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Abstract 

Under  broad ssumptions, it  is  known  [l]  that 
there is,  in general,  no  "separation  principle"  to 
guarantee  optimality  of a division  between  control 
law  design  and  filtering  of  plant  uncertainty.  It 
is  possible,  however,  to  develop  parameterizations 
of nominal  responses  and  to  examine  their  capabil- 
ities  in  the  feedback  situation. In an  earlier 
study, the  authors  presented a coordinate-free 
approach  [34]  to  the xominalgesign Problem (NDP), 
which  addresses  control  action  and  plant  output 
syntheses,  independently  of  the  controller  config- 
uration.  It  was  shown  that  NDP  depended  only  upon 
plant  structural  matrices  and a single  design  mor- 
phism.  This  paper  studies  the  role  of  this  design 
morphism in unity  feedback  synthesis (UFS). NDP, 
together  with  feedback  synthesis,  is  understood  as 
a Total 3nthesis zroblem. 

Introduction 
From  an  intuitive  point  of  view,  acceptable 

response  is  the  hallmark  of  successful  design  in a 
linear  multivariable  control  system.  Even  if we 
have  perfect  plant  knowledge,  and  no  system  distur- 
bances,  the  development of reasonable  specifications 
and  their  achievement  with  available  equipment  is 
not a trivial  matter. When,  however, the  plant is  
unstable,  or  uncertain,  or  acted  upon  by  distur- 
bances,  the  choice  of  feedback  realization  for  the 
controller  may  place  the  response  goals  in  compe- 
tition  with  new  goals  such  as  ,internal  stability, 
sensitivity  suppression,  and  disturbance  rejection. 

Under  broad  assumptions,  Zames  [l]  has  obser- 
ved  that  there is,  in  general,  no  "separation  prin- 
ciple"  to  guarantee  optimality  of a division  be- 
tween  control  law  design  and  filtering  of  plant  un- 
certainty. It thus  makes  sense  to  develop  parame- 
terizations  of  response  and  to  examine  their  capa- 
bilities  in  the  feedback  situation.  Because  feed- 
back  features,  such  as  internal  stability,  are  cer- 
tainly  dependent  upon  controller  configuration,  it 
is  desirable  that a  response  parameterization not 
depend  upon  controller  configuration. In that way, 
it  would  permit  comparisons  and  contrasts  among 
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specific  control  arrangements.  This  suggests  that 
response  be  studied  as a problem  in  synthesis. 

Control  synthesis has,  indeed,  a  rich  history. 
As early  as 1951, Guillemin  proposed  that  synthesis 
of feedback  control  systems  should  involve a deter- 
mination  of  the  closed  loop  transfer  function  from 
specifications,  followed  by  construction of appro- 
priate  compensation  networks [2]. In due  course, 
Truxal [3]  discussed  the  Guillemin  method,  as  it 
related  to  basic  feedback  issues  of  plant  pole  can- 
cellation,  imperfect  cancellation,  and  controller 
complexity.  Not  surprisingly,  some  of  the  same 
ideas  then  appeared  in  texts  on  sampled-data  con- 
trol  141  and  are  now  re-occurring  in  modern  works 
on  digital  control [5]. 

As  one  solves  classical  transfer  function  equ- 
ations  for  the  compensation  required  by a given 
closed  loop  specification,  one  of  course  inverts 
the  plant,  thereby  obtaining  the  equivalent  series 
compensator.  By  1957,  at  least  for  stable  plants, 
authors [6] began  to  discuss  equivalent  series 
compensation  as a parameter  of  feedback  synthesis. 

The  literature  of  many  inputs  and  many  outputs 
began  to  follow  the  trend  [7,8,9,10]. As part of 
the  general  state  space  development  in  the  area  of 
control,  the  problem  of  synthesizing a given  closed 
loop  commandloutput-response  map  became  known  as 
model  matching,  and  was  solved  in  that  context  by 
Morse 1111. Subsequently,  model  matching  has  been 
studied  from  an  inputloutput  view  [12,13,14,15], 
where  focus  was  placed  upon  the  matrix  equation 

[Zl(S)l~Z(S)3 = [Z2(S)1, (1) 

with [Zi(s)], i = 1,2,  being  given  rational ma- 
trices  and  with [Z(s)]  to  be determined. A prin- 
cipal  issue  was  the  fact  that [ Z ( s ) ]  might  be  re- 
quired  to  have  certain  properties,  such  as  being 
stable  or  proper,  while [Zi(s)], i = 1,2, might 
not  be so restricted.  Investigators  then  began  the 
use  of  transfer  function  rings  and  subrings  [16,17], 
after  which  began a gradual  coalescence [18] with 
methods  based  upon  function  spaces  and  operator  al- 
gebras,  as  well  as  generalizations  of  the  rings  [19]. 
In  1977, working  outside  the  ring  context,  in a 
mixed  state  spaceltransfer  function  format,  Bengts- 
son 1201 solved a broad  class of problems  concern- 

875 

0191-2216/81/oooO-0875 $00.75 0 1981 IEEE 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:16 from IEEE Xplore.  Restrictions apply. 

M. K. Sain, P. J. Antsaklis, B. F. Wyman, R. R. Gejji and J. L. Peczkowski, "The Total Synthesis 
Problem of Linear Multivariable Control-Part II: Unity Feedback and the Design Morphism" (Invited), 
P roc. o f t he 2 0th I EEE C onf. o n D ecision a nd C ontro l , pp. 875-884, San Diego, ÇA, Dec. 16-18, 1981.



ing  feedback  realization  in  a  model  matching  con- 
text.  Pernebo [21]  extended  this  work  on  model 
matching,  with  the  aid  of  matrices  of  rings. 

In 1977, as  part  of  an  application  study  deal- 
ing  with  gas  turbine  control,  Peczkowski  and  Sain 
[22]  solved  a  model  matching  problem  using  trans- 
fer  functions.  Building  upon  this  experience, 
Peczkowski,  Sain,  and  Leake  [23]  proposed  in  1979 
the Totalmthesis Problem (TSP), wherein both 
the  command/output-response  command/control- 
response  are  to  be  synthesized,  subject  to  the 
plant  constraint.  From  an  algebraic  viewpoint, 
TSP  carries  with  it  the  idea  of  tradeoff  between 
control  response  and  output  response,  one  of  the 
important  features  of  approaches  based  upon  opti- 
mal  control.  From  the  outset,  TSP  was  rooted  in 
application  studies,  which  have  continued  [24,25, 
26,27,28,29,30,31,32]. 

A useful  feature  of  the TSP idea  is  that  it 
may  be  subdivided  immediately  into  a gominalge- 
sign  Problem (NDP), which  is  not  dependent  upon 
specific  controller  structures,  and  a Feedback 

the  first  study  of  this  separation,  in  a  semi-co- 
ordinate-free  context.  Gejji  found  that  NDP  was 
characterized  in  terms  of  the  plant  structural  ma- 
trices  and  a  single,  "good"  transfer  function  ma- 
trix. In  1981, this  NDP  work  was  extended  [34]  to 
a  coordinate-free  treatment,  in  which  the  role  of 
the  plant  zero  module  [35]  was  explicity  addressed. 

- Synthesis Problem (FSP),  which  is.  Gejji  [33j  made 

In this  paper,  we  begin  a  study  of  FSP---for 
the  unity  feedback  case.  For  ease  of  reading,  the 
terminology of [34]  is  summarized.  The  treatment 
is  coordinate-free.  Added  matrix  formulae,  and 
discussion,  may  be  found  in  [36]. 

Notation  and  Preliminaries 

Denote  an  arbitrary  field  by  k.  The  princi- 
pal  ideal  domain  of  polynomials  in  one indetemin- 
ate s,  with  coefficients  in k, is  k[sl.  The 
quotient  field  of  k[s]  is k(s). 

For  i = 
Then 

is  a  k-vector 
V2,  regarded 

1,2,  let  Vi  be  a  k-vector  space. 

v1 % v2 
space,  the  tensor  product  of V and 
as  vector  spaces  over  k. Sind 

k[s]  is  a  k-vector  space,  one  can  write 

for  V  any  k-vector  space  of  finite  dimension. 
Denote  this  k-vector  space  by V[s]. It can  be 
shown  that  V[s]  is  also  a  k[s]-module.  Similarly, 

k(s) fk V ( 4 )  

admits  the  structure  of  a  k(s)-vector  space,  which 
we denote  by V(s). One  has  an  insertion  i : V [ s ]  
+ V(s), which  is  a  morphism  of  k[s]-modules.  For 
W another  k-vector  space of finite  dimension,  de- 

velop  W[s]  and w ( ~ ) ,  as  above.  One  has  the 
projection p : W(s) + W(s)/W[s], a  morphism  of 
k[s]-modules,  onto  the  quotient  module W(s)/W[s]. 

Let L(s) : V(s) + W(s) be  a  morphism  of 
k(s)-vector  spaces. We  call L(s) a  transfer 
function. 

Remark: L(s) is  not  a  matrix.  However,  if we 
choose  bases in V and in W, these  bases  induce 
bases  in V(s)  and in W(s) and  define  a  matrix, 
denoted [L(s)], for  the  morphism L(s). 

Because V(s) and W(s) are  k[s]-modules as well, 
the  transfer  function  is  also  a  morphism  of k[s]- 
modules, so that  the  Kalman  input/output  map 

L (SI = p 0 L(s) 0 i, 

a  morphism  of  k[s]-modules,  is  defined.  It  can  be 
shown  that 

I (5) 

V[s]/ker L (s) 
I 

( 6 )  

is  a  torsion  k[s]-module,  which  we  term  the pole 
module  of L(s)  and denote  by X(L). 

Let S c k[s]  be  closed  under  ring  multi- 
g 

plication  and  multiplicative  unit;  and  let S ex- 
clude  the  additive  unit.  Then p(s) E k[s] is  a 
goo6 polynomial  if p(s) E S Now  denote  by m(L) 
the  minimal  polynomial  of  the  pole  module X(L). 
We say  that L(s) is  a good transfer  function  if 
m(L) is  a  good  polynomial. 

g 

g' 

The  Nominal  Design  Problem 

Let R, U, and Y be q ,  m, and  p-dimen- 
sional  k-vector  spaces. On these  spaces, we can 
develop  k[s]-modules  R[s],  U{s],  and  Y[s],  as 
well  as  k(s)-vector  spaces R(s), U(s), and Y(s>. 
We shall  understand R(s). as  a  space  of exogemus, 
reference  or  command  inputs; U(s) as a space  of 
control  inputs to a  plant  with  transfer  function 
P(s) : U(s) + Y ( s ) ;  and Y(s) as  a  space of plant 
outputs. 

The  Nominal  Design  Problem  (NDP)  is  to  find  a 
general  solution  for  all  pairs (M(s), T ( s ) )  of 
good  transfer  functions  which  satisfy  the  commuta- 
tive  diagram  of  Figure 1. Intuitively, NDP deals 

N s )  

/ \ 
M b ) /  \ T b )  

/ \ 

./ \ 
/ \ 

iL Y 
Y ( 8 )  

Figure 1. The Nominal  Design  Problem. 
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with  the  problem  of  designing,  simultaneously,  the H(R,U) [SI c H(R,U) (s)~ c H(R,U) (SI. ( 1 4 )  
comulete  set  of  controlled  outDuts  from  a  Dlant  and 
a  corresponding  complete  set  of  control  inputs,  sub- 
ject  to  the  plant  constraint. M(s)  and T ( s ) ,  re- 
spectively,  characterize  these  sets,  which  would  be 
the  entries  in [M(s)] and  in [T(s)], for  spe- 
cific  bases. 

Remark: P(s)  is  not  required  to  be  a  good  trans- 
fer  function.  In  case  it were, [P(s)],  [M(s)], 
and  [T(s)] have  entries  in  the  same ring, so that 
the  theory  of  free  modules  could  be  applied  direct- 
ly. 

The  solution  to  NDP  can  be  given  in  terms of 
the  kernel  of  an  abstract  morphism.  We  sketch 
briefly  here  the  concepts  involved  in  this  charac- 
terization. 

Let S k[s]  be  the  localization of k[s] -1 
g 

induced  by S . It  satisfies 
g 

This  localization  of  k[s]  by S can  be  used  to 
induce  a  localization  of  a  k[s]-module  V[s],  ac- 
cording  to  the  construction 

g 

Morphisms,  also,  can  then  be  localized.  Indeed,  if 
J ( s )  : V[s] -+ W[s] is  a  morphism  of  k[s]-modules, 
there  is  a  morphism 

S i l J ( s )  : SilV[s] -+ Sgb[s] 

of S k[s]-modules  with  action  given  by -1 
g 
-1 n 

i= 1 

Return  now  to  the  solution  of  NDP.  Write 
H(R,U) for  the  k-vector  space  HonQR,U)  of  mor- 
phisms  R -+ U of  k-vector  spaces.  Next  consider 
HO~[~~(R[S],U[S]),  which is  naturally  isomorphic 
to 

and  identify  the  two.  Similarly,  identify 
(R(s),U(s)) with 

Homk ( S )  

Denote  localization  in  the  manner 

Similar  developments  follow  on  H(R,Y)  and on 
H(U,Y). On  the  k(s)-vector  space  level,  define  a 
morphism 

F : H(R,U) (s) @ H(R,Y)(s) -+ H(R,Y) (s)  (15) 

with  action 

F(M(s)  ,T(s)) = P ( s )  0 M(s) - T ( s ) .  (16) 

Pairs (M(s),T(s)), on the  k(s)-vector  space  level, 
satisfy  Figure 1 if  and  only  if  they  lie  in  ker F, 
which  is  an  mq-dimensional  k(s)-vector space, de- 
noted  by K(s). Restricted  to H(R,U)(s) @ H(R,Y) 
(s)  and  H(R,U) [ s ]  H(R,Y) [ S I ,  respectively, 
F  gas  kernels K( ) and  K[s], respectively, 
which  are  free S- B kPs]-and  free  k[s]-modules of 
rank mq, respectively,  satisfying 

K[sl c K(s)~ c K(s). (17 )  

Remark: A k[s]-basis  for  K[s]  gives  a S-'K[s]- 
basis  for  K(s)~.  This  means  that  NDP  comp6tations 
may  be  carried  out  in  k[s]. Thus, although  KCs] 
is  only  a  k[s]-submodule  of  K(s)~,  it  can  be 

used  to  generate  K(s)~.  This  generation  process 
may  be  intuitively  viewed  as  pole  assignment,  to- 
gether  with  gain  and  zero  adjustment. 

K ( s ) ,  characterizes  the  solutions  of  NDP. 

It turns out,  however, that  the  pairs  of  good  tran- 
sfer  functions  in K(S)~ can  be  more  explicitly 

described  in  terms  of  a  fixed  pair  of  k[s]-module 
morphisms  and  a  single  good  transfer  function. 

The  Design  Morphism 

Given P(s), there  exist  morphisms D(s) : 
U[s] -+ U[sl  and N ( s )  : U[s] -+ Y [ s ]  of  k[s]- 
modules,  with D(s)  monic,  such  that (1) the  dia- 
gram  of  Figure 2 commutes  and (2)  there  exist  mor- 
phisms 

/ ' \  

\ 
w 

H(R,U)  (slg = S;'H(R,U) [SI, (13)  Figure 2, Right-Prime  Factorization. 

A(s) : U[s] + U[s] and B(s) : Y[s] + U[s] of 
k[s]-modules with the  property so that 
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A(s) e D ( s )  + B(s) o N(s) 
+J[sI* (18) (M  (s),T ( 6 ) )  generate  a  good  transfer  function 

pair (M(s),T(s)) satisfying  Figure 1 by  a  process 
g g  

The  pair (N(s),D(s)) is  known  as  a  right-prime of  localization  up  to k(s). It  can  also  be  shown 
factorization  of P ( s ) .  [34]  that  this  is  the only way  that NDP solution 

pairs (M(s),T(s)) are  generated.  Thus,  in  Fig- 
According  to  our  foregoing  discussion,  Figure  ure 5, if (M(s),T(s)) is  a  solution  to NDP, there 

2 can  be  localized.  Write D (s) for S-lD(s), must &st a  good  transfer  function X(s) such 
N (s)  for S-%(s), and U(s) for S- ULs]. 

Also  observe  that S e b ( s ) ,  with U(s) understood 

g H that  the  diagram  commutes. 
g g  g g 

- 
as  a  k[s]-module,  is  equal  to U(s). The  localized 
diagram  is  that  of  Figure  3. 

Figure 3 .  Localization  of  Figure 2 .  

Remark:  Figure  3  is  a  natural  way  of  viewing  what 
might  be  defined  as  a  good  right-prime  factoriza- 

right-prime  factorization  is  adequate  to  generate 
good  right-prime  factorizations  which  may  be  of 
interest. 

- tion  of P ( s ) .  Again we see  that  the  classical 

Next  consider  a  good  transfer  function  Xg(s) 
: R(slg + U(S)~. It is  clear  that  one  may  con-  Figure 5. NDP Solution (M(s),T(s))’> Good 
struct  solutions  to NDP according  to  the  scheme  in- 
dicated  in  Figure 4 .  Indeed, Remark:  We  use  the  same  symbol  for D ( s )  : U[s] 

-c U[s]  and  its  localization D(s) : U(s) +. U(s), 

v 
\ 

to  avoid  proliferation  of  symbols;  and we follow 
the  same  convention  for N(s). The  diagrams  make 
the  situation  clear. 

The  right-prime  pair (N(s) ,D(s)) , and  the 
good  transfer  function X(s), give  a  specific 
characterization  of  solutions  to NDP. In a  genuine 
sense, X(s) contains all the  design  freedom  avail- 
able.  We  call X(s) the  design  morphism. 

Output  Feedback  Synthesis  (OFS) 

By an  output  feedback, we shall  understand  a 
morphism C(s) : R ( s )  8 Y(s) + U(s)  of  k(s)-vector 
spaces.  Let  iR  and 4 be  the  insertions  of 
R ( s )  and Y ( s )  into  the  biproduct.  Then  each 
output  feedback  determines  morphisms R ( s )  + U(s) 
and Y ( s )  -c U ( s )  of  k(s)-vector  spaces  by 

p (9) 
/ 

Moreover,  each  pair (CR(s),Cy(s)) of  such  morph- 
isms  induces  a  unique  output  feedback.  In  view  of 

Figure 4 .  X (s)  ‘>NIP Solution (M (s) ,T (s ) ) .  this,  output  feedback  generates  the  step 
g g g 
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We shall  say  that C(s)  is  an  output  feedback 
synthesis  (OFS) M(s)  if !$ - P(s) o 

C ( s )  is  an  isomorphism  and  if 
(S )  

Y 

M(s) = - Cy(s) 0 P(s))-' 0 C,(S). ( 2 3 )  

By  itself,  output  feedback  synthesis  of M(s) 
poses  no  problem,  as  we  may  choose C,(s) to  be 
M(s) and  Cy(s)  to  be  the  zero  morphism. 

In order  to  attack a  more  interesting  problem, 
both  in  application  and  in  theory, we choose  to 
constrain C(s). In  particular,  we  specify  that 

C(s)(r(s),y(s)) = G ( s )  (r(s) - Y(s)~ ( 2 4 )  

for G ( s )  : R(s) + U(s) a morphism  of  k(s)-vector 
spaces.  Here (C,(s),C,(s)) is  given  by ( G ( s ) ,  

- G ( s ) ) .  We  can  refer  to  this  well known case  as 
unity  feedback  synthesis (UFS). For  UFS, C(s) = 
0 <=> G(s)  = 0; thus  trivialities  do  not  occur. 
G(s) determines a UFS  for M(s)  if (4 + 
P(s) o G ( s ) )  is  an  isomorphism  and  if 

( S )  

M(s) = + G(s) 0 P(s))-l o G ( s ) .  ( 2 5 )  

Remark: A design  morphism X(s) may  fail  to  meet 
the  conditions  for UFS. Notice  also  that  UFS  re- 
quires R and Y to  be  identified, or, if  pre- 
ferred, to be  regarded  as  isomorphic  copies  of  one 
another . 

In  what  follows,  it is useful to  have  in  mind 
the  following  Lemma. 

Lemma 1. Let R be  a  ring,  and  let  L1 : 

and L2 : M + M1  be  morphisms  of  R-modules.  Then 
M1 +. M2 

2 

has  an  inverse  morphism  if  and  only  if 

has  an  inverse  morphism. 

Proof:  For  necessity  suppose  that 

L2)-' : M -+ M2 exists  and  is a morphism  of R- 
modules.  Then 

'b2 + L1 
2 

- L2 
(b2 + L1 o L2) 0 L1l : M1 M1  (28) 

-1 

is a morphism  of  R-modules.  Futhermore, 

I L 

1 L L 

= bl ' ( 2 9 )  

and a like  calculation  can  be  made  from  the  right. 
Thus (bl + L2 0 L1) has  an  inverse  morphism  as 

well. A similar  sequence  establishes  sufficiency. 
In the  process,  we  have  established  the  explicit 
expression  relating  the  inverses. 

Corollary 2. In Lemma 1, when  the  inverse  morph- 
isms  exist, 

L1 

Corollary 3 .  (lu(s) + G ( s )  0 P(s)) : U(s) +. U(s) 

is  an  isomorphism  when  and  only  when (lR(s) + P(s) 
0 G ( s ) )  : R ( s )  + R ( s )  is an  isomorphism. 

Conditions  on  the  design  morphism X(s), for 
a UFS in  NDP,  are  mild,  as  shown  in  the  next  Pro- 
position. 

Proposition 4 .  A solution (M(s),T(s))  to  the 
Nominal  Design  Problem,  characterized  by  the  right- 
prime  pair (N(s),D(s))  and  the design  morphism 
X(s), admits  unity  feedback  synthesis  if  and  only 
if (lR(s) - N(s) 0 X(s)) : R(s) -+ R ( s )  is  an  iso- 
morphism  of  k(s)-vector  spaces. 

Proof:  In  view  of  Figure 5 ,  N(s) o X ( s )  is 
T(s). For  sufficiency,  choose 

which  achieves  USF.  For  necessity,  observe  that 

Remark:  The  condition  of  this  proposition  would 
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typically  be  met  by  adding  "rolloff"  to [X(s)]. 

Because  of  Proposition 4 ,  we  can  picture  NDP 
and  UFS  together  in  one  commutative  diagram,  Fig- 
ure 6. In this  diagram, we have  denoted  the  com- 
position P(s) 0 G ( s )  by Q ( s )  : R(s) +. Y(s). 

UFS in NDP  does  not  yet  fulfill  application 
needs.  What  is  needed  is  a  concept  of  good  UFS. 
Of course,  a  special  case  in  point  is  the  familiar 
idea  of  unity  feedback  synthesis  with  internal 
stability. 

R(s) 

Figure 6. UFS  for NDP. 

Good  Unity  Feedback  Synthesis  (GUFS) 

Given G(s), there  exist  morphisms 8G(s) : 

U[s] + U[s]  and  aG(s) : R[s] +. U [ s ]  of  k[s]- 
modules,  with  D (s) monic,  such  that (1) their 
localizations  up  to k(s) make  the  diagram  of 
Figure 7 commute  and (2) there  exist  morphisms 

pi, 

G 

Figure 7. Left-Prime  Factorization. 

i ( s )  : U[s] +. U[s]  and B(s) : U[s] +. R[s]  of 
k[sl-modules  with  the  property 

pi, 

2, % The  pair  (DG(s)  ,N (s))  is  known  as  a  left-prime 
factorization  of G(s). Using  this  factorization, 
we can  give  an  alternate  statement  of  the  condi- 
tion  for  UFS. 

Proposition 5. Suppose  that (N(s),D(s)) is  a 
right-prime  factorization  of P(s), and  that 

(DG(s),N (s)) is  a  left-prime  factorization  of 
G(s). If G(s) generates  a  unity  feedback  syn- 
thesis  for M(s), then  Di(s), given  by 

G 

% 'L 

G 

pi, 
DG(s) 0 D(s) + 8G(s) o N(s) : U[s] +. U[s], ( 3 4 )  

is a  monomorphism  of  k[s]-modules. 

Proof:  Notice  that  the  result  is  true  when  and 
only  when  localization  of  the  morphism  up  to k(s) 
produces an isomorphism U(s) + U(s)  of  k(s)- 
vector  spaces. For  UFS, + G(s) 0 P ( s ) )  

must  be  an  isomorphism.  But 

and  the  result  follows. 

The  manner in  which X t s )  is  constrained by 
a  requirement  to  achieve  UFS  can  be  expressed  in 
terms  of  Di(s)  and  of 8,(s). 

Theorem 6. Suppose  that  the  right-prime  factori- 
zation (N(s),D(s)) and  the  design  morphism X(s) 
characterize  a  solution (M(s),T(s))  to NDP.  If 
G(s), described by its  left-prime  factorization 
(8,(s),NG(s)), generates  a  UFS  for M(s), then 2, 

X(s) = Dil(s) o N,(S). 2, 
( 3 6 )  

Proof:  The  result  follows  from  the  calculation 
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X(s) = D-'(s) 0 M(s) 

= D-'(s) 0 + G(s) 0 P(s)}-' 0 G(s) 

= D (s )  0 {lu(s) + DG (s) e ?lG(s) 0 N(s) 0 
-1 -1 

D-'(s)}-' o :il(s) 0 NG(s) 
,-b 

= Di (s) 0 8G(~) . -1 
( 3 7 )  

Remark:  The  result  does not say  that  (Di(s), 
NG(s)) is a left  prime  factorization  of X(s). 
2, 

The  idea  of  the  theorem  can  be  reversed,  in a 
sense. 

Theorem 7.  Let A(s) : U[s] +. U [ s ]  and B ( s )  : 
R[s] + U[s]  be  morphisms  of  k[s]-modules,  with 
A(s) monic.  Further,  let (A(s),B(s))  be a left- 
prime  factorization  of  the  transfer  function A - l ( s )  
0 s ( s )  : R ( s )  + U ( s )  constructed  after  localization 

denoted  by  DAB(s),  is  monic,  and  if  the  inverse 
of  its  localization  up  to k(s), when  composed 
with B ( s ) ,  is a good  transfer  function,  then  the 
design  morphism 

X(s) = D , i ( s )  0 B ( s )  ( 3 9 )  

as  desired. 

Remark: It is  possible  to  relax  the  left-prime  and 
right-prime  assumptions  in  such  results,  provided 
corresponding  technical  assumptions  are  made  upon 
the  systems  represented  by P(s)  and  G(s). 

Remark:  This  theorem  assumes  only  that  the  compo- 
sition D A ; ( ~ )  0 B ( S )  is a good  transfer  function. 
In practice,  this  permits  hidden  internal  behavior 
which  may  not  be  acceptable. 

We  shall  then  say  that a UFS  is g o o d ,  with 
acronym GUFS, if  DT1(s) : U(s) +. U(s) is a good 
transfer  function.  Theorem 7 then  has  an  immediate 
Corollary. 

Corollary 8. If  DAi(s) : U(s) +. U(s) is a good 
transfer  function,  then  the  construction  of  Theorem 
7 gives a  GUFS. 

In the  terminology  of  Theorem 7, it  is  now 
clear  that  the  family  of  design  morphisms X(s) 
admitting  GUFS  can  be  parameterized  in  the  manner 

X(s) = {A(s) D(s) + B ( s )  o N(s)}-' o B ( s ) .  ( 4 2 )  

Notice  that 

is a good  transfer  function.  We  have  established 
necessity  in  the  following  representation  theorem. 

Theorem 9 .  Suppose  that  the  right-prime  factoriza- 
tion (N(s),D(s)) and  the  design  morphism X(s) 
describe a solution (M(s),T(s)) to NDP.  Suppose 
further  that M(s) admits  UFS.  Then M(s) admits 
GUFS  if  and  only  if Z(s) : U(s) -f U(s), defined 
by 

is a good  transfer  function. 

Proof:  We  need  only  show  sufficiency.  Consider 
the  diagram  of  Figure 8, where pR and p 
the  biproduct  projections. 

u are 

/ \ pR 

Figure 8. Module  Biproduct  Property. 
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There  exists  a  unique  morphism ag(s )  of  Silk[s]- 

modules  which  makes  this  diagram  commute.  Local- 
ize a (s)  up  to  k(s) , and  denote  it  by a ( s )  : 

R(s) @ U(s) -+ U(s), where  it  is  a  good  transfer 
function.  Perform  a  left-prime  factorization 

g 

( s ) ,  a a ( s ) )  for a ( s )  , as  in  Figure 9. Then 
the  diagrams  of  these two figures 

Figure  9.  Left-Prime  Factorization  of a ( s ) .  

is  the G(s) required  from  the  assumption  that 
M(s) admits UFS. Indeed, 

G(s)  = M(s) 0 {lR(s) - N ( s )  0 X(s)}-' 

= D(s) X(s) 0 - N(s) 0 X(s)I- l  

= D(s1 0 C1u(s) - X(s) o N(s))-l 0 X(s) 

= Z-l(s) 0 X(s) . (51) 

Thus  it  remains  to  calculate 

A(s) 0 D(s) + B(s) 0 N ( s )  

?r 
= D,(s) O Z(s) 0 D(s) + 8 a ( s )  o X(s) 0 N ( s )  

= 8 a ( s )  o {Z(s) o D ( s )  + X ( S )  0 N ( s ) I  
?r 

= Da(s)  (52) 

from  which  D (s) is  monic  and  the  inverse  of  its 
localization  up  to k ( s )  is  a  good  transfer  func- 
tion. 

AB 

Corollary 10. If  P(s) : U(s) -+ Y(s) is a  good 
transfer  function,  then M(s) admits  UFS  if  and 
only  if M(s) admits  GUFS. 

Discussion 

In  earlier  papers,  the  authors  have  irtroduced 
the  idea  of a Total3nthesis Problem (TSP) for 
linear  multivariable  control,  Broadly  speaking, 
TSP decomposes  into  the  Eominal  gesign  Problem (NDP), 
which  addresses  control  action  and  plant  output 
syntheses,  independently  of  the  controller  config- 
uration,  and  the  Feedback wthesis Problem (FSP), 
which  incorporates  the  advantages  of  feedback  real- 
ization,  NDP  can  be  characterized  [33,34]  in  terms 
of a  right-prime  plant  factorization  and  a  good  de- 
sign  morphism. In this  paper,  we  have  examined  the 
effect  of  requiring  feedback  synthesis  to  take  the 
form  of  good,  unity  feedback. 

Various  feedback  parameterizations  may  be 
found  in  the  literature.  For  example,  Porter  [37] 
discusses  a  parameter  for  adaptation,  parameter 
estimation,  and  sensitivity  reduction,  and  attri- 
butes  such  structures  to  earlier  literature [38]. 
Moreover,  parameterizations of internal  stability 
[39j,  and  their  generalizations  [19]  have  been  made. 
Though  the  design  morphism  [33,34]  of  TSP  does  not 
seem  to  have  received  prior  study,  it  is  to  be  ex- 
pected  that  it  should  relate  to  feedback  parameters 
already  studied  for  unity  feedback.  For  example, 
Desoer  and  Chen I181 have  used  the  stable  parameter 
of  Zames  [l]  for UFS in the  model  matching  case. 
When  the  plant  is  a  good  transfer  function,  and  for 
the  case of unity  feedback,  there  exists  a  good  is- 
omorphism  relating  the  Zames  parameter  to  the  de- 
sign  morphism.  Otherwise,  there  is  only  a k(s)- 
relationship. 

More  importantly,  however,  model  matching  does 
not  determine  the  design  morphism  associated  with 
TSP, as may  be  seen  easily  in  Figure  5.  Thus  TSP, 
characterized  uniquely  by  the  design  morphism,  ma- 
terializes  as  a  problem  with  fundamental  distinc- 
tions  from  model  matching. 

In  the  nonlinear  case  [29,31,32]  application 
studies  have  been  made.  Moreover,  Liu  and  Sung 
[40] have  reported  nonlinear  model  matching  results 
for  unity  feedback  with  a  parameter  in  the  same 
spirit  as  the  design  morphism.  Of  course, [40] can 
be  reduced  to  the  linear  situation.  However,  TSP 
and  model  matching  remain  distinct  problems,  as  de- 
scribed  above. 
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Addendum 

In the  preparation  of  the  introduction to 
this  paper,  the  authors  inadvertently  omitted  ref. 
erence [41]. It  should  be  inserted  between  ref- 
erences  2161  and  [17]  in  the  Introduction. 
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