal (see also {4]); this internal model will create appropriate signals which

t1f y=-z, then G,=I and |Gd|=|Q1|-
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will effectively cancel the exogenous ones thus achieving regulation. The idea
of an internal model was first introduced explicitly in [19] in a slightly dif-
ferent context, during discussion of robust regulators of a state-space model.
Note that if (38) is satisfied, this does not necessarily mean that regu-
lation is automatically guaranteed, that 1s, (38) 1s only a necessary condition
for regulation and it is not, in general, a sufficient condition. If it were
sufficient then for ﬁc=%ccd, ﬁc=§cGn the second equation in (33a) (which corre-
sponds to regulation) should not impose any restrictions on %cs ﬁc and the only
equation to be satisfied (for internal stability) should have been ﬁC(GdD1)+§C

(GyN1)=A. This is the case i.e. (38) is a necessary and sufficient condition

for regulation, only when
teglleyl = «ldyl (40)
as it 1s now shown.
In view of (38), (32a) can be written as
[De,N.1 = [A,W]0
where

10} _ Gd-l 0 il Gd"l ,§l Gn_l
u

i B3
1]
il

0 [0 gt -Qp Np 6471,8 By 6,7t
which in view of the definition of G, and G4 is a polynomial matrix; it is unimod-
ular if and only if |GqllGyl=alQ;l. If U is unimodular
[A,W] = {Bc,ﬁc]ﬁ-l

~

where U1 1s also unimodular. Since W is arbitrary, the only equation 63, Ng

must satisfy is . .
Do (GgD1) + No(GyNp) = A

which is the internal stability equation., Therefore if (40) is satisfied, (38)
guarantees regulation. Note that this is the case in the following example, as
well as when y=-z (the measured are the regulated outputs).

Example: To illustrate the above, consider the case of a plant 1/(s-1) whose

output z is to be regulated, The measured output y is contaminated by disturbance
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wo=(1/py)ds and the output of the compensator C by disturbance wy= (1/p;)d; where

P1s P2 polynomials with roots in ¢+. The system (1) is in this case

y = -[-1/(s-D]u + [1/p1(s~1), 1/pyld
z = =[1/(s=1)]u + [1/py(s-1), 0ld
u = Cy

where d=[d;,d5]T. 1In view of (3), (8) and (11), Ny=N;=-1, Bj=Dj=s-1, X1=X1=0
§1=Yl=-l while (4) implies that ﬁ2=52=l. It can be easily shown that if s-1 is a
factor of pp or if pj,pp have a common factor, solution does not exist since in
these cases (16) is not satisfied i.e., Q2"1Q1 is not a polynomial matrix. 1In
all other cases solution does exist. In particular (13) implies: 51(G1)+={1/p1,
(s-1)/pp]=11,s-1] [diag(py,ps) 17 1=P1Q;"1=[p1po] ~}py,(s-1)p11=Q; 1P| and (N,¥;G+
52G2)+=(GZ—G1)+F[O,1/p2]=[0,1}[diag(l,pz)]‘1=P2Q2“1. Therefore, Q2"1Q1=
diag(p;,1)=Q a polynomial matrix i.e. (16) is satisfied., If Xg, Yo in (15) are
XG=[xij]s YG=[y1j] then (17) becomes: aj+as(pjpp)=—yp1=x21P) Which always has a
solution., To determine the solutions, choose (aj,as)=(x,1p1,0) and note that the
general solution of (19), mjimypipy=0, is (m},my)=(Wp;p;,-W) which implies that
B=-Ax,1p1+Wp1py (which 1s exactly the same as the general solution by of (29)).
Here i1=—x21p1=§1, ?1=—1-x21p1(s-1)=-x22p2=§1. The solution is therefore given
by(see (32a), (33a))

5c=—Ax21p1+Wplp2 and ﬁc=—Ax22p2+W(s—1)p1p2
or by ﬁc(s-l)-ﬁc=A and ﬁcxzzpz-ﬁcx21p1=Wp1p2.

Note that Gg=pj, G,=pp and observe that |Gn!|Gd|=|61|=p1p2. In view of (40), if

Bc=bcpl and ﬁc=~cp2 the regulation requirement is satisfied and the compensator

P2 "tz 3 3
C = — C where C=DC'1NC satisfy D.[pj(s-1)1-N.[py]=A. For p;=s-2, p2=32 a minimal
P1 §2
order prgper compensator which internally stabilizes and regulates is C =';:5 C
s4(s-7)

= where A stable was arbitrarily chosen (of "high enough”
(5-2) (s 2+20s+6)

degree) to be A=s4+7s3+1832+225+12,[15], i.e., the closed loop poles are at -1%fj,

-2 and -3.
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VII. SPECIAL CASE y=~z

An Important special case is when the measured output coincides with the
output to be regulated [4],[5]1,[10],[11],[12}. This case includes tracking
where the input of the compensator C is the error to be regulated. Here y=-z
implies Hj=H) and Gj=-Gy; (2) becomes z(=-y)=[H;C[I+H;C]~1-1]G;d=~(I+H;C) G d=
Tzqd. One can use in this case the new T,q to solve the problem directly. Here
the conditions will be derived from the general conditions.

Note that HyDy=H)D;=N;, i.e., ﬁ2=N1, 52=I (|52|=1 a stable polynomial) and
(N2¥yG1+D5Gp)4=(N) ¥1=1) (G1)4=(~XD1) (G1)4=-X; P;Q;~1=P,Q,~! where (P1) and (13)
were used. Therefore, P2Q2‘1Q1=-i1P1 which implies that Q2'1Q1=Q a polynomial
matrix ((P;,Qp)rrp), that is (16) is always satisfied. Condition (19) now

becomes N1a1+a261=-i1PlYG which in view of [14, Theorem 3] has a solution if and

only if
ﬁlel +eyQ; =1 (41)

has a solution. Furthermore, in this case B=Aaj+mj=A(-Xej)+WQ; where (ey,ep) a
solution of (41) and W any polynomial matrix. It has been shown [l4, Theorem 4]
[20] that (41) has a solution if and only if there exist polynomial matrices D,
N such that ﬁlD‘1=61‘1N with (Nj,D)rrp and (Q;,N)rlp. Furthermore if a solution
exists, there exist polynomial matrices él, ;2 such that e1ﬁ1+31D=I, 61e2+Né2=I
and (Pl) are satisfied. 1In view of this and the value of B, §1=X1(I-elﬁ1)=xlélD
and Q)Nj=ND in (32a). This implies that Gg=D and G,=I since (DNj)[Xjej]+(e,+D¥;
ey} [N]=I and (Nl)[§1]+(i1e2)[ﬁ151]=1. Clearly in this case |Ggl[Gyl=ID|=alQ;!,
that is (40) is satisfied., Therefore if ﬁc=ﬁcD, regulation is guaranteed and
the second equation in (33a) does not imply any other restrictions on the struc-
ture of C., This can be verified by noticing that ~ﬁcD§l+ﬁc§1= —6CD(?1+D1X1e1)+
ﬁc(il*lelel)=[—ﬁc(é2+D?1e2)+ﬁcilezlal which can be written as WQ; where W some
appropriate polynomial matrix.

It is therefore clear, in view of the above that
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Corollary 5: When the measured outputs are the outputs to be regulated, RPS]
(and therefore, RPS) has a solution if and only if there exist polynomial

matrices e}, es such that

ﬁlel + 32(31 =1 (41)
If a solution exists then the compensator is C=D‘lé=D_l(ﬁc-lﬁc) where 5C, ﬁc
satisfyT .
D.(PDy) + N.(N7) = A (42)
or equivalently
ﬁc = AXje; - WN (43)

No = A(Y] + XjeqDp) + WQyDp
where |Al stable and W an arbitrary polynomial matrix.
Remark: Note that here (-T,q)4=[I+H;Cl1=1(G )4=[Dy+§;071C)~1D4(G) =D+ 1
Né]'161'1§1=[6151+Né]'1fl=ﬁé[(6151)5c+Nﬁc]'1§1 which reveals the mechanism of
regulation (the role D plays) and implies that é=ﬁcﬁc“1 can also be found from
the equivalent to (42) equation:

(QqDy)D. + NN, =41 (44)
where [A1]=|A[ thus eliminating the need to calculate NlDl'l.

As an illustration, consider the example in [4] where

Te=1 11 2] . ,. 1 1
Hy = =D 1N, and G- —~——— . (41) in this case is
-5 8 10 s2 (s+1) L2
n2 Ts - 5 0 11
e] + ey =1, D= s N = are appropriate matrices and (44)
10 0 s -1 2s 10
becomes
s20 |. 11]. s2+28+2 0
D, + Ne = Aj. If Aj is chosen to be (la;l has
-s2 g2 10 -g2 s2+2¢+2

0 2(s+1):[ ) 0 2(s+1)/s

~ 2s 0
zeros at -1%j) then C = D71¢ = 1/2s2 [: ]i =
1 s]|2(s+1) -2(s+1) (s+1)/s =(s2-1)/s2

is an appropriate compensator of second (minimal) order.

tNote that (Nj, DDj)rrp since Nj(DD;)~1=D;~1§;D1l and (¥p,Dy)rlp, (¥;,D)rrp,
i.e., no cancellations take place.
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VIII. DISCUSSION OF CONDITIONS

The regulator problem with iInternal stability has a solution if and only if
(16) and (17) are satisfied. It can be shown that a necessary condition for the
existence of solution is QG2_1QG1=QG a polynomial matrix where (G1)+FPGlQG1—l,
(G2)+FPG2QG2_1, i.e., all unstable poles of Gy must appear as poles of G; togeth-
er of course with some similarity in the structure of the denominators Qg1, Qg2-
The condition (16) used here, i.e., Q2'1Q1=Q, implies more than that (but it is
equivalent to the above when, for example, Hy and therefore Hy are stable). (16)
(together with the assumption HyD; stable) sSeems to guarantee that all the un-
stable modes which affect the trajectory of z can be observed through y. It is
intuitively clear that if this is not the case, regulation of z by measuring ¥y
will be impossible. Note that when the measured outputs are the ones to be regu-
lated, condition (16) is always satisfied for all types of exogenous signals (see
above, the case of y=-z). In general, this condition, which involves exact can-
cellations, will be difficult to satisfy especially when small plant perturba-
tions are possible. If however, Hy, Hjy, Gy and G, are "properly” related because
of an appropriate choice of the signal to be measured, then (16) is always satis-
fied and actually it does not appear as a condition for the solution., This is
the case in the state-space model when (A;,B;,Dj) 1s a controllable and observ-
able system (see [3] for notation).

Condition (17), ﬁ2a1+a261=P2QYG (or equivalently (29) or (30)), explores the
structural relations between the exogenous signal and the loop. If it can be
satisfied then the compensateor C will be able to introduce in the closed loop
certaln characteristics of the exogenous signal so that appropriate signals will
be generated in the loop which will cancel the exogenous ones while intermal sta-
bility is maintained. Equations of this form, (17), were first studied in [21]
and more recently in [6] and [22}. Simpler forms of this general equation were

also studied in [14] and [20]. Note that al(pxp) or Qi(qxq) contains (the zeros
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of 1Q;l or Q| are) those unstable poles of G; which do not appear as poles of Hj
while ﬁz(rxm) contains (the zeros of the gcd of all highest order minors are) the
zeros of H, and those poles of H; which do not appear in Hy. 1If those values
assoclated with 61 and ﬁz are disjoint (or equivalently the zeros of the invariant
factors of their Smith form are disjoint) and we concentrate on the usual case in
practice where r<m then in view of [6, Lemma 6], (17) has always a solution.

Since the "zeros” of ﬁz and 61 are almost always disjoint, if r<m, solution to
(17) always exists generically. Note that in the case, for the state space model,
ﬁz contains the zeros of the system (A;,B1,Dj) (see [3] for notation); irn view of
the above, if r<m and the system is of minimum phase, solution always exists,
Furthermore, in view of the discussion on Q2‘1Q1=Q, if (A;,B1,D1) is a controlla-
ble and observable system and r<m then solution to the regulation problem with in-
ternal stabllity always exists generically (see [2]). Note also that r<m has been

shown elsewhere to be a condition for regulation with robusteness [13].

IX. CONCLUDING REMARKS

A general version of the regulator problem with intermal stability was con-
sidered in this paper and a parametric characterization of all appropriate compen-
sators C was derived. The solution was obtained using a characterization of the
class of all internally stabilizing compensators and then restricting this class
to achieve regulation as well., The dual role of the compensator C when regulation
in addition to internal stability is to be achieved was fully explained and it was
shown that regulation implies that C must be of the form C=Gd‘leGn, that is it
must introduce in the loop characteristics of the exogenous signals. It was also
shown that properness of C can always be achieved by choosing the order of C to be
"high enough”. The necessary and sufficient conditions for the solution of the
problem were discussed and simpler conditions were derived for the important

special case when the measured and regulated outputs coincide,
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