J.A. Stiver, P.J. Antsaklis and M.D. Lemmon , "Interface and Controller Design for Hybrid Control
Systems,;’ Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-
95-002, Univ of Notre Dame, February 1995. Chapter in H ybrid S ystems | I, P. Antsaklis, W. Kohn, A.
Nerode, S. Sastry Eds., pp. 462-492, Lecture Notes in Computer Science, LNCS 999, Springer-Verlag, 463

1995.
Interface and Controller Design

for Hybrid Control Systems

James A. Stiver, Panos J. Antsaklis. and Michael D. Lemmon

Department of Electrical Engineering
University of Notre Daine. Notre Dame, IN 46336

Abstract. The livhrid control systems considered liere consist of a continuons-
time plant under the control of a discrete eveal sysiem. Communication be-
tween the plant and coatroller is provided by an interlace which can convert
signals from the continnous domain of the plant to the discrete, symbolic
domain of the controller. and vise-versa. When designing a controller for a
hybrid system. Lhe designer may or may not be free to design the interface as
well. This paper examines these 1wo cases. First. a methodology is presented
lor designing a conlroller when the interface and plant are given. This ap-
proach is based on the methodolugy for conltoller design in logical discrete
event systems. Second. a method is presented to design hoth the interface and
controller. This approach is based on the natural invariants of the system.

1 Introduction

The hybrid control systems considered in this paper consist of three chiel compo-
neats: a continuous-time plant. a discrete event system (DES) controller, and an
interface. This work uses a modeling framework for hiybrid control previously devel-
oped by the anthors {L. 2. 3. 4. 3. 6. 7. & 9. 10]. Hyhriel systems in general have
allracted significant interest in recent years. Efforls include the work by Nerode,
Kol et al. [L1. 12, 13]. Brockett [14]. Ramadge. et al. {15. 16. 17]. Varaiya. et al.
(18, 19) and Tittus. et al. [20. 21]. Acticles on these and other approaches can he
found in {22).

[some of our previous work involving this framework. attention was focused on
designing the controller. given a plant and interface {6. &, 9], In particular, a discrete
event sysient. ralled the DES plant model. was developed to model the combined
plant and interface. Then existing techniques for the design of discrete event system
controlters were extended to design controllers for DES plant models.

Later work has focused on designing the interface as well as the controller (7, 1U).
In this case the goal is to develop a method to design the interface and controller
for a hybrid system when ouly the plant and control goals are given. The interface
is designed to distinguish regions of the plant state space hased on where the trajee-
tories fead for a given control policy. Subsets of these regions, called conmmon flow
regions. are identified and then bounded using invariant manifolds. This provides a
means {or the system o determine when the state lies in such a lregion and to apply
the appropriate control policy.

In this paper. we present both of these methiods. First the modeling framework
is described and the examples. which are used throughout. are presented. In Section

3. we describe controller design techniques for cases in which the plant and interface
are both specified. This is refered to as the logical approach. because it is based on
techniques developed for the control of logical discrete event systems. Then in the
Section 4. the invariant based approach is presented. This is a method to design
the interface using the invariants of the systemi, and the method leads directly to a
controller design as well.

2 Hybrid Control System Modeling

A hybrid control system, can be divided into three parts. the plant, interface, and
controller as shown in Figure 1. In this model, the plant represents the continuous-
time components of the system. while the controller represents the discrete-event
portions. The interface provides the necessary mechanism by which the former two
communicate. The models used for each of these three parts. as well as the way they
interact are now described,

Controller

T[n] X[n]

actwator | Interface |Zenerator

Tt} x{1}

Plant

Fig. 1. Hybrid Control System

2.1 Plant

The plant is the part of the model which represents the entire continuous-time
portion of the hybrid control system. The distinguishing feature of the plant is that it
lhas a continuous state space, where the state takes on values that are real numbers,
and evolves with time according to a set of differential equations. Motivated by
tradition, this part of the model is referred to as the plant but since it contains

all the continuous dynamics, it can also contain a conventional, continuous-time,
controller.

464

Mathematically, the plant is represented by the equation

x(t) = f(x(1).x{!)) (n
where x({) € R" and r{{} € R™ are the state and input \'ect.qrs refpecli\'pl'y: I3
R" x K™ — R" is a continuous function which satisfies the Lipschitz conditions.

i i i N ant
thus guarantceing the existence and uniqueness of its solutions. Not.el LI:'at th:eplllsed
input and state are continuous-time vector valued signals. Boldface letters a
hete to denote vectors and vector valned signals.

2.2 Coutroller

The controller is a discrete event system which is m._odi.:lm_I as a er:lerlullnls.luc :mlm:m}
ton. This automaton is specified by a quintuple, (5., .4.¢). where S‘ls_‘l m{-se— o‘;.
states. .\ is the set of plan! symbols, R is the set of controller symba.ls. 5:95x A | o'l.-.
is the state transition function. and o : 5 — f is the output l'uncllo.n. The s;(ml)lpr..
in set R are called controller symhols because they are generated by the -ﬁ“ r?l l.l
Likewise. the symbols in set X are called plant s'\.'mhols -i\ntl are generatm' hased o
events in the plant, The action of the coniroller is described Ly the equations

i[n) = &3 — 1). F{n]) (2)
[n] = &3]} N

where 3[n] € S.E[n} € X. and #[n) € R. The index n is analogous to a tu:lle u:d:l.\;
in that it specifies the order of the symbols in the sequence. ;l'he input and outp
i i Vi ler are sequences of symbols. L
signals associated with the control cis
Tildes are used to indicate a symbol valued set or sequence. For eicampl‘e. b\olg
the set of plant svmbols and E[n] is the nth symbol of a sequence of p z;)nt-l sglr n;mb;{
Subscripts are also used. e.g. F; which denotes the ith member of the symbol alp s
X

2.3 Interface

The controller and plant cannot communicate directly i.n a hybn‘d contFol ls,\:t?:’:
because each ulilizes a different type of signal. Thus an mlerl’ace‘ is requn‘eri_l w l.:-w
can convert continuous-time signals to sequences of symbols and vice versa:. le[‘[;{e
that this conversion is accomplished determines, to a great extent. Lhehna. ure o e
overall hybrid control system. The interface consists of two simple subsystems. t
generator and actuator.

Plant Events and the Generator The generaloris the subsystem of t!\e ;nlerl‘ac:
which converts the continuous-time output (st :\t.e! of the plant to an async Lr'::r‘;c:ui.r;
symbolic input for the controller. To perfon‘n this l.ask.. two prcu:_esses.”lmu~EL .
p.lace. First, a triggering mechanismn is required lha_t will f]et,ermn;etu. en : .F:-},,'d,
symbol should he generated. and second. adprocess is required to delermin
articular plant symbol should be generated.) ‘
pal‘llln(thergpeneralor. the triggering mechanism is base.d on the ld?ado; plnn:hc et ;‘r;:.; :[
plant event is simply an occurrence in the plant. an idea borrowed [rom

465

discrete event systems. For the hybrid control systets studied here. a plant event is
defined by a hypersurface that separates the plant state space into two open regions
A plant event occurs whenever the plant state crosses its associated hypersurface it
a given direction.

The set of plant events recognized hy the generator is given by a set of smootl

functionals, {h; : R" — R.i € I}, defined on the state space of the plant. Each
functional must satisfy the condition.

Vohi(€) # 0.YE € V(h;), (4)

where T, denotes the gradient with respect to r. This condition ensures that the null
space of the functional. V(M) = {€ € R" : hi(€) = 0}, formis an n — | dimensiona
smooth hypersurface separating the stale space,
A plant event occurs whenever the state crosses a hypersurface. as given by the
condition d
Jie st hilx(i)n =1 E;h,(x(l)) #0 (3)

Notice that the condition stated above is true whenever a hypersurface is crosseql.
tegardless of the direction.

The sequence of plant events is denoted as {n). where efn] = i indicates the
nth event occurred hy crossing the hypecsurface. h;. The sequence of plant event

instants, that is the times at which the events occurred. is expressed as 7[n]. Thesc
sequences are defined as follows.

rjol=0
e[V} =0 (6)
r[n] = inf{t > v[n - 1} : 3efn) = min{i € I : hi(x(t)) = 0
AFRiXUN FOA(L > r[n = 1]V # e[n = 1])))

Perhaps a hit of explanation is required for the above equation. The sequence of
plant events, ¢[n]. is ordered according to the time at which the events occur, and
for events occurting simultaneously. the order is determined by the value of i. Se. for
example. if iy and A3 are crossed at the same time. then e[n] =2 and e[n + 1] = 3.

The generator must also determine which plant symhol will be generated when
a plant event occurs. The plant symbol notifies the controller that a plant event has
occurred. It can also reflect which particular plant event has occurred and provide
information about the current value of the state. This is modeled by a set of plant
symbol gencrating functions, one for each hypersurface, which miaps the state. at the

time of the event. to a plant symbol. In the case of a silent event, the plant symbol
generating function maps to the null s
as a plant symbol.

The sequence of plant symbols is defined as

.i:[n} _ Qi(x(rg [H])) il :;",'he[n]()((flll])] <0 {T)
B € otherwise

ymbol, which the controller will not recognize

The ¢ indicates the null symbol which is issued when the hypersurface is crossed

in the direction opposite of the way the plant event was defined. This is discussed
further below.

466

Several interesting issues arise in considering this mechanism for defining plant
events. One issue is the question of whether the plant events should be “one-sided”
or “two-sided”™. that is, should a plant event occur when the hypersurface is crossed
in only one. or in either «direction. The advantage of one-sided events is that they
make the model more general. the disadvantage is that they cause complications
when the model is used for analysis (some of these complications will be noted in
remarks later in this paper). The solution adopted here is to defined the avents as
two-sided, but to only recognize the event when the liypersurface is crossed in a
defined direction. When the hypersurface is crossed in the other Jirection. the event
is called a silent event. Thus, the model can handle one-sided events without the
complications mentioned above,

The Actuator The actuator converts the sequence of controller syimbols to a plant

input signal. using the function 5 : [t — K™, as follows.

r(t) = Z DIt rn] r[n+ 1)) (®)

n={

where [{l.7y.17) is a characteristic function taking on the value of unity over the
time interval {r|. 72) and zero elsewhere. 7[n] is the time of the nth contrel symbol
which is defined in equation 6.

The plaut input. r(t). can ouly take on certain constaut values, where each value
is associated with a particular controller symbol. Thus the plant input is a piecewise
constant signal which may change only when a controtler symbol occurs. We refer to

the various inputs as control pelicies. Each controller symbol initiates a particular
control palicy.

2.4 Example - Thermostat

Consider a system made up of a thermostat. roony, and heater. I the thermostat is
set at T0°F. and assuming it is colder outside, the system behaves as follows. If the
room temperature f{alls below 70 degrees the heater starls and remains on uatil the
room temperature exceeds 75 degrees at which point the heater shuts off. Note that
the actual temperature settings in a real system may be different. For simplicity, we
will assume Lthat when the heater is on it produces heat at a constant rate,

The plant in this hybrid control system is made up of the heater and room, and
it can be modeled with the following differential equation.

x{t) = .0025{To — x(£)) 4+ .02r() {9)

Here x{t) is the room temperature. To is the outside temperature, and r(f) is the
voltage into the heater. Temperatures are in degrees Fahrenheit and time is in min-
utes,

The generator and controller are found in the thermostat. The generator parti-
tions the state space with two hypersurfaces.

hy(x) =x—70 (10}
ha{x} = -x+ 73 (1y

467

The first hypersurface detects when the temperature falls below T0°F and the sec-

ond detects when the temiperature rises above 75°F. The events are represented
symbolically to the controller.

ay(§) = cold (12)
aal€) = hot (13)

It is comnion to see bimetallic strips performing this function in an actual thermo-
stat. where the band is physically connected to the controller. The controller has
two states (typically it is just a switch in the thermostat) as illustrated in Figure 2.
The output function of the thermostat controller provides two controller symbols,

hot

cold

Fig. 2. Controller in Thermostat

on and off.
¢{51) = on #(s52) = off (1

Finally the actuator converts the symbolic output of the controller to a continu-
ous input for the plant.

2{on) =110 el =0 (15)

In l-h'is case the plant input is the voltage supply to the heater. 0 or 110 volts.
Physically. the symbolic output from the controller could be a low voltage signal,
say 0 or 12 volts, or perhaps a pneumatic signal.

2.5 Example - Double Integrator

The following simple example will be used throughout the paper to illustrate the
w-ork. The system consists of a double integrator plant which is controlled by a
dlssrete event system. The control goal is to drive the state of the plant to the
region of the origin.

.Firsl. the plant and interface will be presented. The plant is given by the differ-
ential equation,

(1) = [g é] () + m v(t) (16)

468

The generator recognizes four plant events which occur when the following hy-
rersurfaces are crossed.

hi(x) = h-_-(x) = —-r (l?)

haix) = 21 + 1024 hy(x) = ~2y — 10z4 (18)

fwo of these hypersurfaces lie on the +2 axis and the other two lie on a line of slope

.1 passing through the origin. There are four events rather than two so that crossings

an be detected in both directions for each hypersurface. Symbols are attached to
he plant events as {ollows.

a{x) = £ ax(x) = I (19}

03(x) = Iy ay(x) = F, (20)

{otice that the same symbol can bhe used to label niote than one plant event and

hat the value of the mapping ; does not depend on the state. x(t). in this case. In

his example the plant symbol only identifies which hypersurface was crossed. Figure
illustrates this,

AM0=x;

‘ia hz(x)=".xl
% hy(x) = x + 10x,

Xy h4(x)=-.rl- IO.rz

Tig. 3. Generator for Double Integrator Example

The actuator provides three possible inputs to the plant.

-1 if

HFy=< 0 if

|

These inputs were clhosen so that the plant can be driven to the origin by applying
hem in the proper sequence.

Finally, the controller is the four state automaton pictured in Figure 4. The ouput
unction of the controller is the following.

#(31) = Fy 6(32) = Fa (22)
&(53) = Fa 8(34) = 73 (23)

"
e e

1
2 (21)

3

he T T 1)

n
L]

463

X
i

Fig. 4. Controller for Double Integrator Example

The controller in this example was designed to drive the state of .the double inte-
grator to the origin, and Figure 5 shows that this goal is indeed achte\'ed._ However.
the design was adhoc. The following sections will show a more systematic method
of designing an interface and controller. This example will be used again there.

‘."2

x(1)

Xy
-

Fig. 5. State Space Trajectory for Double Integrator Example

470

3 Logical Approach
3.1 DES Plant Model

In a hybrid control system. the plant taken together with the actuator and generator.
behaves like a discrete event system. It accepls symbolic inputs via the actuator and
produces symbolic outputs via the generator. This situation is somewhat analogons
to the way a continuous-time plant, equipped with a zero order hold and a sampler,
“looks™ like a discrete-time plant. In a hybrid control system, the DES which models
the plant, actuator. and generator is ealled the DES plant model. From the DES
controller’s point of view. it is the DES plant model whick is controlled.

ft must be pointed out that the DES plant model is an approximation of the ac-
tual plant-actuator-generator combination. Since the DES plant model has a diserete
state space. il cannot mode] the exact hehavior of a system which has a continng-
ous state space. The exact relationship between the two will he discussed afler the
description of the DES plant mode.

The DES plant model is an automaton. tepresented mathematically by a qnin-
tuple. (F.N. . w. A}, P is the set of states. X is the sel of plant symbols. and f?
is the set of control symbols. @ : £ x R — 2% is e state transition function. for
a given DES plant state and a given control symbol. it specifies which DES plat
states are enabled. The output function. A : P x P — 9% maps the previous and
current state to a set of plant symbals.

The set of DES plant states. P. is based upon the sel of hypersurfaces realized
in the generator, Each open tegion in the state space of the plant. bonnded hy
hypersurfaces. is associated with a state of the DES plant. \Whenever a plant event
occurs there is a state transition in the DES plant. Stating this more rigorously, an
equivalence relation, =p. can be defined on the set {CeR M £0i¢ [} as
follows

€1 Zp &2 M Ji(€1)hi(62) > O.Vi € 1. (21)

Each of the equivalence classes of this relation is associated with a unique DES
plant state. Thus it is convenient to index Lhe set of states. P, with a binary vector,
b € B, such that b; is the ith element of b and Ji, is associated with the set {€ e
R b =l & hi{€) < 0}. The equivalence relation is not defined for states which lie
on the hypersurfaces. When the continuous state touches a hypersurface the DES
plant model remains in its previous state until the hypersurface is crossed.

Formally. the set of DES plant states is defined as a set of equivalence classes on
the state space of the plant.

Definition1. The set of DES plant states. P, is defined as follows.
P=[cepn hil€) #0.ie 1}/ =, (25)
30. for example, the state Py is defined as
Pr={§€R" b= 0= hi(€) > 0 and b = [= hy(€) < 0) (26)

Now the DES plant state can be defined for a system.

471

Definition2. The DES plant state. p[n]. is defined as follows.
Blr} = ps (27)

where
l‘lr‘l)L x(r{n] + ¢} € by {(28)
L

So the current state of the DES corresponds to the most recently entered re'gion of
the plant state space. The limit must be used because al exactly 7[n] the continuous
state will be on a boundary.)

The reason for this definition of stale for the DES plant model is that it represents
how much can be known ahout the systemn by observing the plant symbols \\'ilhr')ul
actually calculating the trajectoties. So afler a plant symbol is generated nothing
can be ascertained beyond the resulting region. ‘

Now we are in a position to deterinine the state transition function, ¥, and the
output function. A. First we define adjacency for DES plant states.

Definition3. Two DES plant states. py. p.. are adjaccnf at (i € [.£ € V(h) if {or
all jel,
.\i.(hj) = ,\.-UI,') =4 bj ;é (3

£ €y Np..

where J, represents the closure of j.

VWhen two DES plant states are adjacent at (i,£) it means tha.!. the tegions
corresponding to these states are separaled by the hypersu'rl'ace .'\:(h.)..aml_llu‘
point £ lies on this hypersurface on the boundary of both regions. Thus & identifies
a possible transition point hetween the regions.)

The following proposition states that for a given DES pla.n-l state. s, and control
symbol, F, a possible successor state is p. if the stated conditions are met.

Propositiond. Giren a hybrid controf system. described by (1) - (8). u.‘rlh f and
hi smooth, if 3i € 1 and £ € N(h;} such that Jollowing conditions are salisfied,

— Py and P, are adjacent al (1.£).
= bi=0= Vohi(€) fI§. (7)) <0
= bi= 1= Vehi(€)- J(E.9(F:)} > 0

then p. € y(py. Fi).

Preof. Assume there exists (i € [.€ € .V{h;)) which salisl'_v‘ the proposition for
some Py. B, and Fp. Cousider a trajectory, x. such that at time 1. x(1) :_.i and
x(8) = f(x(t),9(7)). By the adjacency assumption. we know that x(f) € Ji; au}d
along with the other two conditions of the proposilion we know _llanl x{1~) € p.
The adjacency assumption also means that x(¢) € p, and along with the c!llu.-r two
conditions of the proposition. we know that x(i¥) € p.. So thetelore thete is a state
transition at time ¢ from p, to p. with the control svmbol i,

472

The usefulness of this propssition is that it allows the extraction of a DES au-
tomaton model of the continuous plant and interface. Note that in certain cases
this is a rather straightforward task. For instance. it is known that if a particular
region boundary is only crossed in one direction under a given command, then the
conditions of the proposition need only be tested at a single point on the boundary.
This condition is true for the double integrator example which follows. In general
this may not be the case. but ane can restrict the area of interest to an operating
region of the plant state space thus reducing the computalion required.

The output function. A. can be found by a similar procedure described in the
next proposition.

Proposition5. Giren a hybrid control system described by {1} - (8). with f and h;

smooth. £ € Mpy. p.) 1f and only if 3(i. €} which salisfies Proposition § for some Fy
and such that a;(€) = 4.

Proof. This proposition follows immediately from the definition of the generator. In
particular. the plant symbol generated by a plant event is defined as n; &) where &
is the continuons-time plant state at the time of the plant event,

3.2 Example - Thermostat

The thermostat/heater example has a simple DES plant inodel which is useful to
illustrate how these models work. Figure 6 shows the DES plant model for the
heater/therimnostat. The convention for labeling the arcs is to list the controller syIm-
bols which enabie the transition foltowed by a “f" and then the plant symhols which
can be generated by the transition. Notice that two of Lhe trausitions are tabeled
with null symbols. €. ‘This reflects the fact that nothing actually happens in the
system at these transitions. When the controlier receives a null symbol it remains in
the same state and reissues the current controller symbol. This is equivalent to the

controller doing nothing. but it serves to keep all the symbolic sequences, 5. p. etc.,
in phase with each other.

on/e on/ hot

off / cold off /e

Fig.6. DES Plant for Thermostat/Healer

3.3 Exawple - Double Integrator

Now we return to the double integrator examiple from Section 2. Using Proposition
4, we can extract the DES plant for this system. It is shown in Figure 7. To illustrate

473

how the DES plant was extracted start with the DES plant state o (i.e. proo1) and
consider whether fs € ¢(pa.F). i = 1 and £ = [0 1]’ satisfy the conditions of the
proposition. showing that indeed js € w{js. F2). Proceeding in this way we extract
the DES plant model. At the same time. Proposition 5 is used to find the plant
symbols generated by the transitions. In the sample instance. M ja. fs) there are two
possible symbols, Z; and ¢. By convention the nonsilent symbol takes precedence so
{21} = Mps. ps).

Fig. 7. DES Plant for Double Integrator

Now that the plant and interface have been converted to a discrete event system.
techniques for controller design from that area can be applied.

3.4 Logical Approach to DES Control

In this section. we use the language generated by the DES plant to examine the
controllability of the hybrid control system. This work builds upon the work done
by Ramadge and Wonham on the controllability of discrete event systems in a logical
framework {23, 24. 25. 26, 27). Here we adapt several of those results and apply them
to the DES plant model obtained from a hybrid control system.

Before existing lechniques. developed in the logical DES framework can be ex-
tended, certain differences must be dealt with. The Ramadge-Wonham model { RYV M)
consists of two interacting DES's called here the RIFM generalor and RYVM super-
visor. The RW M generator is analogous to our DES plant and the RWM supervisor
is analogous to the DES controller. The R\WM generator shares its name with the
generator found in the hybrid control system interface but the two should not be
confused. In the RW)I, the planl symibols are usually referred to as “events”™, but
we will continue to call them plant symbols to avoid confusion. The plant symbols
in the RWM are divided into two sets, those which are controliable and those which
are uncontrollable: X = X, U X,. A plant symbol being controllable means that
the supervisor can prevent it [rom heing issued by the R\WWM generator. When the
supervisor prevents a controllable plant symbol from being issued. the plant symbol
is said to be disabled. The plant symbols in X, can be individually disabled, at any

474

time and in any combination, by a command from the RWM supervisor. while the
plant symbols in X, can never be disabled. This is in contrast to our DES plant
where each command (controller synihol) from the DES controller disabies a partic-
ular subset of .\’ determined by the comnplement of the set given by the transition
function. ¥. Furthermore, Lhis set of disabled plant symbols depends not only on the
controller symbol but also the present state_of the DES plant. In addition. there is
no guarantee that any arbitrary subset of .\’ can be disabled while the other plant
symbols remain enabled.

The general inability to disable plant symbols individually is what differentiates

the DES plant model. in the hybrid system context, fromi the automata of earlier
frameworks.

3.5 The DES Plant Language and Observability

The behavior of a DES can be characterized by the set of all finite sequences of
symbols which it can generate. This set is referred to as the language of the DLS,
and is denoted L. Given the sot of all plant symbols. X. the alphabet, X'*. refers
to all finite sequences of symbols from the alphabet. The langnage. L. is a subset of

X", The following defines which strings, 7. are in the langnage of a given DES plant
model.

Definition 6. Given a finite sequence of plant symbols. ¥ : N — X, defined over

the set N = {l.....N}.then # € L if there exists P € P and 7 € R, such that the
following hold.

pln+ 11 € ¢(p{n). Fn)) ¥n e N (29)

Z[n) € Mp{n - 1).p[a}) ¥u € N (30)

The language of a DES plant model may or may not provide a useful feedback
signal to the controller. For example. suppose there is only one plant symbol and it
is associated with every plant event. The controller would not teceive much useful
information in such a case. On the other hand. if the language of the DES plant

model is sufficiently rich that the current state of the DES plaut can be ascertained
{rom its initial state and past output, the output provides more useful feedback.

Definition7. A DES plant model is observable if the current state can be detet-
mined uniquely from the previous state and plant symbol. That is, observability
means that ¥y, p.,ps € P and ¥, € X, if

E¢ € Apa. p.)
and

¢ € MPy. pa)
then

Pc = Pu.

The [ollowing proposition follows immediately from the above definition.

475

Proposition8. If a DES plant model is observable, then for any mm.al state, p[0]
and sequence of plant symbols. ¥ € L. produced by the DES. there .cnst.s a unigue
sequence of DES plant stales. p. capable of producing the sequence. .

Proof, The definition of observability can be applied iteratively to prove that the
each state of the sequence, p, is determined uniquely by the previous state and
current plant symbol.

In cases where the DES plant model is obsecvable, the abow_e ?r?posilion implies
the existence of A mapping. obs: P x L — P~. which takes an mma.l state together
with a string from the language and maps them to the c?rrespondmg sequence of
states. The nih state in the sequence, ji(n). can also be written. obs(yo. #)[n]. where
qo € P was the initial state.

3.6 Controllability and Supervisor Design

A DES is controlled by having various svmbols disabled by the conlr_u]ler b:\.‘w.dl
upon the sequence of symbols which the DES has already)_%ener.ah_fd. \When a Dl::b
is controlled. it will generate a set of symbol sequences which lie in a subset of its
language. If we denote this language of the DES under control as L, then L. C L.

It is possible to determine whether a given R\WM generator can be controlied 1o a
desired language [23]. That is, whether it is possible to design a c_on'l-roller such that
the RWM generator will be restricted to sotne target language K. Such a controller
can be designed il A is prefix closed and

RN, NLCK (31)

where K represents the set of all prefixes of K. A prefix of {\' is a seguence of
symbols. to which another sequence can he concalenated Lo obtaiu a sequence found
in K. A language is said to be prefix closed if ail the prefixes of that language are
also in the langnage. . -

When equation 31 is true for a given RW)I generator. the desired language' Kis
said to he controllable, and provided A is prefix closed. a cont rgl!er can I>_e llFSIngf‘l:]
which will restrict the generator to the langnage A'. This condition requires tl.ml if
an uncontrollable symbol occurs after the generator has produced a prefix of A the
resulting string must still be a prefix of R’ because the uncontroltable symbol cannot
be prevented.

Since the DES plaut model belougs Lo a slightly different class of at.ltomata‘lhau
the R\WWM, we present another definition for controllable I?fnguagge which applies to
the DES plant. We assume in this section that we are dealing \.\'ltll ol.)ster-\‘able DES
plant models, that all languages are prefix closed. and that qu is the initial state.

Definition9. A language. Iv. is controllable with respect to a given DES plant if
Vi € K. there exisls p € R such that

FAq.v{q.p)) C K. {32)

where ¢ = obs{qg. Z)[:V].

476

This definition requires that for every prefix of the desired language. K, there exists
a control. p. which will enable only symbols which will cause string to remain in A

Proposition 10, f the language K is controllable according lo (9), then a coniroller
can be designed which will restrict the given DES plant 1o the language K.

Proof. Let the controller be given by con : X* — R where con(() € {p€ R :
EMq.w{4.9)) C K.q = obs(qo. F)[N]). con(F) is guaranteed to he non-emipty hy
{32). We can now show by induction that i € Leon=Fe k.

. Vi € Ly such that |#{ = 0 we have £ € A". This is trivial because the ouly such
% is the null string ¢« and ¢ € R because K is prefix closed.

LetLy' ={r: k€ Ly |# = i}. that is Ly’ is the set of all sequences of length

it found in L;. Given L;i. L;“l ={weN" :w= ENMq. g, conli)). £ € L))

Now with the definition of con(£) and (32) we have Li'cK=L/"cK.

2

Sere [‘I =wekl.

Since the DES plant can be seen as a generalization of the original R\WWM, the
conditions in (32) should reduce to those of {31} wnder the appropriate restrictions.
This is indeed the case.

Il the desired language is not attainable for a given DES. it may be possible
to find a more restricted language which is. If so. the least restricted behavior is
desicable. [23] and [26] describe and provide a method for finding this behavior which
is referred to as the supremal controllable sublanguage. K7, of the desired language.
The supremal controllable sublanguage is the largest subset of K which can be
attained by a controller. AT can be found via the following iterative procedure.

Ko=K (33)

Kigyv={w:wek.eX,NnLC) (3:1)

R = Jim A (35)
1=

Quce again. this procedure applies to the R\, For hybrid control systems,

the supremal controllable sublanguage of the DES plant can be found by a similar
tterative scheme.

Ko= K {i6)
Ripi={we RN :Yie wIpe R such that FMq.é(q.p)) C R3) (A7)
K' = lim h; (38)

This result yields the following proposition.

Proposition1l. Fora DES plant and langnage . K is controllable and conlains
all controllable sublanguages of I,

477

Proof. From (37) we have
K'={we K :Vie€wdpe R such that EMq. ¢{q.p)) C KT} (39)
which implies
€K'= 3pe Rsuch that FA(q. ¢{q.p)) C K! (40)

From (40) it is clear that K is controllable. We prove that every prefix closetil,
controllable subset of /U is in A7 by assuming there exists M C K such that M is
controllable but M ¢ KF and showing this leads to a contradiction.

AMCR st MgR? (41)

= JweMst.wg KR! (42)

= Jist.w e Njowg Kipy (-13)

= Jiewst Vpe RINq. (g0 ¢ K (1)

= Ju' € FMq. ¢(q.p)) st w’ € M uw' € K; {15)

= y<ist.uw € Nj.w' & Ny (16)

If the sequence is repeated with i = j and v = u’ we eventually arrive at the

conclusion that w' € M bul w’ ¢ Np which violates the assumption that M C K
and precludes the existence of such an Af.

3.7 Example - Double Integrator

We use the double integrator example again because the DES plant was found earlier.
This DES is represented by the automaton in Figuce 8.

Fig.8. DES Plant Model for Example 1

Let the initial state be go = ps. Then the language generated by this automator
is [= (E2{E2F4)"%)". Il we want to drive the plant in clockwise circles. then the
desired language is ' = (£24)". It can be shown that this /' is controllable because
it satisfies Equation (32). Therefore according to Proposition 10. a controller can be
designed Lo achieve the stated control goal.

478

3.8 A More Complex DES Plant Model

This example has a richer hehavior and will illustrate the generation of a supremal
:ontrollable sublanguage as well as the design of a controller. We start immediately
~ith the DES plant model shown in Figure 9.

et l);-:
o
d "~
= (2
- =
=

o

7ig. 2. DES Plant Model for Example 2

-1
lall
Sy
L]

The language generated by this DES is L = L, where
Lm = (E2(Z) + Ea(2524)" 2y + EalE6da) (F) + Egfsia(Es24)°2)))" (47)
juppose we want to control the DES so that it never enters state Pq. YWe simply

'emove Lhe transitions to p4 and then compute the resulting language. This desired
anguage is thetefore

K = (82 + 243 + Ea(E5E3)°E)))" (48)

[n this example, the language K is not controllable. This can be seen by consid-
xring the string Iafaks € K. for which thete exists no p € R which will prevent the
JES from deviating {rom A by generating £5 and enlering state p.

Since K is not controllable, we find the supremal controllable sublanguage of K’
1s defined in equation (38). The supremal controllable sublanguage is

1

K= K = (&B(& F L5 T BE)) “49)

Obtaining a DES controller once the supremal controllable sublanguage has been
ound is straight forward. The controtler is a DES whose language is given by Kl
and the output of the controller in each state, &(3), is the controller symbol which
mables only transitions which are found in the controller. The existence of such a

479

controller symbol is guaranteed by the fact that A'! is controliable. For Example 2,
the controller is shown in Figure 10 and its output function. &, is as follows:

¢l51)=r1 P(da) =74 (50)
Msa) =7, d(34) = Fy (a1)
@]

X

£

Fig.10. DES Controller for Example 2

3.9 Remarks

The approach described above is also discussed in detail in [9]. There is, in addition,
a discussion of determinism and quasideterminism. The hybrid control system is also
extended to include systems with discrete time plants. An example with a nonlinear
plant is presented.

For a detailed description of the derivation of a formula for computing the supre-
mal controllable sublanguage of a given language see [28].

4 Invariant Based Approach

If the interface is not given the designer must design both the interface and the
controller. One could, of course. design the intecface using any technique and then
use the logical approach to design the controller. Here a methodology is presented
to design the controller and the interface together based on the natural invariants
of a plant described by

x(t) = f{x(1).x(t)) (52)

where certain smoothness assumntions apnlv.

480

In particular, this section discusses the design of the generator, which is part of
he interface. and the design of the controller. \We assume that the plant is given,
he set of available control policies is given. and the control goals are specified as
ollows. Each control goal for the system is given as a starting set and a target set.
rach of which is an open subset of the plaut state space. To realize the goal. the
:ontroller nwust be able to drive the plant state from anywhere in the starting set to
iomewhere in the target set using the available control policies, Generally, a system
vill have multiple control goals.

Te successfully contro] the plant, the controller must know which control policy
o apply and when to apply it. The controller receives all its information ahout the
slant from the generator. and therefore the generator must be designed to provide
hat information which the controller requires.

We propose the following solution to this design problem. For a given target
egion. identify the states which can be driven to that region by the application of
1 single control policy. If the starting region is contained within this set of states.
he coutrol goal is achievable via a single control policy. If not, then this new set
i states can be used as a target region and the process can be repeated. This will
esult in a set of states which can be driven to the original target region with no
nore than two control policies applied in sequence, This process can be repeated
1til the set of states. for which a sequence of control policies exists to drive them
o the target region. includes the entjre starting region {provided the set of control
1olicies is adequate as mentioned helow).

When the regions have been identified. the generator is designed to tell the con-
roller, via plant symhots. which region the plant state is currently in. The coutroller

vill then call for the control policy which drives the states in that region to the target
egion.

L.l Generator Design

lo describe the regions mentioned above. we use the concept of the flow [29]. Let
he flow for the plant (1) be given by Fi : X x ¥ — X, where

x(t) = Fi{x(0).1). (53)

Lhe flow represents the state of the plant after an elapsed time of f, with an initial
tate of x{0). and with a constant input of 5(F). Since the plant is time invariant,
here is no loss of generality when the initial state is defined at ¢ = 0. The flow is
lefined over both positive and negative values of lime. The flow can be extended
ver time using the forward flow function. F X — P(X"). and the backward fiow
unction. F7 : X — P(X"), which are defued as follows.

ey = |J{Fele.) (54)
20

Fotey=|J{Fe.n) (55)
1<0

481

The backward and forward Aow functions can be defined on an arbitrary set of states
in the following natural way.

Fra) = |J {(FHeEn (56)
feA

Fra)= | {Fre) (37)
£cA

where A C X. For a target region, T. F7(T) is the set of‘igaitial s“t.ales .I'rom which
the plant can be driven to T with the input 1{r¢). ln.aflt_lmon. F's (T) is the set of
stales which can be reached with input 5{#¢) and an initial §lale in T.

Now a generalor design procedure can be described using the Im.ckw:\nl ffow
function. This is a preliminary procedure, upon which t].le ﬁn_'al design mthod.
developed subsequently, is based. For a given starting region. 5 C X, and farget
region. T C X, use the following algorithm.

LTS CT,stop. .

2. Identify the regions, F7(T). Vi € IR

3Lt T=|J FO(D)

feft

4. Goto L.
There are two problems associated with this algorithm as sla!ed. F.irsl,. it will not
stop il there is no sequence of available control policies whicly will achww’ the Fonh:ot
goal. and secourd. actually identifying the regions given by the I.iow functions is quite
involved. The first issue is related to the adequacy of the available control pohcues
and will not be dealt with here. The second problem will be addressed. Tlll‘.“ dlﬁ?cully
in identifying a region given by a flow [unction is integrating over ail thf? points in the
targel region. In the generator design procedure developed h'ere..we will concentrate
on finding a subset of the region F {T). rather than the regmn_ltselﬁ By definition,
all the trajectories passing through F7(T') lead to the target region, T. and therefore
all the trajectories found in a subset of F7(T) will also lead to the target.

Here. we will focus on identifying subsets of F_(T) \vhi.ch we call common flow
regions. Commo flow regions are boutided by invariant man.lfol(ls and an exit bound-
ary. The invariant manifolds are used because the state trajectory can n‘ell.her enter
nor leave the common flow region through an invariant manifold. The exit boundary
is chosen as the only boundary through which state trajectories leave the common
flow region. . .

To design the generator. it is necessaty to select'the set of h'} persurl’aces_i {l i
X — R |ie !} and the associated functions. {a; 1.V {h;) — n |iel}. de.?cn hed tn
Section 2.3, These hypersurfaces make up the invariant manifolds and ex_n. hound-
aries mentioned above, as well as forming the boundary for the target region{s}.

A target region, T, is specified as

T={€eX:¥i€lr.hif)<0), (58)

where I7 is the index set indicating which hypersurfaces bound the target region. A
comon flow region, B, is specified as

B={€eX: h(€) <0.h(6)>0Vi€ g} (59)

482

where [5 is an index set indicating whi
; X: g which hypetsurfaces form the invariant i
bounding B and A, defines the exit boundary for B. eriant manifolds

N :fhelgoal. of course, i.s that 8 should include only states whose trajectories lead
1¢ Larget region. Figure 11 shows an example of this where I; = {1} and

I = {2,3}. The target region, T, is surrounded by h;, the common Row region

lies between A, and k3 above the exit boundary, A,.

f 2
\ h,
v
h, I 4 he
; t T
: -
v
hy

Fig.11. Target Region and Invariants

o a\::(_ l:}\;" \}?l‘:?::ltrl.\\'o proposTt.lons which can be used to determine the suitability
et Siu,“]:tionl: aces t? a;chleve our ;oal of identifying a common flow region. In
herent si s, one of the propositions may be easier to apply than the other.

Ng propositions give sufficient conditions for the hypersurfaces bounding

B . S
and T to ensure that all state Lrajectories in B will reach the target region

Proposition12. Giren the following:

I. A flow generaled by a smooth veclor ficld, f,
2. A target region. T C X .

3. A set of smooth hypersurfaces, h;,i € Isc?f
{. A smooth hypersurface {erit boundary). h,

suc.h (b.at B={6eX hi{&)<0,h
finite time, {, such thet FiE.t)e

I.Vehi(€) - fl&)=0Viely

2. 3¢ > 0.V ehe(€) F(€) < —c.¥
S. BAN(h)CT Hemevees

AE)>O0Vielg) #£0. ForallE € B there is a
T. if the following condiiions are satisfied:

Proof. The proof of this ition i i
T proposition is straightforward. T iti
proposition, which can be rewritten as ’ he frst condition of the

dhi(x{t)) _ 0
a7 (60)

483

precludes the state trajectory crossing any hypersutface indexed by the set [g. thus
ensuring no trajectory in B will leave B except through the remaining boundary.
The second condition, which can be rewritten as

dhe(x(1))
okl S 1 LA 61
a < (61)
ensures that within a finite time,

(< h.i&). (62)

the trajectory at £ € B will cross the exit boundary. The final condition guarantees
that any trajectory leaving B through the exit boundary will be in the target region
when it does so. Together these conditions are sufficient o guarantee that any state
in B will enter the target region in finite time.

The second proposition uses a slightly different way of specilying a common flow
region. In addition to the invariant manifolds and the exit boundary. there is also a
cap boundary. The cap boundary is used to oblain a commen flow region which is
bounded. So for this case

B={€eX:hi(€) <0.h(€)>0.h(£) <0.Vi€ Ip]). (63)
Proposition13. Giren the following:

A flow generaled by a sinooth veclor field. fi
A target region. T C X

‘A sel of smooth hypersurfaces. h;.i€Ip C 2!
A smooth hypersurface (exil boundary}. h,

A smooth hypersurface (cap boundary), h.

such that B = {€ € X : hi(€) < 0, he(£) > 0. h{£) < 0,vie Ig} # 0 and B (closure
of B) is compact. For all§ € B there is a finite time, t, such that F(§,) €T, of
the following conditions are salisfied:

1. Vehil€)- fl€)=0Viels
2. Veh(€) fl€) < 0.YE € BNN(h)
3 BnN(h)CT

4. There are no limif sels B

el e

Proof. Asin Proposition 12, the first condition precludes the state trajectory cross-
ing any hypersurface indexed by the set Ig. thus ensuring no trajectory in B will
leave B except through one of the remaining boundaries. The second condition.
which can be rewritten as

dhe(x(1))

TR 0. (©0

ensures that no trajectory can leave B through the cap boundary. Thus, the exit
boundary provides the only available egress from B. The third condition guarantees
that any trajectory leaving B through the exit boundary will be in the target region
when it does so. The final condition permits the application of a previously known
result [30]. stating that any state within a compact set without limit sets will leave
that compact set in finite time.

484

Consider the hypersurfaces defined by {h; : i € Ip}. These hypersurfaces must
ficst be invariant under the vector feld of the given control policy, f. This can
e achieved by choosing them to be integral manifolds of an n ~ 1 dimensional

distribution which is invariant under f- An n — 1 dimensional distribution. :\{x). is
nvariant under f if it satisfies

(f(x). A(x)} € S(x). (63)

where the {f(x). A(x)] indicates the Lie bracket. Of the invariant distributions. those

hat have integral manifolds as we requtire, are exactly those which are involutive
according to Frobenius). This means

f1(x). &a(x) € Mx} = [61(x). b2(x)} € Ax). (66)

Therefore by identifving the involutive distributions which are invariant under the
sector feld. f. we have indentified a set of candidate hypersutfaces. For details of
hese relationships between vector fields and invariant distributions. see [3].

Since an u — 1 dimensional involutive distribution can be defined as the span of
1= 1 vector fields. over each of which it will then be invariant. amd the control policy
mly gives one vector feld. [there will be more than one family of hypersucfaces
vhich are all invariant under f. The set of all invariant hypersurfaces ¢an be found in
erms of n—1 functionally indepenclent mappings which form the basis for the desired

et of functionals. {h; : i € Ig}. This basis is obtained by solving the characteristic
:qualion

dr[d.l‘.") d:" -
= — = ————— r
Ni(x) falx) Falx) (67)

vhere fi(x) is the ith element of Jix).

L2 Controller Design

n previous work using this framework for hiybrid control systems. the interface
vas assumed to be given and the controller was designed using the given plant
nd interface; see Section 3 and [6, 8. 9]. In those cases. the plant and interface
vere modeled as a discrete event system, called the DES plant model, and existing
JES controller design techniques were adapted and used to obtain a controller.
Che drawback was that there was no guarantee that the desired behavior could he
whieved with the given plant and interface.

Now, with the generator design technique described in Section 4.1, the controller
lesign is anticipated by the design of the interface. This represents an improvement
over the previous situation because now there is no question that the control goal
:an be achieved once the interface has been successfully designed, and furthermore
he actual controller design has heen largely determined by the interface design.

Once the intetface has been designed as described in Section 4.1, the design of
he controller invelves two steps. The first step is to construct one subautomaton
or each control goal. This is the step which is already determined by the interface
lesign. The second step is the connection of these subautomata to create a single
JES controller. This step will depend upon the order in which the simpler control
s0als are to be achieved. For example, il a chemica! process is to produce a sequence

485

of different proclucts. then each subautomaton in the controller would be desngne:ld to
produce one of the products. and these subautomata would be connected to produce
the products in the desired sequence. _

The hypersurfaces in the generator divide the state space of the plant mlo}a
number of cefls. Two states are in the same cell exactly when they are both on T e
same side (positive or negative) with respect to each hypersurface. States which lie
on a hypersurface are not in any cell. .

The first step in creating the controller is the contruction of the subautomata. one

for each individual control goal. Each subautomaton is constructed in the following
way.

i. Create a controller state to represent each cell.
ii. Place transitions hetween states which represent adjacent cells.
iti. Lahel each transition with the plant symbol which is gencrated by the hyper-
surface separating the associated cells,

We now have a subautomaton which can follow the progress of the phm.ﬁlat;‘ ras
it moves from cell 1o cell. Next the controller output function must be designed for
each subautomaton.

The controller symbol output by a given controller state depends on which com-
mon flow region contains the associated cell, Each common ﬂow.regpop-w:\s clon-
structed using a specific control policy. and the control symhql which initiates lll:_\t.
control policy shottld he oulput by controller states representing ?ells co-ntan-n-c in
that common flow region. However. in general, common ﬂov_v regions wiill overlap,
meaning a given cell can lie in more than one conynon [!ow region. In such cases u:r:at
the cell as lying within the common flow region which is clofe:S(to t-lle target region.
Distance. in this case, is the number additional control policies which must he used
to reach the target region. If common flow regions are bot h. lh«? sante u.hst.ance. then
the choice is arbitrary. though the common flow region whicl is favored in one case
must then be favored in all such cases. States which reprcsen.t cells not contained
in any common flow region or target region will never be visited and can thus be
deleted.

Once the individual subantomata have been constructed they must be connected

to form a single controtler. This can be accomplished by following these steps [or
each subautomaton.

i. Remove the state{s) which represent cells in the target region as well all transi-
tions emanating from such states. ' .

it. Connect the dangling transitions to states in the subautomaton \\‘hlcll. achieves
the next desired control goal. The connections will be to the states which repre-
sent the same cells as the states which were removed.

In this way. as soon as one control goal is achieved. the system will begin working
on the next one. The actual order in which each control goals are pursued is up lo
the designer,

486

4.3 Example - Double Integrator

Consider the double integrator example from Section 2.5. Suppose we are given the
plant,

x(4) = [g é] x(1) + m £(t). (68)

three available control policies,

r(t) € {-1.0.1}, (69)

and the following control goal: drive the plant state to the interior of the unit ciscle
from any initial point. So the starting set consists of the entire state space and the
following control goal: drive the plant state to the interior of the unit circle from any

initial point. So the starting set consists of the entire state space. and the target set
is

T={(eX:&+& <1} (70)
The target set is bounded by the hypersurface given by
hr(€) =& +¢3 -1 (il)

The first step is to calculate the invariants which can be used to obtain hypet-

surfaces. There are three families of invariants. one for each of the three control
policies.

l . -
i(tfl+§€-_?+fl) (72)
1 _
x(5 *§E§+C:-) (13)
£(£2 + ca) (74)
The ficst hypersurface, k), is used to identily the target region.
hi(€) = hr(€) =€ +63 -1 (75)
A Lube entering T under the first control policy, r{t) = ~1. is bounded by
l _» -
ha(€) = -&, - 555 -.9 (i6)
L 4 -
h3(5)=fl+§€5~-9 (i7)
and
he()=hy(E) =6 + .1 (78)
These hypersurfaces satisfy Proposition 12. Identify this tube as B;.
Bi={&:h{€) <0.hy(6)>0.i€ {2.3}) (79)

Likewise, a tube entering T under the third control policy is bounded by
b a
hs(€) = =& + 7&-9 (80)

! .
he(€) =€ - 555 -9 (81)

487

and

he(€) =hi{§) =&+ .1 (82)
Identify this tube as Bs.

By = {€ : hi(€)} < 0,h5(€) > 0,i € {5.6}]) (83)

Figure 12 illustrates what we have so far. Now the target can be f:xtended'l.o include
B; or B and more tubes can be obtained. Let the new target be given by T =TuB,.
A tube entering T under the second control policy is bounded by choosing

IB) = [7} (84:

and e = 2. A tube entering T” = T* U Ba under the third control policy is bounded
by choosing]

Ig, = {6} (83
and e = 7. Figure 13 gives a final picture of the hypersurfaces and regions involve
in this example.

hj
A A 2
B
v i hl ¥
h2 > h6

- -
\ 4

hs By

Fig.12. Target Region and Invariants

There is only one control goal for this example and therefore the entire c‘ontrol.l
will consist of a single subautomata. Start by creating a controller state §t whl
is associated with the target region. Two tubes. labeled By and Ba, were ndexjtnﬁ
which lead to the target region. So create two more controller states, 5 ahnd $2.4
consists of the trajectories which reach the target region und?r control‘p_o!lcy Py a
therefore ¢(3)) = 7y, likewise 8(52) = F3. Connect § Lo 51 with a tranisition label

Fig.13. Target Region and Invariants

#1 which is generated when the plant state crosse
the same for 52. Next, create 33 to go with B3,
When all the tubes have their associated state
in Figure [4 results,

§ hi to enter the target region. Do
and add a transition to | labeled .4,
s and transitions the controller shown

4.4 Example - Triple Integrator

With the double integrator exanple, it is easy to see how the invariant surfaces are

1sed. The technique can also he used in more complicated cases where it is not so
ntuitively obvious. Consider the triple integrator,

610 0
x({)= |00t x(L) + | 0] r(e), (86)
000 1
¥ith the same three avaitable control policies,
r(t) € {-1,0,1}. (87)
This time the control goal is to drive the state to the unit sphere from any initial
tate. First find a basis for the invariants by solving the characteristic equation
doy _dn _ dny (88)
Xa X3 r
“wo functions are obtained,
1
hal€) = ré3 - 565 + ¢, (89)

h(8) = 1761 + 36 = rEata = e, (90)

489

Fig. 14. Controller

where r is the input (control policy) and ¢, and c» are a.rbil.rar,v constants. Examp
hypersurfaces for r = I and ¢; = ¢3 = 0 are shown in F!gu‘res 15 and 16.
The target region is bounded by the hypersurface, by, i.e. IT = {1}.

h{E) =6 +€6+6 -1 (9

Now identify a “tube” of trajectories which enters the target region under the inpt
r(!) = 1. The {ollowing hypersurfaces are used.

ha(€) = €2 + %63 -V2 (9"

ha(€) = & — %-53 -2 (9:

ha(€) =1+ 36— a3 ~ V2 (9
ho(€) = ~&1 = 36 +Eats ~ V2 (@

The tube runs through the origin, where the target is centered. and the constar
values, £/2, where choosen so that the tube passes through the target.

4.5 Remarks

in [7 ere di i tes
Preliminary results were presented in (7). where they were dlsc‘uss?g in the conte»
of digital control. A more extensive presentation can he found in [32].

Fig.16. Invaniant for A,

5 Conclusion

This paper presented two methods to design a hybrid control system. The first
method can be used when the plant and inter{ace of the system have been specified
and a controller is required. The second method allows the design of the interface
{the generator) as well as of the controller.

References

1. P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon. “Hybrid system modeling and au-
tonomous control systems™, [n Hybrid Systems, edited by R. L. Grossman, A. Nerode,
A. P. Ravn and H. Rischel, vol. 736 of Leciure Notes in Computer Science, pp. 366-392.
Springer-Verlag, 1993,

.

10.

1.

13.

14.

is.

16.

17.

491

. J. A.Stiver, “Modeling of hybrid control systems using discrete event system models™,

Master’s thesis, Depattment of Electrical Engireering. University of Notre Dame. Notre
Dame. IN, May 1991,

. J. A. Stiver and P. J. Antsaklis, “A novel discrete event system approach to modeling

and analysis of hybrid control systems™. In Proceedings of the Twenty-Ninth Annual
Allerton Conference on Communication, Control, and Computing, University of lilinois
at Urbana-Champaign. Oct. 1991,

J. A. Stiver and P. J. Antsaklis, “Modeling and analysis of hybrid control systems™,
In Proceedings of the 213t Conference on Decision and Control, pp. 3748-3751, Tucson.
AZ, Dec. 1992,

J. A. Stiver and P. J. Antsaklis. “Stale space partiticning for hybrid control systems®,
In Proceedings of the American Control Conference, pp. 2303-2304. San Francisco.
California, June 1993,

J. A. Stiver and P. J. Antsaklis. "Or the controllability of hyhbrid control systems™,
In Proceedings of the 32nd Conference on Decivion and Control. pp. 3T48-3731, San
Antonio. TX. Dec. 1993,

- 1. AL Stiver, P. J. Antsaklis. and M. D. Lemmon. “Digital control from a hyhrid per-

spective™, In Proccedings of the 33rd Conference on Decision and ontrol, pp. 1211 -
4246, Lake Buena Vista. FL. Dec. 1994,

. P.). Autsaklis. Al. D. Lemmon, and 1. A. Stiver, “Learning to be antonomous: Intelli-

gent supervisory control”. Technical Report of the ISIS Group [S1S-93-003. University
of Notre Dame. Notre Dame. IN. April 1993. To appear as a chapter in the [EEE Press
book Intelligent Control: Theory and Applications.

.} A.Stiver, P. J. Antsaklis. and M. D. Lemmon. “A logical des approach to the design

of hybrid systems™, Technical Report of the ISIS Group (Interdisciplinary Studies of
Intelligent Systems) [SIS-94-011. University of Notre Dame. October 1994,

J. A, Stiver. P. J. Antsaklis. and M. D. Lemmon. “Interface Design for Hybrid Control
Systems™, Techaical Report of the ISIS Group {interdisciplinary Studlies of Intelligent
Systems) ISIS-95-001, University of Notre Dame. January 1995.

A. Nerode and W. Kohn, “Models for Hybrid Systems: Aulomata. Topologies. Con-
trollability. Observability™, [n Hybrid Sysiems, edited by R. L. Grossman. A. Nerode,
A. P. Ravn and H. Rischel. pp. 317-1356. Springer- Verlag, 1993.

- W. Kohn. A. Nerode, J. Remmel. and X. Ge, “Multiple agent hybrid control: Carrier

marifolds and chattering approximations 1o optimal conirol™, In Proceedings of the
33rd [EEE Conference on Decision and Coatrol. pp. 4221-4227, Lake Buena Vista.
FL, Dec. 1994.

W, Kohn, J. James. A. Nerode. and N. DeClaris, “A hybrid systems approach to inte-
gration of medical models™, In Proceedings of the 33rd IEEE Conference on Decision
and Conirol, pp. 4247-4252, Lake Buena Vista, FL, Dec. 1994,

R. Brockett. *“Langnage driven hybrid systems™, In Proceedings of the 33vd [EEE
Conference on Decision and Control, pp. 4210-4214, Lake Buena Vista, FL, Dec. 1994,
P. J. Ramadge. “On the periodicity of symbolic observations of piecewise smooth
discrete-time systems™, [EEE Transactions on Aulomatic Control, vol. 35, ne. 7. pp.
807-812, July 1990, S

C. Chase and P. J. Ramadge. “Dynamics of a switched n buffer system”, In Proceedings
of the Tweniy-Eighth Annual Allerion Conference on Communication, Control, and
Computing. pp. 435-464. University of [llinois at Urbana-Champaign. Oct. 1991,

S. Di Gennaro. C. Horn. $. Kulkarni. and P. Ramadge. “Reduction of timed hybrid
svstems”, In Proceedings of the 33rd IEEE Conference on Decision and Control, pp.
4215-4220, Lake Buena Visia. FL. Dec 1904

492

18. A. Goltu and P. Varaiya. “Hyhrid dynamical systems™. In Proceedings of the 28tk
Conference on Decivion and Control, pp. 2708-2712, Tampa. FL, Dec. 1989.

19. A. Deshpande and P. Varaira. “Viable control of hybrid systems™. In the Ph.D. Dis-
sertation of the first author. June 1994, Mtp: eclair.eecs.berkeley.edu.

20. M. Tittus and B. Egards, “Control-law synthesis for linear hybrid systems™, In Pro-
ceedings of the 39rd JEEE Conference on Decision nnd Control, pp. 961-966. Lake
Buena Vista. FL. Dec. 1994,

21. B. Lennartson. B. Egardt. and M. Tittus. “Hybrid systems in process control®. In
Proceedings of the 39rd [EEE Conference on Decision and Control. pp. 3587-3595,
Lake Buena Vista, FL. Dec. 1994,

22. R. L..Grossman. A. Nerode. A. P. Ravn, and H. Rischel. editors, Hybrid Systemas, vol,
736 of Lecture Noles in Compuler Science, Springer-Verlag, 1991,

23. P J. Ramadge and W, [, Wonham, “Supervisory control of a class of discrete event
processes”, Svslems Control Group Report 8515, University of Toronto., Toronto,
Canada. Nov. 1985,

24. P. Ramadge and W. M. \Wonham. “Supervisory control of a class of discrele event
processes™. SIAM Journal of Control and Oplimization, vol. 25, no. 1. pp. 206~230.
Jan. 1987,

25. P. Ramadge and W, M. Wonham, “The control of discrete event systems™, Proceedings
of the IEEE, vol. 77. no. 1. pp. 81-8Y. Jan. 198y,

26. W. M. Wonham and P. J. Ramadge, “On the supremal controllable sublanguage of a
Biven language™. Systems Control Group Report 8312, University of Toronte, Toronto.
Canada. Nov. 1983,

. W, M. Wonham and P. J. Wonham, “On the supremal controllable sublanguage of
a given language™, SfA) Journal of Conlrol and Optimization. vol. 25, no. 3, pp.
637-659. May 1947, '

28 X. Yang. P. I, Antsaklis. and M. D. Lemmon, “On the supremat controllable sublan-
RUage in the discrete event model of nondeterministic hybrid control systems®, Tech-
nical Report of the [SIS Group [51S-94-004, University of Notre Dame. Notre Dame,
IN, March 1994,

29. H. Nijmeijer amd A. 1. van der Schafl, Vonlinear Dynamical Control Systems,
Springet-Verlag, New York. 1990,

30. R. Miller and A. Alichel. Ordingry Differential Equations. Academic Press. New York,
NY. 1982,

31, A. Isidori. Nonlincar Control Systems, Springer-Verlag, Berlin, 2 edition, 1989,

32. P. J. Anmtsakiis. “Qn Intelligent Control: Report of the IEEE CSS Task Force on In-
telligent Control™. Technical Report of the ISIS Group (Interdisciplinary Studies of
Intelligent Systems) [S18-94-001. University o! Notre Dame, January 1994,

o
=1

M\

