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Abstract

This paper presents an algorithm for the design of robust output feedback controllers
for linear uncertain discrete-time systems. The algorithm utilizes a version of the BFGS
method of conjugate directions and minimizes a performance index that includes an LQR
term to optimize performance and a robustness term which is based on recently devel-
oped bounds. The minimization of only the robustness term which corresponds to the
maximization of the uncertainty bound is also studied. The case of unstructured pertur-
bations in A has been the only one studied in the literature; the present algorithm not
only introduces a unified approach to both unstructured and structured perturbations
in A but also is shown to improve considerably the unstructured uncertainty bound for
the system matrix A found in the literature. Additionally, several other cases involving
unstructured/structured perturbations in all the state-space matrices are exploited and
numerous examples are provided to illustrate the results.

1 Introduction

The problem of determining a linear feedback control law for uncertain linear systems has
drawn considerable attention recently. A number of criteria have been used to characterize the
system uncertainties, so that the stability (asymptotic, quadratic, exponential) of the uncertain
systems is guaranteed if these criteria are satisfied, and several robust controller design methods
have been developed.
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In [14], [18], the Guaranteed Cost Control approach is used for the design of robust feedback
controllers that guarantee both the robust stability and performance of continuous systems.
In [8], a two-level optimization process that guarantees quadratic stabilizability of continuous
systems is presented and in [9], an algorithm consisting of a strictly quasiconvex minimization is
applied to the design of quadratically stabilizing output feedback controllers for both continuous
and discrete-time systems. In [25], algorithms are proposed, based on the Lyapunov stability
criterion, to choose a set of weighting matrices for the quadratic cost function; these matrices
are then used in the standard Riccati equation to give the linear quadratic optimal control
law for the nominal continuous system, which is shown to quadratically stabilize the uncertain
system. A similar combination of the Lyapunov stability criterion and the Riccati equation is
used in [22], where a noniterative procedure is presented for the design of a robust state feedback
controller that ensures the exponential stabilizability of uncertain continuous systems.

The LQR formulation for continuous systems is used in [27], where an upper bound on the
cost incurred by state feedback law and parameter uncertainties is derived and the control law
that minimizes this upper bound is found; conditions are presented, under which the feedback
system 1is stable for all admissible parameter variations. Another LQR based control design
which is robust to parametric uncertainties is developed in [5] for continuous systems, where
the resulting full-state controller is designed by solving a single Riccati-type equation. In [17],
the robustness of the discrete-time LQG problem is studied, where the system to be controlled
is described by a state-space formulation that includes plant parameter perturbations and noise
uncertainty.

Numerous synthesis results based on H,., techniques have also appeared in the literature.
In [7], [4], for instance, conditions for quadratic stability with disturbance attenuation and
quadratic stabilization via dynamic output feedback are derived respectively for uncertain
continuous and discrete-time systems, whose uncertainty matrices are assumed to be of a
specific structure. Then, an H,, based approach is described for the design of controllers that
satisfy the aformentioned conditions. However, no specific information about the uncertainty
bounds that describe the uncertainty matrices is provided. In [28], the authors present a
convex programming based approach to the design of H., controllers for uncertain systems.
Specifically, they reduce the problem of controller design to a matrix inequalities problem and
search for a controller that satisfies the conditions for the strongly robust H., performance
criterion they define. Note that the systems they study are the typical H., systems with
exogeneous disturbances included in the state-space model. Note also that no explicit way
is presented to compute the uncertainty bounds, which are decided experimentally via the
ellipsoidal method. Several other papers, some of those included in the references of [4], [7]
deal with the problem of robust output feedback controller design in a fashion similar to the

one of [4], [7], [28] discussed above.

All the above controller design approaches share the same general objective, which is to find
a stabilizing controller that satisfies some kind of stability conditions or is robust in some sense,
without considering the maximization of any of the robust stability bounds existing in literature.
This has been done, however, in [26] for continuous systems with structured uncertainties in
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the system matrix A and in [12] for discrete-time systems with unstructured uncertainties in
A. Note that the design in the first paper relies on the selection of a weighting matrix not
directly associated with the structured uncertainties and in the latter on the bound developed
in [11]. In both of these papers, the information about the uncertainty bound is a part of
the minimizing quantity, which also includes the classical LQR cost. Therefore, the controller
design objective is twofold, that is to minimize the LQR cost and maximize the perturbation
bounds. A similar approach was used earlier in [21] for continuous systems with structured
uncertainties in all the state-space matrices, under some quite restrictive assumptions imposed
on the perturbation matrices. Note that although the maximization of some stability bound
is not considered in the design process, the information about the structured uncertainty is
directly included in the minimizing quantity.

From the previous paragraph, it is quite obvious that for discrete-time systems, only the
case of unstructured perturbations in A has been studied. Here, we present a unified output
feedback controller design approach to both unstructured and structured perturbations in A.
Our approach is based on some new theorems for both the structured and unstructured case,
which were recently developed in [13], where it was also shown that these theorems provide
bounds that improve the ones obtained via the methodology suggested in [11]; note that, as
mentioned before, the unstructured bound of [11] was the one used in [12]. Our design not only
provides a stabilizing static output feedback controller that improves the unstructured bound
for A derived in [12] but is also capable of finding another such controller that maximizes
the bound for the case that A is perturbed by known uncertainty matrices. In addition, we
study several other interesting cases, as it is shown next. In all these cases, the minimizing
quantity consists of two terms; one is the robustness term, which is associated with the specific
unstructured /structured bound we wish to maximize and the other is the LQR term, which is
associated with the specific control performance we wish to establish. Note that our approach is
also applied to a minimizing quantity consisted of only the robustness term, in order to find the
controller that maximizes the stability bounds, without considering any control specifications.
Note that only the case of static output feeback is studied, since it can be easily shown that the
case of dynamic output feedback can be reduced to that of static feedback as well. Finally note
that our minimization algorithm utilizes a version of the Broyden family method of conjugate
directions, which is based on the BFGS rule, [2] and that the case of state feedback can be
easily considered as a special case of the output feedback case for €' = I.

The paper is organized as follows. In section 2, we give a brief review of the new theorems de-
veloped in [13], as mentioned before, for the cases of unstructured and structured perturbations
in discrete-time systems. In section 3, we study the case of unstructured/structured perturba-
tions in the system matrix A, and present an algorithm based on the BFGS rule that solves
the minimization problem. In section 4, we consider unstructured/structured perturbations in
either the input matrix B or the outpur matrix C' and in section 5, unstructured/structured
perturbations in either (A, B) or (A, C). In section 6, we study the case of unstructured per-
turbations in all state-space matrices. In section 7, we provide several illustrative examples for
the cases studied above and finally in section 8, concluding remarks are briefly discussed.
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2 Preliminaries

We consider the linear discrete-time system with the state-space description

ek +1) = Az(k) (1)

where © € R™ is the state vector and A an asymptotically stable matrix. Then, for every
symmetric positive definite matrix (), we can find a symmetric positive definite matrix P, which
is the unique solution of the Lyapunov equation

ATPA-P+Q=0 (2)

When A is perturbed by the matrix AA, then for the perturbed system

y(k+1)=(A+AA) z(k) (3)
the following theorem has been proven in [13]. First define
O, =ATPZ7IPA (4)

Theorem 2.1 Consider the linear discrete-time system (1 ) where A is an asymptotically
stable matriz that satisfies (2 ). Suppose that A — A+ AA, then the perturbed system ( 3 )
remains asymptotically stable, if

(AA)T (aZ + P) (AA) + éQl < Q (5)

or

rin(@) — T )
Omaz(@Z + P) (6)

Omaz(AA) < \l

where P, Q are defined in (2 ), Q1 in ( 4 ), Z can be any positive definite matriz of

appropriate dimensions, and « any positive number that satisfies

Umax(Ql)
7in (@) )

o >
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Next, we consider the case that the perturbation matrix AA is described by

A=Y rAi=(Kol) A (8)
=1
where k;,7 = 1,..,m denote real, uncertain parameters and A;,7 = 1,..,m are constant,

known matrices, and the following definitions have been used

K = [k Ky -+ 8&p |7 9)
= (A1 4 AT (10)
Then the following theorem has again been proven in [13].

Theorem 2.2 The linear discrete-time system (3 ) with structured perturbations of the form
of ( 8 ) remains asymptotically stable, if the uncertainty parameters satisfy

= Umm(Q) - O-max(i Ql)

Zﬁ;? <

=1 O-Tznax(A) Umal’(aZ + P)

(11)

where O, ki, A are defined in (4),(9), (10 ) respectively, Z can be any positive definite

matriz of appropriate dimensions, and o any positive number that satisfies (7 ).

Note that, as it has been shown in [13], the above theorems provide bounds that improve
the ones obtained via the methodology suggested in [11]. The main point of the approach used
for the theorems above is the selection of a positive definite matrix Z and a positive number
« that maximize the stability region within which the uncertain parameters vary. Finally note
that the above approach has also been extended, in [13], to the case of structured perturbations
in all the state-space matrices.

3 Perturbations in A

In this section, we consider the linear discrete-time system with the state-space description

c(k+1) = Ax(k)+ Boulk) (12)
y(k) = Cox(k) (13)
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where x € R" is the state vector, u € R is the input vector and y € R? is the output vector.

Both unstructured and structured perturbations for the system matrix A are of interest here,
that is

= Ap+AA (14)
=1
With the static output feedback law
u= Ky(k)=KCy x(k) (16)
the closed-loop system is described by
z(k+1) = (Ao +AA) z(k) (17)
e(k+1) = (Ao+ D ridr) a(k) (18)
=1

for the unstructured and structured case respectively, where obviously the following defini-
tion has been used

AO - AO —|— Bol(CO (19)

3.1 Design without performance specifications

Our objective is to find a static stabilizing output feedback gain K that maximizes the bounds
given in ( 6 ) and ( 11 ). Note the similarity between these two relations. Due to this
similarity, we present here a unified approach to both the unstructured and structured case.
For the closed-loop systems of ( 17 ), ( 18 ), relations ( 2 ) and ( 4 ) can be translated into the
following

ATPA - P+Q=0 (20)

O, = ALrPz='PA, (21)
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Since Q in ( 20 ) is selected beforehand, in order to maximize the bounds of ( 6 ), ( 11 ),
we need to

o (A.1): minimize opu(aZ + P)

o (A.2) : minimize Umm(i )

For any matrices A and B, the following properties hold

Tmae(A) < JAllE = Tr(ATA) (22)
Omas(AB) < Opan(A) Tpnan(B) (23)
A+ B) < 0maslA) + 0pan(B) (24)

where ||A||r denotes the Frobenius norm and Tr(A) the trace of a matrix A. Hence for
(A.1), we choose to minimize the quantity

Ju=Tr[(aZ + P\ (aZ + P)| = Tr(a?Z* + 20ZP + P?) (25)

where obviously the following property has been used

Tr(AB) = Tr(BA) (26)

for any appropriately dimensioned matrices A and B, for which AB and BA are defined.
In view of ( 21 ), ( 23 ), we have

O ar(A0) 0500 (P) Oimac( Z271) (27)

Since Z is selected beforehand and an upper bound of ¢,,..(P), that is Tr(P?), is already
minimized in ( 25 ), for (A.2) we simply choose to minimize

1 o
J12 = E TT(A(j; Ao) (28)

which is an upper bound of éafmx(;lo). Note that the above choice, that is the minimization
of the sum of Tr( AL Ag) and Tr(P?) is an indirect and harder way to minimize their product; in
other words, we impose a more demanding task on the minimizing process. On the other hand,

note that « is included in the minimizing quantity, because we need to satisfy the positiveness

7
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of the numerator, as indicated in ( 7 ). Therefore, in view of ( 25 ), ( 28 ) the minimizing

quantity is given as

, [ J—
J, = Ju+Jis = Tr(a*?Z* +2aPZ 4 P* + — A Ao) (29)
o

under the condition that ( 20 ) holds. This is clearly a constrained minimization problem.
By including ( 20 ) in ( 29 ), we finally reduce the problem to an unconstrained minimization

one, with the minimizing quantity given as

[ o
J = TT[O&2Z2—|—20éPZ—|-P2‘|‘EA(j;AO+L1 (AJPA— P +Q)] (30)

where L1 € R"*" is the Lagrange multiplier matrix. Next, we compute the partial deriva-
tives of J; with respect to Ly, o, P, and K these partial derivatives are needed for the
algorithm that is presented next for the minimization of J;. In order to compute them, we

need the following properties from [1]

0

oy Ir(x?) = 2x (31)
9
o (Y By = ATBT (32)
9
S THAYTBy) = Budg (33)
aiy Tr(AsYB:Y") = AY By + AJYB] (34)

for any X ¢ %an7 Y € %nxm7 Al c %lxn7 Bl c %mxl7 A2 c %lxm7 32 c ?}E”Xl7 A3 c %an7
B3 € R*™ . With these properties, we have

8.J I
L= AL = ATPA —P+Q (35)
9Ly
dJ 1 AT q
6@1 = Al = 2aTr(Z%)+2Tr(PZ) - e Tr(AL Ag) (36)
aa}? = AL = 2P 4207+ ALTAT — 1T (37)
2 2
862} = AL = ZBIBKC,CI + = BIA,CF
(8% (8%
+ BIPByKCy (Ly+ LT) CT + BIPAy (L + LT) CF (38)
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In order to minimize ( 30 ), we use a version of the Broyden family method of conjugate di-
rections, which is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule; details
in [2]. The proposed algorithm is presented next.

Initialization Step Let € > 0 be the termination scalar. Choose an initial stabilizing
gain
W)
K, = : (39)
()

where (r1)T,1 = 1,..,r are the 1 x ¢ rows of K, which stabilizes (Ag, By, (o), that is Ag
stable. Also, choose an initial symmetric positive definite matrix D;. Let

(1)

Y1 =121 = : (40)

be a column vector consisting of the transposes of the rows of K. Alsolet £ =75 =1 and
go to the Main Step.

Main Step

MI. Substitute the gain matrix K; in the gradients of ( 35 )-( 37 ), set them to zero,
that is A}, =0, Al =0, AL =0, and solve for P, a, L; respectively, in that specific order.

M2.  Substitute these parameters in ( 38 ) and compute
(o1)"
Ak, = : (41)
(o)t
where (07)T,1 =1,..,r are the 1 X ¢ rows of A}(].

M3.  Define

Vi) = ¢ (12)

If ||VJi(y;)|| < €, STOP. The optimal gain is K.

Otherwise, go to M4.
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M4. If 5 > 1, update the positive definite matrix D; as follows:

A T D iq._ D: 1q._pL - qT D
Dj=D;1+ pzf lp],_l [1+ q]_lT - 41% -] - i, 1p]_Tl —I_?] RS d (43)
Pi—195-1 P;—195-1 P;—195-1
where

Pi-1 = ANoadjon =y, — Yy (44)
qj—1 = VJl(yj)_VJl(yj—l) (45)

M5.  Define
dj = =DV Ji(y;) (46)

and let A\; be an optimal solution to the problem of minimizing Ji(y; + Ad;) subject to
A>0. Let

(™)
Yit1 =y + Aid; = : (47)
(%)
which implies that
(7"
Kjp = : (48)
()T

where obviously (le-l—l), [=1,..,7 are ¢ X 1 column vectors.

M6. If j < gr, replace j by j + 1 and repeat the Main Step.

Otherwise, if j = ¢r, then let y3 = 2441 = Ygr41, replace k by £+ 1, let 5 = 1 and
repeat the Main Step. 0o

There are several issues that need to be discussed here. Since we try to find a gain matrix
that not only minimizes the quantity given in ( 30 ) but also stabilizes the closed-loop system,
we need to check at each step ( either of j or k ), if the new matrix K., makes Ag+ BoK e, Co
stable. If this is not true, we try the matrix K, = K4+ %(me — Ko12), as suggested in [20],
where K,y 1s the gain matrix computed in the previous step of 7 or k. Therefore, once we find

10
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a stabilizing K, we restart the algorithm. Otherwise, we try to find a stabilizing gain matrix
from the set of matrices

1
K” ot = Aold + v ([ new I(old)a vV = 1,2, (49)

and then we restart the algorithm.

Since our algorithm is an indirect version of the BFGS algorithm, as an alternative to
the stopping criterion of (M3), we could use another quite practical criterion. Specifically,
we may consider monitoring J; and stop when we reach a plateau or when we see that J;
is sufficiently small and the associated bound derived is acceptably large. Additionally, note
that for optimization problems similar to the one we study here, alternative methods based on
gradient-type and nongradient-type algorithms have been proposed in [10] and [20] respectively.

From ( 36 ), we easily see that we have either one or two positive solutions for a. For our
algorithm, we choose to keep the largest value of «, since we also need to satisfy the positiveness
of the numerator of ( 6 ) and ( 11 ), as discussed before. However, in the case of an unsuccessful
search for a stabilizing gain matrix, as explained in the previous paragraph, we can also try
the other positive solution of «, if any. Finally note that the line search in (M5) of the Main
Step was performed in our examples by the Fibonacci method; details in [2].

3.2 Design with performance specifications

In the previous subsection, we focused on finding an output feedback gain A that maximizes
the bounds of (6 ) and ( 11 ). If, in addition to this objective, we also wish to attain a specific
control performance, then we need to include in our minimizing quantity a term that evaluates
this control performance. Therefore, we consider the familiar LQR cost, [6], which is given as
follows

J, = Zx k)Qrx(k) + ul (k) Ryu(k) (50)

where ()1, R; are positive definite matrices of appropriate dimensions. For the nominal
system (Aog, Bo, Cp) with the output feedback law ( 16 ), we rewrite ( 50 ) as follows

Jy = Zx ) (Q1 + CTKTR K Cy) x(k)
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- ng<0> (AD)* Q (Ao)* (0) (51)
where obviously

Q=0Q,+CIKTR KC, (52)

The following equivalence has been shown in [23] for the solution of the discrete-time Lya-
punov equation ( 2)

ATPA-P+Q=0 <= P:i(AT)’“QA’“ (53)

k=0

With the above relation, ( 51 ) can be rewritten as

J, = 27(0) P, 2(0) (54)

where P; is the solution of the Lyapunov equation

ATP,Ag— P, +Q =0 (55)

As we see, .J, depends on the initial state #(0), which implies that the optimal gain matrix
K will also depend on «(0). To eliminate this dependence, we may assume, [16], [24], that «(0)
is a random vector with expected value and second-order moment given respectively as

Elz(0)] = =0 (56)
Elz(0)27(0)] = X, >0 (57)

The most widely used method, [15], is to consider x(0) uniformly distributed on a sphere
of radius o, that is

XO = U]n (58)

with ¢ = 1 being the obvious choice. Note that alternative methods to deal with this
dependence can be found in [3], [19]. We choose the following modified cost

!

Jy = E[Tr(J,)]

12
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In view of ( 30 ) and ( 59 ), we

= EA{Tr[z"(0) P, 2(0)
= B {Tr(P,z(0)27(0)
= Tr {E[P, z(0) z7(0)]
= Tr(P, Xy)

(59)

finally define the overall minimizing quantity, which is

associated with both the robustness of the matrix Ay and the control performance of the
closed-loop system

Ja

= S+

1 - _ _
= Tr[a2Z2—|—2aPZ—|—P2—|—EAOTAO—|—L1 (ATPA, — P+ Q)

+ P Xo+ Ly (Aoszzzlo—Pz—l-Q)]

(60)

where, similarly to ( 30 ), we have reduced the problem to an unconstrained minimization
one by including ( 55 ) in the minimizing quantity via the Langrange multiplier matrix Ly. It
is now obvious that with the introduction of P, and L; in the new cost J4, we need to consider
its partial derivatives with respect to these new matrix variables as well. On the other hand,
again due to P, and Ly, we have some additional terms in A} of ( 38 ). Therefore, the partial
derivatives of the final cost J4 with respect to all the matrix variables entailed have as follows

0 Ja
0Ly
0 Ja
0L,
0 Ja

Jda
0 J4

opP
0 Ja

0P,
0 Ja
oK

ATPA — P+ Q

ATPyAg— P+ Q

20 Tr(Z*)+2Tr(PZ) — % Tr(AL Ap)

2P + 207 + AgLT AT — LT

Xg + ALy Aj — Ly

% BIB,KCoCT + % BIACT + R\KCy (L, + LT CF

+ BIPBoKCo (L1 + LT) CT + BIPAg (L + LT) CF
+ BIP,BoK Co (Ly + LT) CF + BIPyAg (Ly + LT) CF

(61)
(62)
(63)
(64)

(65)

(66)

In order to minimize Jy4, the algorithm of the previous subsection can be used again, the
only difference being that steps (M1), (M2) have to be replaced by the following

13
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Mla.  Substitute the gain matrix K; in the gradients of ( 61 )-( 65 ), set them to zero,
that is A, =0, A4, =0, A4 =0, AL =0, Aé = 0 and solve for P, P, «, Ly, L, respectively,
in that specific order.

M2a.  Substitute these parameters in ( 66 ) and compute
(o1)"
AR = : (67)

K, :
(o))"

where (¢7)7,1=1,..,m are the 1 x ¢ rows of Aﬁr].

All the other steps of the algorithm remain the same, bearing in mind that we now refer to
J4, instead of J;.

4 Perturbations in B or C

In this section, we consider perturbations in either the input matrix B or the output matrix C.
Since both cases are similar, we study the case of perturbations in B. Note that the approach
outlined next readily applies to the case of perturbations in C'. Therefore, we consider the
linear discrete-time system with the state-space description

w(k+1) = Aga(k)+ Bu(k) (68)
y(k) = Cox(k) (69)

Both unstructured and structured perturbations for the input matrix B are again of interest
here, that is

B = By+AB (70)
B = By+ S AB (71)
=1

where again A;,z = 1,..,m denote real, uncertain parameters and B;,2 = 1,..,m are con-
stant, known matrices.

14
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4.1 Unstructured perturbations

We apply the static output feedback law ( 16 ) to the system of ( 68 )-( 70 ). The closed-loop
system is then described by

o(k+1) = [Ao+ (Bo+AB) KCol (k)

= [Ao+ (AB) KCy ] (k) (72)
In view of ( 6 ), ( 23 ), we have

Omaz| (AB) KCy ] < 0mae(AB) 0ar(KCo)

Tmin(Q) = Omas(= Q1)
< \l Omaz(@Z + P) (73)

or finally

Umin(Q)_Uma.r(é Ql)
Omaz (@ Z+P)

O-maac([(CO)

Tmas(AB) < (74)

where P, () are given in ( 20 ) and 4 is defined in ( 21 ). If this sufficient condition is
satisfied by the unstructured perturbations of B, then the stability of ( 72 ) is maintained. It
is obvious, that in addition to the minimization objectives of (A.1) and (A.2), as studied in the
previous section, we also need to

o (A.3) : minimize 04, (KCy)

Similarly to ( 25 ) and ( 28 ), instead of (A4.3), we choose to minimize its upper bound, that
is

Js = Tr[ (KCo)T(KCy) ] (75)

Therefore, the minimizing quantity for the case of unstructured perturbations in B is

Jp, =1+ Js (76)
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when no performance specifications are considered, where .J; is defined in ( 30 ). When
performance specifications are included in the minimizing quantity, then this quantity is

J5P = Ja+ Js (77)

where J4 is defined in ( 60 ). The algorithm of the previous section can be used here for
Jp, and Jg" as well, the only difference being that the term

0 Js

_ - T
T = 2 Kol (78)

needs to be added to ( 38 ) and ( 66 ).

4.2 Structured perturbations

In this part, we assume structured perturbation matrices for the input matrix B, as indicated
in ( 71 ) above. The closed-loop system, after the output feedback law ( 16 ), is then described
by

=1
= ( Ao+ S NBKCy )a(k) (79)
=1
Defining
By
B* = : (80)
B,
we have
B KCy
.| = BKG (81)
B, KC,

Hence, ( 11 ) readily gives
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f: )\2 < Umzn(Q) - O-maac(i Ql)
— 02.:(B*KCy) 0mar(aZ + P)

=1

(82)

If this sufficient condition is satisfied by the structured perturbation matrices of B, then
the stability of ( 79 ) is maintained. Now, in addition to the minimization objectives of (A.1)
and (A.2), we also need to

o (A.}) : minimize 0p4:(B*KCy)

Similarly to ( 25 ), ( 28 ), ( 75 ), instead of (A.4), we choose to minimize its upper bound,
that is

Jy=Tr[ (B*KCo)T(B*KCy) | (83)

so that the minimizing quantity for the case of structured perturbations in B is given as

Jgs — J1—|-J4 (84)
JP = Ja+ s (85)

similarly to ( 76 ), ( 77 ) before. The algorithm of the previous section applies here for Jj_
and Jg" as well, the only difference now being that the term

8J4 . T ox 17 T
=2 (B BR (36)

needs to be added to ( 38 ) and ( 66 ).

5 Perturbations in (A, B) or (A, C)

In this section, we consider perturbations in the system matrix A and the input matrix B orin A
and the output matrix C'. Again, since both cases are similar, we study the case of perturbations
in (A, B). Obviously, the approach outlined next applies to the case of perturbations in (A, C)
as well.
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5.1 Unstructured perturbations

We consider the linear discrete-time system with the state-space description

v(k+1) = Axz(k)+ Bu(k) (87)
y(k) = Cox(k) (88)
where
A = Ag+ AA (89)
B = By+ AB (90)

With the output feedback law ( 16 ), the closed-loop system is given by
= [Ag+AA+ (AB)KCy ] z(k) (91)
In view of (123 ), ( 24 ), we have

Omaz] AA+ (AB)KCy | < 0pan(AA) 4+ 01an(AB) 0mar(KCo) (92)

Therefore, the stability of the closed-loop system ( 91 ) is maintained, if the perturbation
matrices AA and AB satisty the following sufficient condition

Umm(Q) - O-max(i Ql)
Omaz(@Z + P)

Omaz(AA) + 0maw(AB) 0man( KCy) < \l (93)

where again P, () are defined in ( 20 ) and €y in ( 21 ). The region that satisfies the
inequality

Tty <6 (94)

for positive x, y, v, ¢ is the shaded triangle shown in Fig. 1. Obviously, this region gets
larger for larger 6 and smaller 4. Therefore, in order to maximize the stability region that is
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S8/y

/ region : X +yy<?9

Figure 1: Stability region for unstructured perturbations in (A, B)

defined by ( 93 ), we need to maximize the RHS of ( 93 ) and minimize 0., (K Cp). The first
corresponds to objectives (A.1), (A.2) and the latter to objective (A.3). Therefore, we see that
the present case has the same objectives with the case of unstructured perturbations in B or

C we studied before, which implies that ( 78 ) needs to be added again to ( 38 ) and ( 66 ).

5.2 Structured perturbations

We consider again the system of ( 87 ), ( 88 ), but now A and B are perturbed as in ( 8 ) and
(71), that is

™A
A = AO—I-ZKJZAZ (95)
=1
mp
B = BO"’Z)‘JBJ (96)
7=1
We define
K [K1 Ky o Ky )t (97)
A (A A oo Ay 1P (98)
O = [0 0 -+ by )" = [KT AT (99)
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A = (AT AT .oAT YT (100)
B = [(BIKCy)" (B,KCy)" -+ (B, KCy)" " (101)
= [1A" B (102)
With the output feedback law ( 16 ), the closed-loop system is given by
m A mpg
=1 7=1
= [Ao+ (6@ L) 11]x(k) (103)

In view of ( 11 ), the above system is asymptotically stable, if the uncertain parameters
satisfy

Z ég < Umzn(?) - O-maac(i Ql) (104)
=1 Z O-Tznax(H) Umal’(aZ + P)
Therefore, in addition to objectices (A.1), (A.2), we also need to
o (A.5) : minimize Umax(f[)
As before, we choose to minimize Tr(f[Tf[). Since
R R m A mpg
T =" AT A+ > (B KCo) (B K Co) (105)
=1 7=1
we simply need to add the following term to ( 30 ) and ( 60 )
mp
Js = Tr[ > (B;KCo)"(B;KCy) | (106)
7=1

so that the minimizing quantities for the case of structured perurbations in A and B are
given by

JZXB — J1—|-J5 (107)
Jr = s+ Js (108)
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similarly to ( 84 ), ( 85 ) before. Therefore, our algorithm can be used again, with the
addition of the term

OJs Ry prp o T
K 22 B; B;KCoCy (109)
7=1

to (38 ) and ( 66 ).

6 Perturbations in (A, B, C)

In this section, we consider unstructured perturbations in the system matrix A, the input
matrix B and the output matrix . Specifically, we consider the linear discrete-time system
with the state-space description

wk+1) = Axz(k)+ Bu(k) (110)
y(k) = Ca(k) (111)
where
A = A+ AA (112)
B = By+ AB (113)
C = Co+ AC (114)

With the output feedback law ( 16 ), the closed-loop system is given by

r(k+1) = [Ao+AA+ BoKCy+ (AB)KCy+ BoK(AC) + (AB)K(AC) ] (k)
[ Ao+ AA+ (AB)KCo + BoK(AC) + (AB)K(AC) ] z(k) (115)

Defining

Aspe = AA+ (AB)KCy+ BoK(AC)+ (AB)K(AC) (116)
we have
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O-maac(AABC) S Umax(AA) + Umax(AB) O-maac([() O-maac(CO)
+ Oimaz(Bo) Omaz(K) Omaz(AC) + 0mae(AB) Oman(K) Opmar(AC)(117)

Therefore, the stability of the closed-loop system ( 115 ) is maintained, if the perturbation
matrices AA, AB and AC satisty the following sufficient condition

Umax(AA) + Umax(AB) O-max([() Umax(CO) + Umax(BO) O-max([() Umax(AC)

Umm(Q) - O-max(i Ql)
Omaz(@Z + P)

+ Omaz(AB) 0pan(K) Omaz(AC) < \l (118)

where again P, ) are defined in ( 20 ) and €y in ( 21 ). The above inequality defines a
region in R for 0,4 (AA), 0pnar(AB) and 0,,.:(AC). As shown in appendix A, in order to
maximize the volume of this region, we need to maximize the RHS of ( 118 ), which corresponds

to objectives (A.1), (A.2) above, and also
o (A.6) : minimize 0pa,(K)
which, similarly to what we did before, corresponds to the minimization of

Jo = Tr(KTK) (119)

Therefore, the minimizing quantity for the case of unstructured perturbations in A, B, C
is given by

Jipe = Jat+Js (121)

similarly to ( 107 ), ( 108 ) before. Therefore, our algorithm can be used again, with the
addition of the term

=2 K (122)

to ( 38 ) and ( 66 ). Note that all the above hold under the restriction that
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| | 1 Jam(@) —Tnar(G ) oo (123)

Omax (CO) Omax (BO) Omax ([() O'magg(OéZ —|— P)

which, as discussed in the appendix, is a condition that practically can not be violated.

7 Illustrative examples

Example 1 Consider the scalar system

w(k+1)=0.52(k) + u(k), z(0) = 1.0 (124)

with state feedback u(k) = Ka(k). This system was studied in [12], where the following
LQR cost was used

Jy =" (k) + P (k) (125)
k=0
that is ¢y = Ry = 1. The derived bound for unstructured perturbations in the system

matrix A was

Omaz(AA) < 0.8436 (126)
for a gain of K = —0.3436. We apply our method for the same LQR term. Choosing

Q) = 1.30, Z = 0.60, initial stabilizing gain K; = 0.1 and positive definite matrix )y = 0.05,
we obtain a stabilizing gain of K = —0.499984, which corresponds to

Tmas(AA) < 1.00 (127)

which compares favorably to ( 126 ) of [12]. The components of the minimizing quantity
( 60 ) that are associated with the robustness and the performance objectives are respectively

Ji = 1.69 (128)
Jy = 125 (129)
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Now, if we neglect the performance specifications, as indicated by the above LQR cost, and
focus on just the maximization of the robustness bound, that is the minimization of ( 30 ), we
obtain a stabilizing gain of K = —0.499909, which corresponds to

Tmas(AA) < 0.9999 (130)
Ji = 1.6902 (131)

Note that the same ), Z, K; and ()1 have been used. As we see, in this scalar case, we
obtain almost the same results for the final stabilizing gain K, the uncertainty bound and
the robustness component J; of the minimizing quantity, no matter whether the LQR term is
included or not in the minimizing quantity. Note, however, that this is not the case, in general,
for MIMO systems, as we can clearly see in the example that follows.

Example 2 Consider the discrete-time system of ( 12 )-( 13 ) with

—2  1.20 1 0 1.2 1.5
AO_(O.lO —0.10)’ BO_(O 0.1)’ CO_<1 1) (132)

First we find the gain matrix K that maximizes the bounds of ( 6 ), ( 11 ) for unstructured
perturbations in the system matrix A, without considering any performance specifications;
therefore we minimize J; of ( 30 ). We consider ) = I, and

0.6631  —0.0665
Z = (—0.0665 0.9869 ) (133)
We also choose as initial stabilizing gain
., (—15 35
K = ( o ) (134)

and as initial positive definite matrix Dy = 0.01 I;. The stabilizing gain obtained by our
algorithm is

. (—10.6677 14.8015
A _< 6.6660 —9.0005) (135)
which corresponds to
Omaz(AA) < 0.9997 (136)
Jy = 2.0011 (137)
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Now, we include the LQR cost of ( 50 ) in the minimizing quantity, that is we minimize .J4
of ( 60 ). We consider 1 = Ry = Xy = I and the same initial positive definite matrix Dy,
initial gain matrix Ky, (), Z as before. The obtained stabilizing gain is now

. (—10.1829 14.1263
k _< 0.7532 —1.0181) (138)
which corresponds to
Omaz(AA) < 0.7575 (139)
Ja =9.7996 (140)

where the components that are associated with the robustness and the performance objec-
tives are respectively

Ji = 2.6700 (141)
J, = 7.1296 (142)

Comparing ( 141 ) to ( 136 ), we see that the robustness component is greater, when we
consider performance specifications in the minimization process. This was expected, since in
that case we have a harder task, whereas in the case of no control performance, we simply try
to minimize the robustness component, that is J;. In that respect, it is not surprising that the
derived bound is smaller in the case of both objectives, since the inclusion of the performance
term in the minimizing quantity adds an additional requirement to the minimizing task, whereas
in the case of no performance specifications we simply try to maximize the bound.

Example 3  We repeat the previous example for structured perturbations in A; specifi-
cally we assume that

AA = (0.20 0.10)

0 0 "2 ((1) (1)) (143)

Using the results of example 2, for the case of only robustness specifications, we obtain

K7+ K5 < (0.9756) (144)

whereas for the case of both robustness and performance specifications, we obtain
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Ky + K&y < (0.7392) (145)

Example 4  Consider the discrete-time system ( 132 ) of the previous two examples with
unstructured perurbations in the input matrix B. First, we include performance specifications
in the minimizing quantity. We consider @), ()1, Ry, Xo, K1, Dy as in example 2 and

1.4183  —0.5209
7= (—0.5209 0.9241 ) (146)
Our algorithm gives a stabilizing gain of
. [ —9.5488 13.2458
k= ( 0.5427 —0.7376) (147)
and
Omaz(AB) < 0.3141 (148)
Jgb = 14.6404 (149)
where
Ji = 3.4616 (150)
Jy = 6.8104 (151)
Js = 4.3684 (152)

Then, we neglect the control specifications. For the same matrices of interest, we obtain a
stabilizing gain of

. (99777 13.8439
K= ( 0.8420 —1.1372) (153)
and
Omas(AB) < 0.3554 (154)
Jg, = T1.7531 (155)
where
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Ji = 2.9616 (156)
Js = 4.7915 (157)

Note the improvement of the bound in ( 154 ), compared to ( 148 ).

Example 5  We repeat the previous example for structured perturbations in B; specifi-
cally we assume that

1 —0.1 0 0.1
AB =\ (0 0 ) o (_0‘1 y ) (158)

Considering @), )1, Ry, Xo, K1, Dy as in examples 2-4 and

1.4458  —0.3709
7z = (—0.3709 0.9184 ) (159)
we obtain
A+ A < (0.3030)° (160)
Jgf = 14.7122 (161)
where
Ji = 3.4898 (162)
Jy = 6.8060 (163)
Jis = 4.4164 (164)

Neglecting the performance specifications and keeping the same matrices of interest, we
obtain

A+ A < (0.3208)° (165)
Jp = T7.8135 (166)

where
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Ji = 3.2104 (167)
Ji = 4.6031 (168)

Note again the improvement of the bound in ( 165 ), compared to ( 160 ).

Example 6  We consider again the nominal system of examples 2-5 and assume unstruc-
tured perturbations in both A and B. As discussed before, the minimization problem that we
need to solve for this case is the same with the one of the case of unstructured perturbations
in B. Therefore, we can use the results of example 4. For the cases of robustness specifications
and robustness/peformance specifications, we obtain the following stability regions respectively

Tmas(AA) + 2.1885 0as(AB) < 0.7778 (169)
Tmas(AA) +2.0000 000 (AB) < 0.6565 (170)

which correspond to the triangle of Fig. 1 for @ = 0,,0.(AA) and y = 04, (AB) and

0 =0.7778
6 = 0.6565

= 0.3554 (171)
= 0.3141 (172)

2o 2 |

for the above cases respectively. Note that for the case of only robustness specifications, the
stability region is obviously larger than for the case of robustness/performance specifications.

Example 7 We revisit the system of example 5. In addition, we consider structured
perturbations in A as well. Therefore, the perturbation matrices for A and B are as indicated
in (143 ), ( 158 ) respectively. Using the same matrices of interest, as in example 5, for the
case of robustness/control specifications, we obtain a stabilizing gain of

. (95345  13.2270
K= ( 0.2867 —0.3677) (173)
and
K74 K3+ AT +H A < (0.2728)° (174)
JyE = 14.7105 (175)
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where

Ji = 3.4949 (176)
J, = 6.8071 (177)
Js = 4.4085 (178)

For the case of robustness specifications only, we obtain a stabilizing gain of

. [ —9.8876 13.7204
5 _(—1.0071 1.6152) (179)
and
Ky 4+ k3 +ATH A < (0.2899)° (180)
Jig = T7.8135 (181)
where
Jy = 3.2145 (182)
Js = 4.5990 (183)

Note, once more, the improvement of the bound in ( 180 ) compared to ( 174 ) .

8 Conclusions

An optimization algorithm for the design of robust output feedback controllers for linear uncer-
tain discrete-time systems has been presented. This algorithm utilizes a version of the Broyden
family method of conjugate directions which is based on the BFGS rule. The minimizing
quantity reflects the twofold optimization objective, which is the simultaneous maximizaton of
established uncertainty bounds and the minimization of the typical LQR performance criterion.
The first objective is based on recently established improved bounds that were developed in
[13]. Note that the algorithm has also been applied to the case that the control specifications
implied by the LQR term are not included in the minimizing quantity, so that the only objective
is the design of a stabilizing output feedback controller that maximizes the uncertainty bounds.
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In that case, the derived stability bounds are, in general, larger than the ones derived in the
case of the robustness/LQR minimizing quantity. This was expected, since the inclusion of
the LQR term in the minimizing quantity added an additonal requirement to the optimization
task.

Previous related work was restricted to the case of unstructured perturbations in the system
matix A. Here, a unified approach to both unstructured and structured perturbations in A has
been presented. It has been shown that the present design process improves significantly the
unstructured bound derived in [12]. Additionally, the cases of unstructured/structured pertur-
bations in B or C, in (A, B) or (A, ('), together with the case of unstructured perturbations in
(A, B, C) are also studied. Numerous examples have been provided to illustrate the results. A
case that remains to be addressed is the one of structured perturbations in all the state-space
matrices. The recently developed bound of [13] does not appear very convenient for that case
and therefore, alternative bounds need to be investigated. Finally, the continuous counterpart
of the present discrete-time case, mostly for the various cases of perturbations involving the
state-space matrices that were mentioned above, remains to be further investigated.

A Computation of volume

In this section, we are interested in computing the volume that is confined by the following
inequalities

x,y,z > 0 (184)
r4ay+bz4cyz < d for a,b,c,d > 0 (185)

This volume is computed as follows

d r9-% d—x—ay

Vo= // dy d
o Jo cy+0b o
dAE A ® (e b
o Jo cy + b

d =z
d a a
-/ [(d_ﬁa_%w_%] 0
0 C C C 0
d[ d— ab d d
— / [L(ln|c——g+b|—lnb)———l—£] dz
0 C a a C C
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dd— ab d dy—d
— /Lhﬂl—l—c——g d:z;—l—/x dx
0 c a a 0

c
dd—qx+ 2 cd cx d?
= ———<In|l+———| dv — — 1
/0 c nll+ ab  ab * 2¢ (186)
Substituting
cd cx
= 14+ —=——-— 187
“ + ab  ab (187)
c
du = ——d 1
U = z ( 88)

we rewrite the above integral as follows

a?b? [1+5s d?
V = . uln|ul| du — %
a?h? 1+ d?
= u In (u) du — %
272 2 1+ 14cd 2
= b Y (u) — R 7 @
A 2 | 1 2 2c
a2b? [ 2 » 1+ 2
= — (=In(u)— — - —
o 2 4 /|, 2c
a’b® |1 cd cd 1 cd 1 d?
= — |- (1+=)YPIn(l+—=)—= 4+ = —
A [2 (1+ ab) n(1+ ab) 4 (1+ b) 4] 2c
a’b? cd cd d?
= — 1 (1+=)P |lh(1+=)P-1 1y — — 1
4c3 { (1+ ab) l n(1+ ab) ] + } 2c (189)
If @, b can be written in terms of ¢, that is
a = wc forwy >0 (190)
b = wyc forwy, >0 (191)
then, ( 189 ) can be written as
w? w? e d d?
d)y="172 1 2 1In(1 o1+l - — 192
Vied 4 {(+w1w20) ln( +w1w20) ]—I_} 2c (192)
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Since we need to know how ¢ and d affect V(¢,d), we compute next the partial derivatives
of V with respect to ¢ and d. First, we see how V(¢,d) is affected by d

aV (e, d) d d 1 d
— = 1 In (1 — 1
od wlw?(—l_wlwzc) +w1w20)+2w1w2(+w1wgc
1 d d
— — W1 W2 (1—|— —_ —
2 Wy Wy € c
d
W wa C Wy Wy € c
1 aV (¢, d d
= ( ) (e, d) = Fi( (193)
Wi W2 dd Wy Wy C
where obviously
Fra)=0+4+z)In(l+z)—= (194)

We can easily verify, numerically, that F} (z) > 0 for > 107". Hence, in view of ( 193 ),
( 194 ) we have

aV (c,d)

1077 _— 1
w1w2c> 0 — 54 > 0 (195)
Next, we see how V (¢, d) is affected by ¢
0c - 4 w1 Wy € t Wy wy C
2,2
Wi ws ¢ d d
-2 (1 In (1
2 l (—I_wlwgc n +w1w20)(w1w202
d d d d d?
— (1 1
(—I_wlwgc w1 wy c2 (—I_wlwgc wleCQ] 2 c2
1 aV (e, d) d
= F 1
— (w% wg) Jdc 2(w1 Wy € (196)
where obviously
1 5 1 5 1 x?
Fy(x) = 5(1—|—:1;) In(1+z)— 1(1—|—:1;) + T z(l4+a)In(14+2)+ 5
1
= T(@=2)= 5@ =1 In(l+a) (197)
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Again, we can easily verify, numerically, that I, (z) < 0 for > 107°. Hence, in view of

(196 ), ( 197 ) we have

aV (c,d
s VD (198)
w1 Wy € Jc

Therefore, from ( 195 ), ( 198 ), we easily conclude that

s OV (c,d) > 0
dc

W1 Wy C

which implies that in order to maximize the volume V' (¢, d) of ( 192 ), we need to maximize

d and minimize ¢, under the restriction, of course, that —2 — > 107" holds. Note that since

w1 w2

this lower bound is too small, we practically never violate this restriction.
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