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Introduction

The complexity and the uncertainty in the models of unmanned underwater vehicles
(UUV) require sophisticated control methods. The need for real time control necessitate
fast algorithms and the use of simpler models; and this leads to methodologies such as
hybrid control. Hybrid control is of course an important part of intelligent control, where
different levels of abstraction are used. The need for high degree of autonomous behavior,
in Autonomous Underwater Vehicles (AUV), makes intelligent control methodologies
necessary; intelligent learning control, failure diagnosis and reconfiguration methodologies
become important.

Unmanned autonomous underwater vehicles represent an important class of highly
uncertain, complex systems that must be controlled. The control requirements dictate the
use of intelligent control methodologies. Learning will be necessary as the mission of the
vehicle becomes increasingly demanding.

In the following, several ideas are brought forward regarding the control of highly
uncertain systems such as AUVs. The research experience of the author and his
collaborators in this area is briefly described. References of relevant published works are
given.

Unmanned Underwater Vehicles (UUV)

The dynamics of motion of unmanned underwater vehicles (UUV) are typically highly
nonlinear and highly uncertain. Nonlinearities arise from hydrodynamic forces as well as
crosscoupling between vehicle states. Uncertainties arise due to changes in the
environment that interacts with the vehicle, for example changes in the current and water
conditions. They also arise due to poorly known mass and hydrodynamic properties. The
mass may be uncertain when for example the UUV retrieves a large object of unknown
mass. The hydrodynamic coefficients, that reflect the hydrodynamic properties in the
model, typically are complex functions of vehicle geometry, speed, orientation and water

- conditions and as a consequence cannot be characterized exactly in advance; their values are
determined using empirical techniques. In view of this, together with the limited available
energy resources for control, it is apparent that the control of the motion of UUV is a
highly challenging problem. In [17], the stabilization of a AUV's dive plane dynamics
using learning control is discussed. An adaptive variable structure controller is designed,
where the changing switching control surfaces are identified on line using an inductive
inference algorithm and ellipsoidal update methods; this algorithm allows convergence after
a finite number of updates, with convergence time bounded in a polynomial manner by
plant complexity.
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Intelligent Control

To meet highly demanding control specifications in complex systems a number of
methods have been developed that are collectively known as intelligent control
methodologies. They enhance and extend traditional control methods. Inteiligent
controllers are envisioned emulating human mental faculties such as adaptation and
leaming, planning under large uncertainty, coping with large amounts of data etc in order to
effectively control complex processes; and this is the justification for the use of the term
intelligent in intelligent control, since these mental faculties are considered to be important
attributes of human intelligence; see for example [1-3] and the references therein.

In the minds of many people, particularly outside the control area, the term "intelligent
control” has come to mean some form of control using fuzzy and/or neural net
methodologies. This perception has been reinforced by popularized articles and interviews
mainly in the nonscientific literature. However intelligent control does not restrict itself
only to those methodologies. An alternative term is Autonomous Intelligent Control.; it
emphasizes the fact that an intelligent controller typically aims to attain higher degrees of
autonomy in accomplishing and even setting control goals, rather than stressing the
(intelligent) methodology that achieves those goals. Intelligent Control is interdisciplinary,
combining methodologies from areas such as Control Systems, Computer Science and
Operations Research. Applications of Intelligent Control range from manufacturing and
chemical processes, to communication networks and IVHS; from space antennas to land
and underwater vehicles.

Recently a IEEE Control Systems Society task force discussed what is meant by the
term Intelligent Control and its uses and implications in the control area. Its findings have
been reported in [4]. The report contains, in its first section, a brief introduction to the
types of control problems the area of intelligent control is addressing and of its relation to
conventional control. Definitions of intelligent systems and of degrees of intelligence are
given in the second section, and the role of control in intelligent systems is explained. The
different characteristics or dimensions of intelligent systems such as autonomy, learning
and hierarchies are then discussed. The third section contains edited versions of some of
the email exchanges and additional comments by the task force members, together with
some references for further reading; they are meant to supplement the material in the second
z:ection and to provide some guidance and references in exploring the area of Intelligent

ontrol.

Reconfiguration in response to anticipated and unanticipated changes

In systems where there is high uncertainty, such as a UUV for example, the actual plant
may behave differently than predicted due to inadequacies in the model or changes in the
plant and the environment. Model inadequacies may have occured because of inability to
obtain a good model of the UUV and its environment in advance. Changes occur because
of component and structural failures, because of evolution of the plant, and of degradation
due to aging, because of changing water and current conditions. To deal with these
changes it is useful to classify them as anticipated or non anticipated.

Anticipated changes can perhaps be dealt with by having a number of appropriate
models and controllers the system switches to or interpolates among when it is instructed to
do so. That is, when certain conditions exist, and this has to be sensed, appropriate action
is taken chosen from a list stored on board. This approach can be very useful when quick
response to drastic sudden changes, or failures, is needed. Conventional control methods,
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neural networks or other techniques may be used to derive the appropriate controllers that
may be stored for example in expert systems or associative memories.

Certain changes may be considered as unanticipated because of finite memory capacity
which makes it difficult to have a preprogrammed response to all changes we can think of.
If a change is destabilizing and a quick reaction is of essence then it should be classified as
anticipated and be dealt with via a prestored response. This was the case for example in
our approach discussed above as to how to deal with reconfiguration when only incomplete
information.is available. For most of the unanticipated changes, the failure detection (FDI)
system, or some change detection system (CDI), must provide the information needed for
appropriate reconfiguration to be possible. Neural networks may be used to identify the
new model (perhaps being trained as an add on, in parallel with, to an existing model) or
some other inferential techniques. Note that related work in neural networks by our group,
addressing some of these problems can be found in [5-11]. In [17] and [12-14], additional
learning control methodologies are discussed.

In summary, a combination of strategies to deal with anticipated and unanticipated
changes seems to be appropriate. Fast reaction to potentially catastrophic changes is
essential. As more information concerning the location and exact nature of the change
comes in then the initial control action is refined to not only ensure stability but also
reestablish certain level of performance to the system. A reliable way to detect and identify
changes is essential to the well being of the system and its being able to perform as
expected. Actuators therefore specifically designed to assist in the identification of the new
plant model and conditions may be appropriate in autonomous systems.

Learning Control

Learning is an important dimension or attribute of Intelligent Control [4]. Highly
autonomous behavior is a very desirable characteristic of advanced control systems, so they
perform well under changing conditions in the plant and the environment {even in the
control goals), without external intervention. This requires the ability to adapt to changes
affecting, in a significant manner, the operating region of the system. Adaptive behavior of
this type typically is not offered by conventional control systems. Additional decision
making abilities should be added to meet the increased control requirements. The
controiler's capacity to learn from past experience is an integral part of such highly
autonomous controllers. The goal of introducing learning methods in control is to broaden
the region of operability of conventional control systems. Therefore the ability to learn is
one of the fundamental attributes of autonomous intelligent behavior [1][4]. An
introduction to learning in control can be found in [12]; contributions to learning control
include our work in neural networks and also [13-14, 17].

Hybrid Systems

Hybrid control systems contain two distinct types of systems, continuous-state and
discrete-state, that interact with each other. Their study is essential in designing sequential
supervisory controllers for continuous-state systems, and it is central in designing
intelligent control systems with high degree of autonomy. Our group has made a number
of contributions in this area [15-29].

In the following, a brief outline of our recent results in hybrid control systems is
presented indicating at the same time the publication where these results have appeared.
Three areas of research contributions are identified and discussed separately. These areas
are: Interface and Controller Design in Hybrid Systems; Inductive Learning in Hybrid
Control Systems; Hybrid Control System Optimization.
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Interface and Controller Design in Hybrid Systems

In [15], a discrete event model of a continuous time plant described by differential
equations is presented. It represents a refinement of our earlier hybrid models. Transition
stability, a novel stability concept appropriate for hybrid systems and related to concepts of
structural stability in power systems was introduced in {24]. In [19], an overview of our
approach was presented. Supremal controllable sublanguages are important in the logical
approach to control of discrete event and hybrid systems. In hybrid systems the discrete
event models are nondeterministic and in [25] formulas for such languages were derived.
In [20], the model developed in our approach [15] is used to study problems in digital
control due to quantization of the signals.

Inductive Learning in Hybrid Control Systems

Research in this area has focused on three areas. These areas are 1) learning logically
stable hybrid system interfaces, 2) concept learning of stabilizing controllers, and 3)
inductive learning of optimal logical discrete event system controllers. Progress in area 1
resulted in the publication of an inductive learning method for identifying logically stable
transitions in hybrid control systems in polynomial time [18]. Progress in area 2 extended
the learning procedure of [18] to the identification of stabilizing control mappings. In [26],
the resulting algorithm was used to autonomously stabilize a detailed simulation model of a
communications satellite. In [13], the method was presented as part of a general overview
on the use of Boolean concept learning of control mappings. Progress in area 3
concentrated on the development of polynomial time algorithms for the on-line
identification of optimal discrete event system controllers. Initial experiments along this
line were reported in [13], where an extension of L*-algorithm was used to ““learn”
optimal discrete event system controllers.

Hybrid Control System Optimization

This research work developed polynomial-time algorithms for determining optimal
collections of control agents used in the supervision of hybrid systems. Significant
progress was achieved with the development of an alternating minimization algorithm
whose theoretical computational complexity scaled as "O(n*{3.5}L)" and whose observed
computational complexity scaled as "O(n"2 L)" ("n" parameterizes problem size and "L"
parameterizes precision of optimal answer). In [27] analytical results on the proposed
algorithm's computational complexity were presented. Applications include the design of
hierarchical controllers [28] and the design of supervisory controllers [29].

Discrete Event Systems and Petri Nets

Discrete event system theory is important in intelligent control, as it can be used for
example to study planning the different control tasks. Discrete event systems have been
studied in connection to hybrid systems, see the references to hybrid control below; see
also [30-33] for additional contributions. Recently we have developed a very promising
approach to design feedback Petri net controllers for discrete event systems described by
Petri nets [34].

Petri nets are very powerful and flexible graphical and mathematical modeling tools.
As a graphical tools Petri nets can be used as a visual communication aid similar to flow
charts, block diagrams and networks and for simulation of discrete event systems. Asa
mathematical tool it is possible to set up state equations that describe the behavior of the
system. In the past their use in control has been somewhat limited, the main reason being
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the lack of appropriate methodologies to control systems described via Petri nets. Recently
an approach to feedback control of systems described via Petri nets was developed, that
uses the concept of place invariants of the net and it is simple and transparent. It appears
that for the first time one will be able to systematically derive feedback controllers for real
practical discrete event systems {34].
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