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Optimal design of robust controllers for uncertain discrete-time systems
IOANNIS K. KONSTANTOPOULOSt} and PANOS J. ANT SAKLISt

This paper presents a fast algorithm for the design of robust output feedback
controllers for linear uncertain discrete-time systems. The algorithm utilizes a version
of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method of con-
Jjugate directions and minimizes 2 performance index that includes an linear quadratic
regulator (LQR) term 1o optimize performance and a robustness term based on
recently developed bounds. The minimization of only the robustness term which
corresponds to the maximization of the uncertainty bound is also studied. The case
of unstructured perturbations in 4 has been the only one studied in the robust
controller design literature; the present algorithm introduces a unified approach to
cases of both unstructured and structured perturbations in the matrices of a state-
space model. For the special case of unstructured perturbations in A only, the
algorithm is shown to improve considerably the existing unstructured uncertainty
bound. Several examples, including an aireraft control system and a paper-machine
head box, are presented to illustrate the results.

1. Introduction

The problem of determining a linear feedback control law for uncertain linear
systems has drawn considerable attention; for general information concerning static
output feedback see Syrmos et al. (1994). Several criteria have been used to characterize
the system uncertainties, so that the stability (asymptotic, quadratic or exponential) of
the uncertain systems is guaranteed if these criteria are satisfied, and several robust
controller design methods have been developed. G

Kosmidou (1990) and Luo er al. (1994) used the guaranteed cost control approach
for the design of robust feedback controllers that guarantee both the robust stability
and the performance of continuous systems. Gu es al. (1991) presented a two-level
optimization process that guarantees quadratic stabilizability of continuous systems,
and Gu (1994) applied an algorithm consisting of a strictly quasiconvex minimization
to the design of quadratically stabilizing output feedback controllers for both
continuous and discrete-time systems. Tsay et al. (1991) proposed algorithms based on
the Lyapunov stability criterion, to choose a set of weighting matrices for the
quadratic cost function; these matrices were then used in the sE,andard Riccati
equation to give the linear quadratic optimal control law for the nominal continuous
system, which was shown to stabilize quadratically the uncertain system. A similar
combination of the Lyapunov stability criterion and the Riccati equation was used by
Niand Wu (1993), who presented a non-iterative procedure for the design of a robust
state feedback controller that ensures the exponential stabilizability of uncertain
continuous systems.

The linear quadratic regulator (LQR) formuiation for continuous systems was
used by Wang et al. (1987), where an upper bound on the cost incurred by state
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feedback law and parameter uncertainties was derived and the control law that
minimizes this upper bound was found: conditions were presented under which the
feedback system was stable for all admissible parameter variations. Another LQR-
based control design which is robust to parametric uncertainties was developed by
Douglas and Athans (1994) for continuous systems, where the resulting full-state
controller was designed by solving a single Riccati-type equation. Luo and Johnson
(1992) studied the robustness of the discrete-time linear quadratic gaussian (LQG)
problem, where the system to be controlled is described by a state-space formulation
that includes plant parameter perturbations and noise uncertainty,

Numerous synthesis results based on K techniques have also appeared in the
literature. Fu et af. (1991) and de Souza er af, (1993), for instance derived conditions
for quadratic stability with disturbance attenuation and for quadratic stabilization via
dynamic output feedback respectively for uncertain continuous and discrete-time
systems, whose uncertainty matrices are assurned to be of a specific structure. Then, an
H,-based approach was described for the design of controilers that satisfy the
aforementioned conditions. However, no specific information about the uncertainty
bounds that describe the uncertainty matrices was provided. Zhou et al. (1992)
presented 2 convex programming-based approach to the design of H_, controllers for
uncertain systems. Specifically, they reduced the problem of controller design to a
matrix inequalities problem and searched for a controller that satisfied the conditions
for the strongly robust & performance criterion which they defined. Note that the
systems which they studied are the typical H_, systems with exogenous disturbances
included in the state-space model. Note also that no explicit way was presented to
compute the uncertainty bounds, which were decided experirnentally via the ellipsoidal
method. Several other papers, some of those included in the references of the papers
by de Souza er al. (1993) and Fu er al. (1991) have dealt with the problem of robust
output feedback controller design in a fashion similar to that discussed in this :
paragraph. :

All the above controller design approaches share the same general objective, which
is to find a stabilizing controller that satisfies some stability conditions or is robust in
some sense, without considering the maximization of any of the robust stability
bounds existing in literature. This has been done by Yedavali (1986) for continuous
systems with structured uncertainties in the system matrix 4 and by Kolla and Farisou
(1991) for discrete-time systems with unstructured uncertainties in 4. Note that the
design in the first paper relies on the selection of a weighting matrix not directly
associated with the structured uncertainties and in the latter on the bound developed
by Kolla ez al. (1989). In both of these papers, the information about the uncertainty
bound is a part of the minimizing quantity, which also includes the classical LQR cost.
Therefore the controller design objective is twofold, that is to minimize the LQR cost
and to maximize the perturbation bounds. A similar approach was used earlier by
Menga and Dorato (1974) for continuous systems with structured uncertainties in all
the state-space matrices, under some quite restrictive assumptions imposed on the
perturbation matrices; although the maximization of some stability bound is aot
considered in the design process, the information about the structured uncertainty is
directly included in the minimizing quantity. Finally note that a simple version of the
approach of Kolla and Farison (1991) for time-invariant perturbations in 4 has
recently appeared (Kolla 1995) and that a comprehensive survey on design methods
for stability robustness of linear discrete-time systems can be found in the paper by
Kolla and Farison (1994).
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From the above discussion it is clear that, for discrete-time systems, only the case
of unstructured perturbations in 4 has been studied in the literature. Here, we present
a unified output feedback controller design approach for both cases of unstructured
and structured perturbations in A. Specifically, we study the general cases of
unstructured perturbations in all state-space matrices and structured perturbations in
any pair of these matrices and present all other cases such as the one of single
perturbations in 4 as special cases. Our approach is based on new theorems for both
the structured and the unstructurd cases, which were recently developed by
Konstantopoulos and Antsaklis (1994a); these theorems have shown to provide
bounds that improve the bounds obtained via the methodology suggested by Kolla er
al. (1989) and used by Kolla and Farison {1991). Our design provides a stabilizing
static output feedback controller that improves the unstructured bound for A derived
by Kolla and Farison (1991). In all the cases studied here, the minimizing quantity
consists of two terms: one is the robustness term, which is associated with the specific
unstructured or structured bound that we wish to maximize and the other is the LQR
term, which is associated with the specific control performance that we wish to
maintain. Note that our optimization approach is also applied to a minimizing
quantity consisted of only the robustness term, in order to find the controller that
maximizes the stability bounds, without considering any control specifications. Note
that only the case of static output feedback is studied, since the case of dynamic output
feedback can be reduced to that of static feedback as well, as it is shown in
Appendix C. Finally note that our minimization algorithm utilizes a version of the
Broyden family method of conjugate directions, which is based on the Broyden—
Fletcher-Goldfarb—Shanno (BFGS) rule (Bazaraa er al. 1993) and that the case of
state feedback can be easily considered as a special case of the output feedback case for
C=1

The paper is organized as follows. In §2, we present the new theorems of
Konstantopoulos and Antsaklis (1994a, 1995 b) for the cases of unstructured and
structured perturbations in discrete-time systems. In §3, we study the case of
unstructured perturbations in all state-space matrices and present an algorithm based
on the BFGS rule that solves the minimization problem. Note that several special cases
such as the ones of unstructured perturbations in A only or in (4, B) only are also
discussed. In §4, we study the case of structured perturbations in (4, B); the case of
single structured perturbations in any of the state-space matrices is also discussed. In
§5, we provide several illustrative examples for some of the cases mentioned above;
these examples include an aircraft longitudinal control system and a paper-machine
head box. Finally, in §6, concluding remarks are included. s

2. Preliminaries
We consider the linear discrete-time system with the state-space description

x(k+1) = Ax(k) (2.1)

where x& R " is the state vector and A an asymptotically stable matrix, Then, for every
symmetric positive definite matrix @, we can find a symmetric positive definite matrix
P, which is the unique solution of the Lyapunov equation

A*PA—P+Q =0 @2
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When A is perturbed by the matrix A4, then for the perturbed system
yk+1) = (4 +AAd)y(k) (2.3)
the following theorem holds. First define
2, =ATPZ7'P4 (2.4)

and note that the notation 4 < B for two symmetric square matrices 4 and B means
that the matrix 4 — B is negative definite, that is all the eigenvalues of 4 — B lie to the
left of the imaginary axis in the complex plane.

Theorem 2.1: Consider the linear discrete-time system (2.1) where A is an asymp-
totically stable matrix that satisfies (2.2). S uppose that A -+ A+ AA, then the perturbed
system (2.3) remains asymptotically stable, if’

(AA)T (@Z + P)(AA4) +§.Q1 <@ (2.5

or

Um(Q)—O'm“{(l/d)Q ] 1
a8 < e e

where P, Q are defined in (2.2), $2, in (2.4), Z can be any positive definite matrix of
appropriate dimensions, and « any positive number that satisfies

Omas(21)
o Daxy 17 27)
LA (e)) :
Proof: The proof is given in Appendix A. |

When the perturbation matrix A4 is described by

Ad = i&,A‘ =(@xI)yA4d (2.8)

=1

where8,,i = 1,..., mdenote real uncertain parametersand 4,,i = 1,..., mare constant
known matrices, the following theorem holds. Obviously, the following definitions
have been used:

@=[6 6, .. 6,5 A=[4T 4T .. AI[T (2.9)
Theorem 2.2: The linear discrete-time system (2.3) with A an arympton'ca!f';r stable

matrix and structured perturbations of the form of (2.8) remains asymptotically stable,
if the uncertainty parameters satisfy

- amln(Q) - amax[(l /a) Q ]
L0 Doz (219)

where Q,, 6, and A are defined in (2.4), (2.9} and (2.9) respectively, Z can be any positive
definite matrix of appropriate dimensions, and « an y positive number that satisfies (2.7).

Proof: It follows easily from Theorem 2.1; details have been given in the paper by
Konstantopoulos and Antsaklis (1995b).

The main point of the approach used for the theorems above is the appropriate



|.K. Konstantopoulos and P.J. Antsaklis, "Optimal Design of Robust Controllers for Uncertain Discrete-
Time Systems,” | ntern J ournal o f C ontro |, Vol.65, No.1, pp. 71-91, 1996.

/u/ncn/ion217 May22 ncn—sps art A5 5 (X 4)

Robust controllers for uncertain discrete-time systems 5

d = cube adge
2°0.0348

1
I
1
|
]
1
1
I
|
|
]
1
L

A = sphere radius = 0.0606
Rc = cube radius = 0.0603

Figure [. Example 2.2.

selection of a positive definite matrix Z and a positive number x that maximize the
stability region within which the uncertain parameters vary. A major advantage of this
approach is that it is unified with respect to both unstructured and structured
perturbations, owing to the similarity between (2.6) and (2.10); this appears to be very
convenient in the design methodology that we present in §3 that follows. Note that the
above approach has also been extended, by Konstantopoulos and Antsaklis (1994a,
1995b) to the case of structured perturbations in all the state-space matrices.

The above theorems provide bounds that imprive the bounds obtained via the
methodology suggested by Kolla et al. (1989) and used by Kolla and Farison (1991)
for the case of unstructured perturbations in A. Note that here we compare our results
with those of Kolla et al. (1989) and Kolla and Farison (1991) only, because these are
the only results in the literature for studies similar to those that we present here. Since
the emphasis in this paper is on the optimal controller design, further discussion of
analysis results (derivation of robust stability bounds, and comparison with previous
results) is not of interest here. Note, however, that a detailed discussion of the present
approach and its application to other cases that are not of interest here, as well as a
comparative study of other literature analysis methods and results for both continuous
and discrete-time systems, can be found in the papers by Halicka and Rosinova (1994)
and Konstantopoulos and Antsaklis (19942, 1994c¢, 1995b).

Example 2.1: Consider the following uncertain discrete-time system<(2.3) from Kolla
et al. (1989) with
020 030
A= (o-m —0-15) @)
Using (2.6) of Theorem 2.1 for Q=1 a=02702, and

. 2:0399 -0-2037)
~\—=02037 14586

we obtain ¢,,,(A4) < 06787, which compares favourably with the result of Kolla et
al. (1989), which is 0,,,(A4) < 0-6373. Note that the same result was derived with the
method proposed by Su and Fong (1993). O
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Example 2.2: Consider the same nominal system as before, but now with structured
perturbations of the form of (2.8), with m = 3 and

10 0l —05 9 1 06
A'—(—-l 5)' A==( 0 -3)‘ A°_(l 0-3) @12

Using (2.10) of Theorem 2.2 for Q=1 a=040, and

{13462 01184
T \~01184 08786

we obtain ki +xf +x? < (0-0606)?, that is a sphere with radius R = 0-0606, whereas the
method suggested by Kolla et al. (1989) gives I, < 0-0348 fori = 1,2, 3. Note that, as
we can see in Fig. 1, the defined cube is completely included in the sphere found above,
which shows that our bound is less conservative than that of Kolla er al. {1989).

3. Unstructured perturbatiops
We consider the linear discrete-time system with the state-space description

x(k+1) = Ax(l) + Bu(k), y(k) = Cx(k) G.0)

where xe R" is the state vector, ueH" is the input vector and ye R is the output
vector. We assume unstructured perturbations in all system matrices, that is

A =A+A4, B=B,+AB, C=C,+AC (3.2)
With the static output feedback law
utk) = Ky(k) = KCx(k) 3.3
the closed-loop system is described by
x(k+1} = [dy+ A4 +(AB) KC, + B, K(AC) + (AB) K(AC)]x(k) (3.4)
where obviously the following definition has been used:
A, = A, + B, KC, 3.5)
For the closed-loop system of (3.4), (2.2) and (2.4) can be translated into
A3 PA4,—P+Q =0, Q,=ATPZ"'PA, (3.6)

It can easily be shown that the stability of the closed-loop system is maintained, if
the perturbation matrices A4, AB and AC satisfy the following sufficient condition:

amlx(AA) + Jmax(AB) Umnx(K) amu:(co) + amu(Bo) G'm“(K) amu(AC)

Um.m(Q) _'amu[(l/a) ‘Ql] e
#0800 (AC) < (FsD el DA

where P, , €, are defined in (3.6) above. Note that the above inequality defines a
region in R* for ¢,,,(A4), o, (AB) and Cra(AC).
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3.1. Design without performance specifications

Our objective is to find a static stabilizing output feedback gain X that maximizes
the region specified in (3.7). As shown in Appendix B, in order to maximize the volume
of this region, we need

(i) to minimize o, (K)

and also to maximize the right-hand side of (3.7). Since Q in (3.6) is selected
beforehand, in order to maximize the right-hand side of (3.7), we need

(ii) to minimize o, (2Z + P) and

(iii) to minimize o, [(1/a) Q.1

For (i) we choose to minimize the quantity Jy = Tr(K"K), since 0%, (4) < | A[|E =
Tr(A4%4), where || 4|, denotes the Frobenius norm and Tr {A) the trace of a matrix A4.
Similarly, for (ii), we choose to minimize the quantity J, = Tr[(aZ + P)* (aZ + P)) =
Tr(a*Z*+2aPZ+ P?). For (iii), we have Tnal(1/2)82,) < (1/@) 02, (A,) %, (P)
Tl Z7"). Since Z is selected beforehand and an upper bound of g, (P), that is Tt
(P%), is already minimized in J,, for (iii) we simply choose to minimize Jy=(1/a)Tr
(4§ A,), which is an upper bound of (1 /) 0% x(A4,). Note that the minimization of the
sum of Tr (A 4,) and Tr(P*) is an indirect and harder way to minimize their product;
in other words, we impose 2 more demanding task on the minimizing process. On the
other hand, note that « is included in (iii), because we need to satisfy the positiveness
of the numerator, as indicated in (2.7). Therefore the minimizing quantity is given as
Juze = J+J,+ 7, under the condition that (3.6) holds. This is clearly a constrained
minimization problem. By including (3.6) in J1sc» we finally reduce the problem to an
unconstrained minimization problem, with the minimizing quantity finally given by

Tipo = Tr[KTK+a22’+2aPZ+P2+£A_ T4+ L(ATPA,~P+Q)]  (3.8)

where L, e R™* is the Lagrange multiplier matrix. Next, we need the following
properties from the work of Athans (1967):

%Tr (X = 27 , 3.9
%Tr(A, YB,) = AT BT (3.10)

3]
—=Tr(4, Y'B) = By, G.11)
%Tr(A, YB, Y%) = A, YB, + AT YB (3.12)

forany Xe®R*", YeR"*m 4 eR*" B e R™x A4, eR"™, B,eR™™, 4,e R™" B.e
™™, With these properties, we have
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T -

A ABC — 4t = JTPA,—P+Q (3.13)
eL, 1

aJ:BC 2 1 AT 1
e =d4"=2aTr(Z )+2Tr(PZ)—a—,Tr(A°A°) {3.14)
JT — _

aa‘;°=d';=2P+2aZ+AoL'fA§—Lf (3.15)

aJE . 2 2

—a‘kﬂ = AK = 2K+EB§BDKCO C§‘+EB§A°C0T

+BE PB KC (L, + LY CT+ BE PA(L, + L) CT (3.16)

To minimize (3.8), we use a version of the Broyden family method of conjugate
directions, which is based on the BFGS update rule; details have been given by
Bazaraa et al. (1993). The proposed algorithm is presented next.

Algorithm:
Initialization step
Let & > 0 be the termination scalar. Choose an initial stabilizing gain

()"
K=] : 3.17)
()"
where (7;)%, I =1,..., rare the 1 x g rows of X,, which stabilizes (4,, B,, C,), that is 4, .
stable. Also, choose an initial syrmmmetric positive definite matrix D, e R Let

)
bh=nt=] : (3.18)
(x)

be a column vector consisting of the transposes of the rows of K.Alsoletk,=/=1
and go to the main step.

Main step

(M1} Substitute the gain matrix K, in the gradients of (3.13)«3.15), set them to
zero, that is di. =0, 4; =0, 4% = 0, and solve respectively for P, a, L,in
that specific order.

(M2) Substitute these parameters in (3.16) and compute

(e)*
g =1 (3.19)

()"

where (a})%,/=1,...,r are the 1 x ¢ rows of di.
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(M3) Define
o
Viscd)=| : (3.20)
al

r

If IV 50(8))]l < e, stop. The optimal gain is K. Otherwise, go to (M4).
(M4) If j > 1, update the positive definite matrix D, as follows:

D,=D,, +P;-|P}.-| (1 + g1 D)y ‘I;-l)_D;-x Qs P + P21 G Dy, (3.21)

51911 PGy Pl
where
P =A_d_ =¢~¢_, (3.22)
Gper = VW iiac(8)— V3 5c(¢5-1) (3.23)
(M5) Define
dy=~D,Visc(d) (3.24)

and let A be an optimal solution to the problem of minimizing
Jasc{$;+ Ad) subject to 1 = 0. Let

(=™
¢j+l = ¢j+;';dj = (325)
(=
which implies that
(Tiﬂ)T
(tiﬂ)‘l‘

where obviously (r*'),/ = 1,...,r are ¢ x | column vectors.

(M6) Ifj < rg, replace by j+ | and repeat the main step. Othcrwis/e, iff = rq, then
let §, = xky.y = $,qr1, replace k,, by (ky+1), let j = 1 and repeat the main
step.

Several issues need to be discussed here. First, note that the line search in (M5) is
restricted to stabilizing gain matrices. Therefore the selected new gain matrix needs
first to stabilize the closed-loop system (3.4) and then minimize J*,.. Since our
algorithm is an indirect version of the BEGS algorithm, as an alternative to the
stopping criterion of (M3), we could use another quite practical criterion. Specifically,
we may consider monitoring J% . and stop when we reach a plateau or when we see
that J .. is sufficiently small and the associated bound derived is satisfactorily large,
From (3.14), we can easily see that there is at least one real positive solution for «. For
our algorithm, we choose to keep the largest value of , since we also need to satisfy
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the positiveness of the numerator of (2.6) and (2. 10), as discussed before. Finally, note
that for optimization problems similar to the problem that we study here, alternative
methods based on gradient-type and non-gradient-type algorithms have been
proposed by Horisberger and Belanger (1974) and Mendel and Feather (1975)
respectively.

3.2. Design with performance specifications

In the previous subsection, we focused on finding a stabilizing output feedback
gain K'that maximizes the volume of the region in (3.7). If, in addition to this objective,
we also wish to attain a specific control performance, then we need to include in our
minimizing quantity a term that evaluates this control performance. Therefore we
consider the familiar LQR cost (Franklin e a/. 1990) which is given as follows:

Tian = 3 ¥5(K) O, x(k) +4™(k) R, u(k) (3.27)

k=0

where 0, R, are positive definite matrices of appropriate dimensions. For the nominal
system (4,, B,, Cy) with the output feedback law (3.3), we rewrite (3.27) as Jigp =
220 %T(0) (A7) O(4,)* x(0), where obviously J = @, +C7 K*R, KC,. The following
equivalence has been shown by Ogata (1987) for the solution of the discrete-time
Lyapunov equation (2.2)

APA~P+Q =0eP =3 (A0 04" (3.28)

k=0

With the above relation, we have Jiar = X7(0) P, x(0), where P, is the solution of °
the Lyapunov equaticn

ATRA,-P+(=0 (3.29)

As we see, J{ o depends on the initial state x(0), which implies that the optimal
gain matrix K will also depend on x(0). To eliminate this dependence, we may assume
(Levine et al. 1971, O'Reilly 1980) that x(0) is a random vector with expected value and
second-order moment given respectively as E{x(0)] = xy and E[x(0) xT(0)] = X, > 0.
The most widely used method (Levine and Athans 1970) is to consider x(0) uniformly
distributed on a sphere of radius &, that is X, = ol,, with o = 1 being the obvious
choice. Note that alternative methods to deal with this dependence can be found in the
work of Dabke (1970) and Man (1970). We choose the following modified cost
(O'Reilly 1980):

Jrar = E[Tr(J1op)]
= E{Tr[x™(0) B, x(O)]}
= E{Tr [P, x(0) x"(0))}
= Tr{E[F, x(0) x*(0)]}
~TH(RX) (3.30)

In view of (3.8) and (3.30), we finally define the overall minimizing quantity, which
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is associated with both the robustness of the matrix A, and the control performance of
the closed-loop system

Jibe = Jasc+Jien
= Tr(K’-‘K+a’Z'+2aPZ+ P’+£A'§A'°+L,(I§ PA,—P+Q)

+P=X0+L2(im&—a+é)) (3.31)

where, similar to (3.8), we have reduced the problem to an unconstrained minimization
one by including (3.29) in the minimizing quantity via the Langrange multiplier matrix
L,. Owing to the introduction of £, and Z, in the new cost J%Bc, we need to consider
its partial derivatives with respect to these new matrix variables as well. For the same
reason, we have some additional terms in 4%, of (3.16). Therefore the partial derivatives
of the final cost J52, with respect to all the matrix variables entailed are as follows:

ke — g o TP —py (.32)
aLl = L, — Ao 0 Q 0

P
Yake _ o= ITR 4~ P40 (3.33)
90424 2 Q
oL, 1
&Tibe
s
ST he
aF
ke
I

a.}'r.p
e - p =2+ 2 B8, R, CT42 B} 4, Cl+ R KCy( L, + LD CF

= A% = 20 Tr (Z%) +2 Tt (PZ) -&'3 Tr(AT 4,) (3.34)
= 45" = 2P+ 20Z+ A, LT AT—IT (3.35)

=4 = X[+ A, LT AT~ L] (3.36)

+BY PB,KCy(L,+LT) CT+ BT PA(L, + L) CT
+ By P, ByKCy(L,+ LT) CF + BY P, A(L, + L) CT (3.37)

To minimize J33., the algorithm of §3.1 can be used again, the only difference
being that steps (M1) and (M2) have to be replaced by the following

(Mla) Substitute the gain matrix K, in the gradients of (3.32)~(3.36), set them to
zero, that is 43P =0, 45} =0, 427 =0, 452 =0, 43 =0 and solve
respectively for P, P,, a, L,, L,, in that specific order.

(M2a) Substitute these parameters in (3.37) and compute

(a)”
ap=| (3.38)
CAL

where (o))", /= 1,...,m are the | x ¢ rows of 4.
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5/y |

/ region:x+yy<3§

Figure 2. Stability region for unstructured perturbations in (4, B).

All the other steps of the algorithm remain the same, but we now refer to e

instead of J%, ;...

3.3. Special cases

3.3.1. Perturbations in A. When we have perturbations in A only, then the stability
of the closed-loop system x(k + 1) = (4, + 44) x(k) is maintained, if (2.6) holds for P,
Q, ©2, as defined in (3.6). Therefore it suffices to consider objectives (i) and (iii). Hence,
the algorithms of §§3.1 and 3.2 can be used again for J%, = Jo+Jyand TP = T+ J g,
the only difference being the omission of the term 0/, /0K = 2K from (3.16) and (3.37).
Note that single perturbations in B or C can be handled similarly (Konstantopoulos
and Antsaklis 1995a),

3.3.2. Perturbations in (4, B). We consider perturbations in 4 and B only. It can
easily be shown (Konstantopoulos and Antsaklis 1995a) that the stability of the
closed-loop system is maintained, if the perturbation matrices 44, AB satisfy the

following sufficient condition:
~

T @) — Tma{(1 /@) 2,12
o (aZ+P) ) (3:39)

O max{dA)+ 0, (4B) T KCy) < (

where again P, O, 2, are defined in (3.6). The region that satisfies the inequality
x+7y < ¢ for positive x, y, y, & is the shaded triangle shown in Fig. 2. Obviously, this
region gets larger for larger & and smaller y- Therefore, in order to maximize the
stability region that is defined by (3.39), we need

(iv) to minimize o, (KC,)

and to maximize the right-hand side of (3.39), which corresponds to objectives (ii) and
(iti). For (iv), we choose to minimize J, = Tr [(KC)T (XC,)). Therefore, our algorithm
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can be used again for /5, = J;+J, and Ji2 = JuP+J, as well; the only difference is
that the term 2K needs to be replaced by &/ /eK = 2KC, C7 in (3.16) and (3.37).
Finally, note that the same approach can be used for perturbations in (4, C) oaly.

4. Structured perturbations
We consider the linear discrete-time system with the state-space description

x(k+1) = dx(k)+ Bu(k), y(k) = C,x(k) 4.1)

and assume structured perturbations in (4, B), that is

A=A+Y KA, B=B+Y 4B “.2)
i=1 =1
We define
B =Py My Ay W= (6, A (4.3)
O=[4F.. A% (B, KC)...(B, KC)T (4.4)
With the output feedback law u(k) = Ky(k) = KC, x(k), the closed-loop system is
given by
x(k+1) = (4, +(6@I,7 M) x(k) 4.5)

and remains asymptotically stable if, in view of (2. 10), the uncertain parameters satisfy

TP o (@) — o [(1/2) 2]
D W OWCZ "

In order to maximize (4.6), in addition to objectives (ii) and (iii), we also need

(v) to minimize o, (/7).

_ For (v) we minimize J; = Tr[/7717), so that the minimizing quantities are now
Jus = J; + Jy for the case of robustness only specifications, and J%£ = J5? + J; for the
case of both robustness and performance specifications. Qur algorithm can be used
again, with the term 2K now being replaced by the term ¢Js/CK = 2B} )" B, KC,Cy
in (3.16) and (3.37), where B,,=(B7... B, )T. Note that a similar approach can be
used for the case of structured perturbations in (4, C). Finally note that owing to the
similarity between (2.6) and (2.10), the discussion of §3.3 concerning the case of
unstructured perturbations in 4 also applies to the case of structured perturbations in
A only.

5. Ilustrative examples
Example 5.1: Consider the scalar system
xtk+1) = 0-5x(k) +u(k), x(0) =10 (5.1)

with state feedback u(k) = Kx(k). This system was studied by Kolla and Farison
(1991), where the LQR cost Jiar = L2 X¥(k) + u*(k) was used, that is 0,=R =1
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The derived bound for unstructured perturbations in the system matrix 4 was
Tnex(4A4) < 0-8436 for a gain of X = —(-3436, We apply our method for the same
LQR term. Choosing Q = 1-30, Z = 0-60, initial stabilizing gain X, = 0-1 and positive
definite matrix D, = 0-001, we obtain a stabilizing gain of X = —0-49998, which
corresponds to o,,,(44) < 0:99998, which compares favourably with the result of
Kolla and Farison (1991) given above. The components of J;? that are associated with
the robustness and the performance objectives are respectively JT, = 1-69, J o, = 1-25,

Now, if we neglect the performance specifications, as indicated by the above LQR
cost and focus on just the maximization of the robustness bound, we obtain a
stabilizing gain of X = —(-49999, which corresponds to g,,,,(44) < :99999 and J§, =
1-69. Note that @, Z, X, and D, are the same as before. As we see, in this scalar case,
we obtain the same resuits for the final stabilizing gain X, the uncertainty bound and
the robustness component J%, of the minimizing quantity, no matter whether the LQR
term is included or not in the minimizing quantity. Note, however, that this is not the
case, in general, for multiple-input multiple-output systems, as we can clearly see in the
examples that follow. . 0

Example 5.2: Consider an aircraft longitudinal control system from Jiang {(1994),
whose linearized continuous dynamic model is given by

(1) --00582 0-0651 0 —0171 ) [ a(d
B | _{ —-0303 —0685 1109 0 B
(| | —00715 —0658 —0947 0 w(r)
() 0 0 1 0 6(s)
0 1
-00541 0 (r](t))
-111 0\
0 0
1 00 0)fan
o 1o o] sy
W) = 001 of]ww (5.2)
000 1) 60

where a(f) and f(r) are the forward and vertical speeds, w(f) is the pitch rate and 8(z)
is the pitch angle. The control inputs »(r) and z(r) are the elevator angle and throttle
position respectively. Note that all states are assumed available for measurement, We
consider the discrete-time model for T = 0-5 5. The state-space matrices are given by

09692 00283 ~0-0112 —00842
4]~ 01302 0-6469 0-3584 0-0059
4 —0-0086 —0-2126 0-5644 00007 |’

—00041 —-00621 0-3873 [-0001

00017  0-4924
| —01385 —0-0344
@ —04266 —00041 |

—01170 ~0-0009

Co=1, (5.3)
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We study the case of structured perturbations in the system matrix 4, ; specifically
we assume that

oL 015 0 0 0 0 0 005
005 0 o1 0 0 —01 0 0

=m0 0 0 o [*fe o o oos] ©9
o1 0 0 005 0 0 005 o0

First we need to find the static output feedback matrix that maximizes the
stability bound (2.10), without considering performance specifications. We choose
Q=10"%,D, =1,

00110 0 0 0
0 00148  —0-0007 -0-0110
0 —00007 00199 —0-0028
0 —-00110 —0-0028 00047

and an initial gain that places the closed-loop poles at (0-20, 0-70, —0-50 +0-25p),

K- —00264 -01722 30531 102700
PT\-16068 02706 00224 —00742

Our algorithm converges to the stabilizing gain

ko [—01089 —05016 22162 15402
TA—18981 00748 00317 —0-1342

which corresponds to the J% = 0-4468. With this gain, the stability region for the
uncertain parameters is defined by the circle x2+x2 < (0-6161)2

Next, we include the LQR cost (3-27) in the minimizing quantity for Q, = 0-1/,,
R, =001, X, = 0-1],. We consider the same Q, Z, D,, K, as before and obtain
the output gain

K= —-00672 —01988 1-4512 0‘9723)
T\—19253 00895 00590 0-0641
which corresponds to Ji? = J% +Jpqr = 0:3985+ 00932 = 0-4917. This gain defines
the circle x}+x} < (0-5269)%. Note that the uncertainty radius here is more con-
servative than the case of only the robustness specifications studied above. O

Example 5.3: Consider the paper-machine head box from Franklin er al. (1990,
p- 788), whose continuous equations of motion are given by

H() -02 01 1 H(1) 0 I «
RO |=| -005 0 0 Ao {+]0 07 (“}3) (5.5)
(1) 0 0 —1]{xa® 1o |V

where H(t) is the total head perturbation, h(r) the stock-level perturbation, u,() the
perturbation in the air-valve opening, u,(7) the command value to the air valve, and
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u,(1) the perturbation in the stock-valve opening. We consider the discrete-time model
for T = 0-2 s (Franklin er al. 1990, p. 462)

09607 00196 0-1776 00185 01974
Ay =| —0-0098 09999 —0-0009 |, B,=| -00001 0-1390 (5.6)
0 0 0-3187 01813 0

We consider the state-feedback case and assume unstructured perturbations in
both matrices 4, B. We need to find the gain matrix X that maximizes the stability
region, without first considering any performance specifications. We choose as initial
stabilizing gain the one indicated by Franklin et al. (1990), that is

0-0009 0-0001 0
), Z =] 00001 00009 0

Kl=(-6-81 979 =379
0 0 0-0013

—095 —494 —0-10

D, = I, and @ = 107],. Our algorithm converges very rapidly to the stabilizing gain

k(000024 000004  —0-00207
“\-000265 —000215 —0-00048

which defines the stability region of Fig. 2 for x = g, (44), y = Omax(48), and d =
0-0027, §/y = 0-7772.

Next, we introduce performance specifications in the minimizing quantity.
Specifically, we include the LQR cost of (3.27) for O, = diag(0-25, 1, 1), R, = 0051,
and X, = 10°*. We keep Z, Q, D,, K, as before and obtain a stabilizing gain of

ko —00001 00005  —0:002!
“\-00030 —0-0033 —0-0005

which defines the stability region of Fig. 2 for d = 0-0027, 3/y = 0-6110. Note that for
this specific case the crucial parameter was X, since, the smaller the value of X, was
selected, the larger the stability region that the algorithm defined. O

Note that, for the examples presented above and the numerous examples of
Konstantopoulos and Antsaklis (1994b), our algorithm proved to be quite fast. The
algorithm, written in MATLARB code, converged in just several iterations of the main

step; this took approximately a minute on a Sun SPARCstation 10.
’

6. Conclusions

A fast optimization algorithm for the design of robust output feedback controllers
for linear uncertain discrete-time systems has been presented. This algorithm utilizes
a version of the Broyden family method of conjugate directions which is based on the
BFGS rule. The minimizing quantity reflects the twofold optimization objective,
which is the simultaneous maximization of established uncertainty bounds and the
minimization of the typical LQR performance criterion. The first objective is based on
the improved bounds of Konstantopoulos and Antsaklis (1995b). The algorithm has
also been applied to the case where the only objective is the design of a stabilizing
output feedback controller that maximizes the uncertainty bounds. In that case, the
derived stability bounds are, in general, larger than those derived in the case of the
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robustness-LQR minimizing quantity. This was expected, since the inclusion of
the LQR term in the minimizing quantity added an additional requirement to the
optimization task.

Previous related work was restricted to the case of unstructured perturbations in
the system matrix 4. Here, a unified approach to cases of both unstructured and
structured perturbations in the matrices of a state-space model has been presented.
Specifically, the general cases of unstructured perturbations in all state-space matrices
(4, B, C) and structured perturbations in any pair of the above set of matrices have
been studied. It has been shown that, for the special case of single unstructured
perturbations in 4, the present design process improves significantly the unstructured
bound derived by Kolla and Farison (1991). Examples have been provided to illustrate
the results. A case that remains to be addressed is that of structured perturbations in
all the state-space matrices. The recently developed bound of Konstantopoulos and
Antsaklis (1995b) does not appear very convenient for that case, and therefore
alternative bounds need to be investigated. F inally, the continuous counterpart of the
present discrete-time case remains to be further investigated.

Appendix A: Proof of Theorem 2.1
We rewrite (2.2) as follows:

(A+dA) P(A+44)— P+ Q~(4A4) P(A4) - A™P(AA)— (A" PA =0 (A1)

Using the direct method of Lyapunov, we see that 4 + 44 remains an asymptotically
stable matrix, if

G = 0 —(4A4)" P(44)— ATP(4A4)~(44)* PA > 0 (A2)

We know that the following inequality holds for any positive definite matrix Z and
positive aumber «:

XT¥+¥'x g aXTZX+£¥’TZ“SV (A3)
Applying (A 3) for X = 44 and ¥ = PA, we have

(44)° PA+ AP(AA) < 2(d AV Z(4d) 422,

(A4
v
(4A) P(44) +(4A4)T PA+ ATP(4A) < (4AY (2Z + P) (44) +E'Q‘
where (2, is defined in (2.4). In view of (A 2) and (A 4), we see that
G2 Q—(44) («Z +P) (M)-éo1 (A 5)

Therefore a sufficient condition for {J to be positive definite is that the right-hand
side of (A 5) is positive definite, from which (2.5) follows easily. Note that  can be any
positive number that satisfies (2.5). Next a sufficient lower bound for a is derived. We
know that for any two positive definite matrices A, B

A< Beo, (A) <o, (B) (A 6)
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s ((AA Y (2Z + P) (44) +é 9,) < 0o [(4A4)* (@Z + P) (44))

1
+am.u (E Ql)

< a:ux(AA) amu(az"' P) + Cnax (é Ql)
(A7)

In view of (A 6) and (A 7), we see that a sufficient condition for (2.5) to hold is

Aol d8) 0o+ F) 0 (32 < 500 @) %)

Now, (2.6) follows easily. To maintain the right-hand side of (2.6) positive, « has to

satisfy (2.7).

a

Appendix B: Computation of volume defined in (3.7)

In this appendix, we are interested in computing the volume that is confined by the
following inequalities:

X, p,z>0 (B1)
x+ay+bztceyz <d, a,b,c,d>0 (B2)

This volume has been computed by Konstantopoulos and Antsaklis (1994b):

Vo E:f—:{(l+:—:)=[ln(l +2—:)2—1}+ 1}—5—; (B 3}

If a,b can be written in terms of ¢, that is

a=wc b=wyc, w,w,>0 (B4)

then (B 3) can be written as

2 2 2 2 2
Vie,d)y =212+ 4 Y[iaf1.—4 )—1 +1}-d— / (BY)
4 @ W, ¢ W, Wy ¢ 2c

Since we need to know how ¢ and d affect ¥(c,d), we compute next the partial
derivatives of ¥ with respect to ¢ and 4. First, we see how ¥{(c, d) is affected by d

] aV(c,d)_E( d ) B6)

ww, od W W, €

where F(x) = (1+x)In(1+x)~x (Konstantopoulos and Antsaklis 1994b). We can
easily verify that F(x) > 0, for x > 0. Therefore we have

¢Wic, d)

7
= >0 (B7)
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Next, we see how ¥(c, d) is affected bye

1 8¥(e,d) _ d )
wiw? @& —Fz(w,wlc (BE)

where F(x) = {x(x~2) —{(x*— 1) In(1 +x) (Konstantopoulos and Antsaklis 1994 b).
Again, we can easily verify that E(x) < 0, for x > 0. Therefore we have

(e, d)
— <0 (B9)

Therefore, from (B 7) and (B 9), we conclude that, in order to maximize the volume
H(c,d) of (B 5), we simply need to maximize 4 and minimize c.

Appendix C: Dyvamic output feedback case

In this appendix, we demonstrate that the dynamic output feedback case can be
reduced to the static output feedback case, so that the approach described above for
static feedback can be used for dynamic feedback as well. We consider the linear
discrete-time system with the state-space description

x(k+1) = Ax(k)+ Bu(k), y(k) = Cx(k) (N}
and apply dynamic output feedback
Xk +1) = A . x(k)+ B y(k), u(k) = C,x(k)+D,y(k) (€2

The closed-loop system is then described by

- ) o

We can easily show that

A 0 0 B\/4. B 0 - -
- o B - 4
A (o 0)*(1 0)(ce D.,)(c é) A+BK G €9

Now consider perturbations in A, that is 4 = 4,+44 or 4 = A4, + YroKA,.
Then we write the state matrix 4 of the closed-loop system above (C 4) respectively as

- (A, O\ (44 O\ . -
= = 5
A (0 0)+( 0 0) Ay + 44 (C5)
- (A, Oy 2 (4, 0) - m
= = 6
A (0 0)+‘§ic‘(0 0 Ac,+i§fc,.f4t (o]

Similarly, we can define the nominal and perturbation matrices (structured and
unstructured) for B and C. Therefore the problem of dynamic output feedback
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20 I. K. Konstantopoulos and P. J. Antsaklis
(4, B, C,, D) for the system (A, B,C) reduces to the problem of static output
feedback
A, B,
%=(Z 5)

for the system (4, 8, C ), as indicated in (C 4), and all the results presented above can
readily be used.
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