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Abstract 
The framework of hybrid control systems can be used 

t.0 examine digital control systems. This paper shows 
how digital control systems can be modeled as hybrid 
cont,rol systems. A technique for designing interfaces 
for hybrid control systems is presented. An example is 
employed to demonstrate how this technique, as well as 
a DES cont,roller design methodology developed earlier, 
can be applied to improve a digital control system. 

1 Introduction 

In a digital control system, a continuous-time plant is 
controlled by a digital computer. The plant output is 
sampled and quantized to provide the input to the con- 
troller, and the control signal is passed through a zero- 
order hold t,o provide the plant input. We show that. such 
a digital control system is a special case of a hybrid con- 
t.rol system, defined in [l-31. This more general hybrid 
framework is used to discuss problems encountered in 
digit,al control such as chat,t,ering and limit cycles. Sec- 
tion 3 presents a method for designing the interface of a 
hybrid control system using the natural invariants of the 
system. Next this method is used as an alternative to 
t.he usual quantization technique of digit>al control. An 
example illustrates the application of this method to a 
digital cont,rol problem; it also shows the applicattion of 
DES controller design t,o digital control. 

2 Hybrid Control Systems 

A hybrid control system contains a plant, interface 
and controller a.s shown in Figure 1. The plant conta.ins 
the continuous dynamics and the controller contains the 
discrete, syiiibolic dyimmics. This model for hybrid con- 
trol systems has appeared earlier in [l-31 among others. 
After t,he hybrid control system model has been briefly 
described below for convenience, it, will be used to model 
digital cont,rol syst,ems. N0t.e t.hat the material i n  Sec- 
t,ion 3, on int.erface design using iiivariant.s, appears here 
for the first t,irne. 

The plant. is a continuous-t,inie system governed by 

X = f (x .  r )  (1) 

where x E IR” and r E IR”’ are the stat,e and input 
vcct,ors respectively. f : R” x IR“’ --i R” is a Lipschit,z 
continuous fundon .  

Controller 

Ii3-m actuator Interface generato 

Plant 

Figure 1: Hybrid Control System 

The controller is a discrete event system which is mod- 
eled as a deterministic automaton. This automaton is 
specified by a quintuple, (3, X ,  R,  6, d),  where 3 is the 
set of states, ,f is the set of p l a n t  symbols, R is the set of 
controller symbols, 6 : 2 x ,f --+ is the state transition 
function, and q5 . 3 + R is the output function. The 
symbols in set R are called controller symbols because 
they are generated by the controller. Likewise, the sym- 
bols in set ,f are called plant symbols and are generated 
based on events in the plant. The action of the controller 
is described by the equations 

where .?[RI E .’?, F [ n ]  E and ?[.I E R.  
The controller and plant communicate through an in- 

terface The interface consists of two simple subsysteim. 
the generator and actuator 

The generator converts the continuous-time output 
(state) of the plant to an asynchronous, symbolic input 
for the the controller To perform this task, two pro- 
cesses must be i n  place The first process 15 a trigger- 
ing mecliaiiisin determining whrn a plant s y  inbol should 
he generated The second procms drtermiiie~ ~leterinine 
which plaut SI nibol IS to l>c i s s u d  

‘rhe generator’? triggering iiic~chati~sm IS based 011  the 
idea of p h i i f  cveizts A plant ekelit occurs whenever the 
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plant state trajectory crosses a hypersurface in a par- 
t icular direction. These hypersurfaces bound “signifi- 
cant” regions of the continuous-state plant’s state space. 
The generator issues an plant symbol when the plant 
state crosses one of these hypersurfaces. The set of plant 
events is therefore given formally as a set of smooth func- 
tionals, { h ,  : Rn -.+ R}. Each functional is assumed to 
satisfy the condition that V , h , ( x )  # 0 for all x such 
that h , ( x )  = 0. This condition ensures that the func- 
tional’s null space, N(h,)  forms an n - 1 dimensional 
smooth manifold separating the state space into two n- 
dimensional halfspaces. When the plant’s state enters 
the open region { x  : h,(x)  < 0}, the generator issues the 
plant symbol associated with that particular hypersur- 
face. 

Let reen] denote the time (with respect to the plant 
clock) of the plant state’s nth crossing of an event hyper- 
surfaces. At each time in the sequence ~ ~ [ n ] ,  a plant sym- 
bol is generated according to the function c r i  : N(hi) ---$ 

,U. The sequence of plant symbols can therefore be ex- 
pressed as 

q.1= cui(x(Q![nl))  (4) 
where i identifies the hypersurface which was crossed. 

The  actuator converts the sequence of controller sym- 
bols t o  a plant input signal according to the following 
formula 

00 

r(t) = - I ( + I ) I ( T ~ [ ~ I ,  rc[n + 11) ( 5 )  
n = O  

where I ( q ,  rz) is a characteristic function taking on the 
value of unity over time interval (TI , T Z )  and zero else- 
where. The mapping of individual control symbols onto 
constant reference vectors r is determined by the func- 
tion 7 : R + R”. The sequence of times rc[[n] denotes 
the times when the nth control symbol was issued by 
the controller. It will be assumed that re[n] < rc[n] < 
r,[n + 11. 

3 Interface Design Using Invariants 

There are cases where some of the interface hypersur- 
faces may he selected by the designer. This section dis- 
cusses the selection of these hypersurfaces. Assume that 
t,he control goal is to transition the plant’s state between 
two disjoint regions of the state space, referred to as the 
starting region and the target region. The objective is 
to find a set of hypersurfaces, { h z } ,  so that a transition 
between these two regions can be achieved. One way 
to do this is to use hypersurfaces which are dynamical 
invariants of the control policy, f(x). 

The target region, T ,  is specified as 

T = { X  : V i  E IT, h , ( x )  < 0 } ,  (6) 

where IT is the index set indicating which hypersurfaces 
bound the target region. For a given target region and 

1 -  

control policy, find a set of hypersurfaces bounding an- 
other open region, B ,  as follows. 

B = { X  : vi E I B ,  hi(X) < 0, h e ( X )  > o}, (7) 

where IB is the index set and h,  defines the exit bound- 
ary for B .  B should he selected to include only states 
whose trajectories lead to the target region. Figure 2 
shows an example of this where IT = (1) and I ,  = 
(273). 

f A ‘2  

‘ \ T  h l  

t i  
I h3 

Figure 2: Target Region and Invariants 

The following proposition gives sufficient conditions 
for the hypersurfaces bounding B and T to ensure that 
all state trajectories in B will reach the target region. 

Proposition 1 Given. a set of trajectories described b y  
a smooth vector field, f ( x ) ,  a non null target region, T ,  
and a set o f  smooth fanctionals, {hi : i E I B }  U { h e } ,  
with the set B = { x  : V i  E I B ,  h i ( x )  < 0, h e ( x )  > 0) non 
null. Then fo r  any trajectory, x which solves x = f ( x ) ,  
x ( t0 )  E B ensures that for some finite t > t o ,  x ( t )  E T ,  
if the following three conditions are true. 

0 vi E l B , V z h i ( x )  ‘f(x) = 0 

0 36  > 0 : VX E B ,  V , h e ( x ) .  f ( X )  < -6 
0 { x  : vi E I B ,  hj(x) < 0, h e ( x )  = 0) C T 

Proof: The first condition of the the proposition, which 
can be rewritten as 

precludes the stat.e hajectory crossing any hypersurface 
indexed by the set I B ,  thus ensuring no trajectory in 
B will leave B except through the remaining boundary. 
The second condition, which can be rewritten as 

(9) 

ensures that within a finite time, y, the trajectory 
will cross the exit. boundary. The final condition guar- 
antees that any trajectory leaving B through the exit 
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boundary will be in t,he target region when it does so. 
Toget her t,hese conditions are sufficient to guarantee that 
state trajectories in B will enter the target region in fi- 
nite time. 0 

The problem is t.0 find the set of hypersurfaces bound- 
ing B which satisfies Proposition 1. Consider t.he hyper- 
surfaces defined by {h i  : i E I B } .  First, these hypersur- 
fa.ces must be invariant under the vector field, f(x). This 
is achieved by choosing the hypersurfaces to be integral 
manifolds of an n - 1 dimensional distribution which is 
invaria.nt under f. An n. - 1 dimensional distribution, 
A(x) .  is invariant under f if it sat,isfies 

[!(.)I N x ) l  c A ( x ) ,  (10) 

where the [f(x) ,  A(x)] indicates the Lie bracket. Of the 
invariant distributions, those that have integral mani- 
folds as we require, are exactly those which are involutive 
(according t,o Frobenius). This means 

Vfil(X), b ( x )  E A(x) [61(x), M X ) ]  E A(.). (11) 

Therefore by identifying t.he involutive distributions 
which are invariant under the vector field, f l  we have 
ident,ified a set. of candidate hypersurfaces. For details 
of t,hese relationships between vector fields a.nd invariant 
distribut,ions, see [4]. 

For a single vector field, f (x ) ,  there are many invari- 
ant hypersurfaces. The set of all invariant hypersurfaces 
can be found in berms of n - 1 functionally indepen- 
dent mappings which form the basis for the desired set 
of functionals, {hi : i E I B } .  This basis is obtained by 
solving t,he characteristic systetn of ordinary differential 
equat,ions. 

where fi:(x) is the i th element of f(x). The solutions can 
be writsten in the form -. 

gl(x)  clr g2(x) = CZ, ' .,gn-l(X) = cn-1 (13) 

where ci is a const,a.nt. of integrabion [5]. 

4 Digital Control in a Hybrid Framework 

A digit,al control system is a special case of hybrid 
control in which the plant, interface, and controller obey 
certain constraint,s. Since the events are triggered at  reg- 
u!ar (or irregular if desired) intervals of t,ime, there must 
be a clock present in t,lie system. Normally in digita.1 
control this clock is not, modeled Pxplicitly, but in a hy- 
brid 'control framework it appears as part of t,he plant. A 
convrnient, way to do t-his is to use a t,wo state oscilla.tor 
such as, 

where w is the clock frequency. If required, w can be 
made a function of the plant input, r, and then the clock 
frequency can be changed by the controller. To imple- 
ment the sampling, hypersurfaces of the type 

are used, where kl and k2 are real constants. A single 
hypersurface with kl = 1 and kz = 0 would model the 
typical case where t,he sampling rate is given by w / 2 x .  
By adding more hypersurfaces each with its own mea- 
surement function, cy1, multirate sampling can be niod- 
eled. 

When modeling digital control, the measurement fiinc- 
tion(s), a,, is a quantizer. The value of each state a t  the 
sampling instant is truncated or rounded and restricted 
to the range of values acceptable to  the digital controller. 
For example, a controller implemented on an 8 bit com- 
puter might only have the capability to  measure a state 
to 256 possible values. In that case we might have a set 
of plant symbols given by 

X = {0,1, ..., 255}, (16) 

and a measurement function given by 

a l (x ( t ) )  = trunc(x(t) + 128) modulo 256. (17) 

Quantization of this type will form a grid-like partition 
of the state space into regions, each associated with the 
same plant symbol. Figure 4 shows an example for a 2 
dimensional state space. 

On the other side of the interface, the actuator mod- 
els a zero-order hold. Controller symbols, representing 
quantized plant input values, are converted to piecewise 
constant plant inputs. In an example akin to t,he one 
given above, the set of controller symbols is given by 

R = {0,1, ..., 255}, (18) 

and y is given by 

r ( ~ ~ [ n ] )  = F[n] - 128. (19) 

Finally, the controller is an automaton which imple- 
ments the desired control strategy for the digital con- 
troller. 

4.1 Comments on HCS Modeling Digital 
Control Systems 

When a digital control system is modeled as a hybrid 
control system, the resulting hybrid control system has 
the following characteristics. First, the event triggering 
hypersurfaces are based only on the clock states. This 
means that they are unaffected by the other states of the 
plant. Because of t,liis, these states can vary arbitrarily 
without triggering an event and the sampling will occur 
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at. rates which are not, dependent, on the &ate of the 
plant. (except. for the st,a.te of the clock). 

The second characteristic of digital control is that, the 
state measurements (plant symbols) are formed by qum-  
tizing the state values in a grid like fashion. That  is, each 
statme is qriant,ized individually t,o creat,e a grid over the 
st,at,e space. Each cell in the grid is an n-dimensional 
box in t81ie st,at,e space. 

These two characteristics are actually the same ex- 
cept, tha.t one applies t,o the clock. The first one applies 
t80 t,he stat,e(s) of the dock and is a consequence of the 
clock based sampling. The  second one applies to the 
remaining plant states as a result of the way states are 
quantized in the analog t,o digit,al converters found in 
digital cont,rol. Toget,her t.he two characteristics crea.t,e a 
grid style partition over the entire state space (including 
clock st8atses) of the plant. 

'The designer is free to choose the sampling rate(s) and 
the quantization level(s) for each state. These choices de- 
t,errnine the dimensions of the n-dimensional boxes which 
fill up the state space. What the designer cannot do is 
cliange t,he basic shape of t'he boxes which form the par- 
t,ition; they will always be rectangular. 

The requirement that a grid-like partition be used is 
a limit,ation of digital control, but, it does give the ad- 
vant,age of a framework for design. The interfxe can 
be designed by selecting quantization levels and sam- 
pling rates for each state. Also, continuous-time control 
laws can be adapted for use in digital controllers via 
techniques like Euler's approximation or zero-order hold 
equivalence. The trade-off is that  most hybrid control 
design possibilities cannot, be realized in digital cont,rol 
because of the use of a grid like partition. 

4.2 Problems Encountered in Digital Control 

The combination of sampling and quantized state 
measurement,s creates problems in digital control. 
Among the problems a,re chat,tering and limit cycles. 
These effects can be described from the point of view 
of hybrid control systems. 

Chutlering - digital control systems, like hybrid sys- 
tems in general can suffer from chattering. Chatter- 
ing occurs along a surface which separat.es two different 
quantization levels or regions in the plant state space. 
If each of the two regions contains a control law which 
sends the plant, state back to the other region, then the 
stat,e will oscillate back and fort,lr a.t the sampling rate. 
Again the culprit is noii-det,eriniIiistic behavior arising 
from sbate space part,itioniiig. In t,his case, a pair of con- 
t,rol laws which are probably a.ppropriate for the stat8es 
at. the center of a region are not entirely appropriate for 
the states lying toward the boundaries of t'he region. 

a limit cycle occurs when the plant 
state can not reach the equilibrium point or when the 
equilibrium point is not associated wit,h t.he appropriat,e 

Limit cycles - 

control law to make it an invariant. The  state oscillates 
about the equilibrium point.. 

5 Example: Double Integrator 

Since the problems encountered in digital cont.rol are 
largely a result. of the quanbization, it. is reasonable tmo try 
t.0 solve them by changing the way the quant.iza.tion is 
done. The usual quantization forms a grid-like partition 
of the state space, forming an array of n-dimensional 
boxes each with it,s own symbol. The problem is that  
these quantization levels have no relationship t,o the state 
trajectories which flow through them. To reduce t,his 
problem, the grid-like partmition can be replaced wit,]] a 
partition based on the nat.ural invariants of the sydem. 
The following example explores the use of invariant,s for 
quantization. 

In this example we have a double integrator which 
we ~ s h  to stabilize. We examine three cases. First, 
the classical case of digital control is shown. Next, the 
classical quantization is used but the controller is de- 
signed using discrete event system techniques developed 
for hybrid systems. Third, the int,erface is designed to 
quantize based on system invariant,s and the cont,roller 
is again designed with met,hods from hybrid control. 

In all cases, we start with a double i n t e g d o r  plant. 

5.1 Case 1 

As an example of classical digital controller design, the 
above plant will be converted to its discrete time, zero- 
order hold equivalent. Then a discrete time controller 
will be designed, and finally the digital controller will be 
obtained by quantization of the discrete-time cont,roller. 
The zero-order hold equivalent of the plant follows. 

1 T  
x[k + 11 = [ ] x[k]  + [ i:z ] r[k] (21) 

This discrete time plant can be stabilized by the follow- 
ing feedback controller. 

r[k] = [ -2 - 3.2 ] x [ k ]  

With a sampling period, T ,  of 0.2, the controller moves 
the poles of the system from z = 1 to  z = .GG f .32, 
leading to a system whose states (should) spiral gently 
in to the origin. 

The final step to obtain the digital controller is to 
quantize the signals. The valiie of the plant state is qiian- 
tized to 64 levels before being fed to the controller. Each 
state, x1 and x2, is quantized to the nearest .25 on the 
interval [-1, 7.51 for a total of G4 possible values. 

.2  5round ( x 1 [ I C ]  / .25) 
Z [ k ]  = .25rou nd (xz [ I C ]  / 25)  
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The plant input is also quantized to the nearest .25. We 
now have a digital controller, albeit a crude one, for the 
plant. The controller will stabilize the plant in the neigh- 
borhood of the origin but rather than a gentle spiral, the 
stmate chatters in to the origin and then exhibits limits 
cycles near the origin. A state trajectory for this system 
is shown in Figure 3. 

Figure 3: State Trajectory for Case 1 

It should not be concluded t.hat this example repre- 
sents the best that  can be done with conventional digital 
cont.ro1, it does not. It is used here to illustrate the sorts 
of problems which are typical in digital control. 

5.2 Case 2 

In this case the system will he modeled as a hybrid 
control system so that the controller can be designed 
using logical DES techniques as described in [3]. 

The clock appears in the plant as described in Section 
4 as a two state periodic system. 

The two states of the clock, along with the states of the 
double integrator given in equation 20, constitute the 
augmented state space of the plant in the hybrid control 
system. 

The design of the generator is based on imitating the 
sampling of a conventional digital control system. A 
plant event should occur at intervals of the sampling 
period, T = %. This is accomplished by slipping a 
single hypersurface into the generator of t8he system. 

h l ( X , )  = Z C l  (25) 

Not,e t,hat a symbol is only produced when the hyper- 
surface is crossed in the negative direction, this avoids 
generating two symbols per clock period. There are no 
hypersurfaces associated with the states of the integra- 
tor itself, x, because only the clock triggers events. The 
plant symbols are determined by cy. 

Q(X)  = .25round(4x[k]) (26) 

This generator quantizes the plant state in the same way 
as the the first case and as shown in Fimire 4 

t x2 

Figure 4: Quantization for Case 2 

The actuator of this system will convert the controller 
symbols into one of three possible inputs to the plant. 
We use a subset of the input values which were used by 
the digital controller in the first case of this example, 
that. is 

F[k] E {-2.0,0.0,2.0}. (27) 

Now to design the controller, we first need to extract 
the DES plant model. This procedure is described in [3] 
and results in an automaton which models the double 
integrator together with the interface. Using the DES 
plant, a controller is designed via techniques developed 
for the control of discrete event systems. The cont.roller 
operates by choosing a. control policy which enables only 
desired transitions. It this case, the desired transitions 
are those which move the state toward the origin in a 
roughly clockwise direction (using the orientation of Fig- 
ure 4) .  The following equation provides the control pol- 
icy. 

Of course, the actual value of the state, x ( t ) ,  is unavail- 
able to the controller, so the quantized value, i [ k ] ,  is 
used. A state trajectory for this case is shown in Figure 
5. The chattering evident in case 1 has been eliminated. 

Figure 5 :  Stsate Trajectory for Case 2 
- 
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5.3 Case 3 

In the final case we design both the interface and the 
controller. This time the natural invariants of the system 
are be used in the quantization. Three possible inputs 
are used to control the double integrator, {-2,0,2}, and 
they are used to compute three invariant functions for 
the system. The invariant function associated with the 
input. -2 is computed as follows. The control policy is 

This gives the characteristic equation 

dX1 dxz 
22 - 2 ’  
__ - 

with a solut,ion 

g l ( x )  = 21 -I- .252z2.  (32) 

The remaining two invariant functions can be computed 
similarly. 

g 2 ( 4  = 2 2  (33) 
g3(x) = 21 - ,2512’ (34) 

The values of these invariant functions are quantized t,o 
form t,he plant symbols. 

a ( x )  = .25round(4g(x)) (35) 

Now the quantization yields the partition shown in Fig- 
ure 6. 

I I  ‘ 

Figure 6: 

The controller for 

( -2.0 

Quantization for Case 3 

this case is similar to case 2. 

F[k] = 2.0 
0 0 otherwise 

(36) 
i 

Figure 7 shows a state t,rajectory for this system. No- 
tice that the chattering has been avoided as in Case 2; 
however the controller more easily follows from the in- 

\“ 
\ 

Figure 7: State Trajectory for Case 3 

6 Conclusion 

Techniques developed in the framework of hybrid con- 
trol can be adapted and applied to digital control sys- 
tems. This paper present.ed some early result,s in the use 
of sy3tem invaria,nts in the design of hybrid control sys- 
tem interfaces. The invariants were shown to be useful 
in digital cont,rol systems as well, where quant,ization is 
the process analogous to  the interface. 
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