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Abstract

This paper describes a computationally efficient method for synthesizing feed-
back controllers for plants modeled by Petri nets which may contain uncentrollable
transitions. The controller, a Petri net itself, computed using the concept of Petri
net place invariants, enforces a set of linear constraints on the plant. It is shown
how the original set of plant behavioral conatraints can be transformed into a new
set that will yield a controller which enforces the original constraints without di-
rectly influencing any of the uncontrolizble transitiona. Previous researchers have
shown that this constraint transformation can be performed by solving a linear
integer programming problem; the method presented in this paper is simpler com-
putationally, but, depending on the structure of the uncontrollable part of the
plant, maximal permissivenesa may not be guaranieed.

1 Introduction

A methodology to automatically derive feedback controllers described by a Petri net
was presented in [4]. It is assumed that the DES plant is described by an ordinary
Petri net. The method is based on the idea that specifications representing desired plant
behaviors can be enforced by making them invariants of the controlled net. The resulting
controllers are identical to the monitors {2] of Giua et al. and consist only of piaces and
arcs. The controller’s size is proportional to the number of constraints.

This approach has been recently extended to apply to Petri nets which contain uncon-
trollable and unobservable transitions, the firing of which cannot be controlled or cannot
be observed respectively. This extension is also based on place invariants and it is again
easy and transparent to implement with excellent numerical properties. These resulis on
Petri nets with uncontrollable transitions complement and are compared with results on
uncontrollable vector DES recently reported in the literature [3].

This invariants based approach to design of Petri net feedback controllers has a num-
ber of advantages: (a) the design method is transparent as it is based on the concept of
place invariants, (b) the resulting controller and consequently the overall controlled sys-
tem are described by ordinary Petri nets where a variety of tools for analysis both graph-
ical and algebraic are available. Verification of the design is therefore rather straightfor-
ward. (c) The design method has excellent numerical properties. Although it is based on
the concept of invariants, it is not actually necessary to calculate any of these invariants.
The controller design involves only a multiplication of the incidence matrix by a vector
representing the constraints to be imposed on the system. This make this control design
approach particularly appealing in control reconfiguration applications where because of
a failure the controller must be redesigned on line.

The paper is structured as follows. The controller synthesis method {2,4] for plants
with controllable transitions is reviewed in section 2. The new appreach for transforming
constraints in the face of uncontrollable transitions and generating the corresponding
controller is presented in section 3, Concluding remarks are given in section 4.

1The rescarch for this paper has been supported in part by the Center for Applied Mathematics at
the University of Notre Dame.
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The system to be controlled is modeled by a Petri net with n places and m transitions
and is known as the plant or process net. The incidence matrix of the process net is D,
It is assumed that all the enabled transitions can fire. Ii is possible that the process
net will violete certain constraints placed on its behavior, thus the need for contirol.
The controller net is a Petri net with incidence matrix D). made up of the process net's
transitions and a separate set of places. The controlled sysiem or controlled net is the
Petri net with incidence matrix I} made up of both the original process net and the added
controller. The control goal is to force the process to obey constraints of the following

form
Ly, <6 (1)

where g, is the marking vector of the Petri net modeling the process, L is an n. x n
integer matrix, b is an n. dimensional integer vector and n, is the number of constraints.
Note that the inequality is with respect to the individual elements of the two vectors
Ly, and b and can be thought of as the logical conjunction of the individual “less than
or equal to” constraints. This definition will be used throughout this paper whenever
vectors appear on either side of an inequality sign.

Suppose we wish to enforce the single constraint p1 + 2 < 1 which means that at most
one of the two places p; and p; can be marked, or, in other words, both places cannot be
marked at the same time. This inequality constraint can be transformed into an equality
by introducing an external Petri net controller which contains a place which represents
a nonnegative “slack variable” p.. The constraint then becomes uy + g3 + . = 1 or, in
general

Lpp + pe=1b (2)

where p. is an n, dimensional integer vector which represents the marking of the controller
places. Note that p, > 0 because the number of tokens in a place can not become negative;
thus equation (2) implies inequality (1). The controller places insure that the weighted
sums of tokens in the process net’s places are always less than or equal to the elements of
b. The places which maintain the inequality constraints are part of a separate nei called
the controller net. The structure of the controller net will be computed by observing
that the introduction of the slack variables forces a set of place invariants on {he overall
controlled system defined by equation (2).
A place invariant is defined as every integer vector = which satisfies

2Ty = 2Tpg (a constant) (3)

where g is the net's initial marking, and u represents any subsequent marking. Equation
{3) means that the weighted sum of the tokens in the places of the invariant remains
constant at all markings and this sum is determined by the iritial marking of the Petri
net. The place invariants of a net are elements of the kernel of the net’s incidence matrix,
i.e., they can be computed by finding integer solutions to

«TD=0 (4)

where I is an » X m incidence matrix with n being the number of places and m the
number of transitions.

The matrix D, contains the arcs that connect the controller places to the transitions
of the process net. Let Z be the set of integers. The incidence matrix D € Z{nHnedxm of
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the closed loop system is given by
Dy
o-[2]
and the marking vector # € Z"*™ and initial marking po are given by

= | P = | Hro 6
=[] we=[tm] ©)

Note that equation (2) is in the form of (3), thus the invariants defined by equation
(2) on the system (5), (6) must satisfy equation (4).

0

XTD=[LI][g:]
LD,+D. = 0 (M

where [ is an n, X n, identity matrix since the coefficients of the slack variables in equation
(2) are all equal to 1.

Proposition 1.  The Petri net controller, D, € Z™*™ with initial marking ., which
enforces constraints (1} when included in the closed loop system (5) with marking (6) is
defined by

D, = -LD, )
with initial marking
bep =b— Lpsp, (9)
assuming that the transitions with input arcs from D, are controllable.

Proof. Equation (8) is simply the solution of equation (7) which forces [ LI ] to

be invariants of the closed loop system. Since [ L 1| are invariants we known that
Lypy + pe = Ljty, + pteo, and from equation (9), Ly, + pe, = b. The marking of a place is
always greater than ot equal to zero, therefore

Lpy +pe =
Lp, < b

1]

Remark. Proposition 1 creates a controller which will enable and inhibit various tran-
sitions in the plant. If any of these transitions are uncontrollable then the controller
defined by this method is invalid. The next section shows how a transformation of the
constraints can be performed so that the uncontrollable transitions in the net receive no
input arcs from the controller places.

Remark. Since our method admita the structure of the process net as well as a set of
specifications, it can contro! transitions that participate in self-loops in the process net.
This is because the constraints on these transitions are part of the specificationa. Note
that when an element of D, is zero, there are no arcs at all connecting the given place
and transition, i.e., there are no canceling self-loops in the controller structure,

Remark. The controller defined by proposition 1 is maximally permissive, assuming
controllable transitions, in that it will never disable a transition that would directly
violate the constraints if fired. The proof of this result is given in [4].
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3 Handling Uncontrollable Transitions

Consider the situation where the controller is not allowed to influence certain transi-
tions in the plant Petri net. These transitions are called uncontrollable. It is illegal for
the Petri net controller to include an arc from one of the controller places to any of these
uncontrollable plant transitions.

Let D, be the incidence matrix of the uncontrollable portion of the process net. D,
is composed of the columns of D), which correspond to the uncontroilable transitions.
Recall that, assuming no self loops, positive elements in an incidence matrix refer to
arcs from transitions to places, and negative elements refer to arcs from places to tran-
sitions. D, € Z™"" where n, is the number of uncontrollable transitions. Given a
set of constraints, Ly < b, the Petri net controller given by D, = —LD, violates the
uncontrollability constraint if LD, contains any elements greater than zero. The uncon-
trollability constraint dictates that we can not draw any arcs from the controller places
to the transitions, and the portion of the controller corresponding to the uncontrollable
transitions is given by — LD, thus the elements of LD, must all be less than or equal to
zero.

3.1 Controller Computation

Suppose we are unable to meet the uncontrollability constraint and have positive
values in the matrix LD,. It is necessary to transform the constraint vector L such that
the original constraint of Ly, < b is still maintained, while obeying the uncontrollability
constraint. A proposition is given later in this section which shows how to construct a
controller which meets hoth of these conditions. The proposition is supported by the
lemma below.

Lemma 2. If
Ly < ¥ (10)
where
I' = R +R,L (11)
¥ o= Ry(b+1)-1 (12)

Ry € Z™*™, Ry € Z™™, 1 is an n, dimensional vector of 1’s and

Ripp >0 for all possible p, (13)
R3 is a positive definite diagonal matrix (14)
then Ly, < b.
Proof. The transformed constraint is
Fu, < ¥V

(Ri+ RaL)up < Ra(b+1)-1

because all of the elements are integers, the inequality can be transformed into a strict
inequality:
(Ry+ RaL)pp < Ra(b+1)

and because R; is diagonal and positive definite,
Ry'Ripp + Lyp <b+1
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Assumptions (13) and (14} imply that all elements of the vector R; ' R;p, must be greater
than or equal to zero, therefore
Lp, <b+1

and, once again because the inequality deals strictly with integers, we have
Lp, < b
a

According to proposition i, the incidence matrix of the controller which will enforce
(10) is given by D, = —L'D,. In order to meet the uncontrollability constraint we
need L'D, < 0 which will insure that the controller contains no arcs leading to the
uncontrollable transitions in the plant. Then

RlDu+R2LDu S 0 or
(7 &a)| ] <0 (15

Note that if L'D, = 0 then the rows of the matrix [ R, R; ] lie within the kernel of

[ 5.}

A trivial solution to inequality (18) is given by [ R, R; ] = [ -L I ] However
this choice for R, will either violate assumption (13) or dictate an impossible control task.
If Ly has both positive and negative elements then we can not say that Byp = —Lp 18
always greater than zero and assumption (13) is violated. If Lp is always positive or
zero then Ryp = — Ly violates assumption (13) for arbitrary u. If Lu is always negative
or zero and b > 0 then the constraints will always be met by the plant without control,
and if Ly is always negative or zero and b < 0 then a choice of Ryp = —Lp will create a
transformed constraint of 0 < b which is meaningless since b is a constant vector.

Lemma 2 may now be combined with proposition 1 to synthesize & Petri net controller
for a plant with uncontrollable transitions.

IA

Proposition 8. Given a plant Petri net with incidence matrix D,, a set of uncontrol-
lable transitions, a set of linear constraints Ly < b on the net marking, and R, and R;
which meet assumptions {13) and (14) and satisfy inequality (15), then there exists a
controller with incidence matrix

D. = —(R, + R;L)D, (16)

such that if
Beo = Ra(b+1} ~1 — (Ry + RaL)py, (17)

is a valid initjal marking, i.e. ., > 0, then the constraint Ly, < b will be satisfied by the
closed loop system. This controller contains no input arcs to any of the uncontrotlable
transitions.

Proof. Note that, according to proposition 1, equations (16) and (17) define a con-
troller that enforces the constraint L'y < ¥ where L' = R, + R3L and b’ = Ra(b+ 1)-1.
Lemma 2 shows that if assumptions (13) and (14) are met then a controller which enforces
a particular constraint L'u < b will also enforce the constraint Ly < b. Because R; and
R; satisfy inequality (15), no controller arcs are drawn to the uncontrollable transitions.
o
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Remark. If any element of x,, calculated according to equation (17) is negative then
the corresponding constraint is impossible to enforce. This is the situation where only
trivial solutions to the constraint transformation exist because the uncontrollable portion
of the plant is incompatible with a particular control goal.

The usefulness of proposition 3 lies in whether or not it is possible to find R, and R;
which meet the necessary assumptions. To meet assumption (13), it is sufficient to assume
that all of the elements of R, are nonnegative, since the elements of u, are nonnegative
by definition. In general, for unbounded pp, it is necessary that all of the elements of
R, be nonnegative, however if bounds on u, are known, then it is possible to generate
valid R; vectors which contain some negative elements. If R, and R; which satisfy {13)

and (14} do exist, then they can be found by performing row operations on L%. .
Row operations act as premultiplications of a matrix, just as [ R, R, ] premultiplies

L%l in inequality (15). R, and Ry car be found by finding a set of row operations
which do not involve premultiplication of any row by a negative number and which force
the LD, portion of the matrix to contain all zero or negative elements. This operation is
relatively easy to perform. Note that assumption (14), which requires R; to be a positive
definite matrix, is not restzictive. This matrix simply represents the premultiplication
coefficients of the rows of the LD, portion of the matrix undergoing row operations. We
can assume this matrix is diagonal because LD, is linearly dependent with Dy, i.e., we
will never need to take linear combinations of the rows in LD,. We can also assume that
the diagonal elements are positive since, if negative numbers are required, they can be
accounted for by Ry, which still needs to meet assumption (13).

It is possible that uncontrollable transitions in & plant might make a particular con-
straint impossible to realize. In this case it may still be possible to find R, and R; such
that they meet the assumptions, however the transformed constraint L'p, < b will be
trivial. For example, consider the Petri net in figure 1. Suppose that we wish to limit the
number of tokens that enter p;, i.e., the untransformed constraint is g3 < b. If the single
transition is uncontrollable, then we will obtain a transformed constraint of uy + 3 < b,
which is already the case if there are b or fewer tokens in the net and is impossible if the
net starts with more than b tokens. —

Pi P2
Figure 1: A Petri net that yields a trivial constraint transformation.

3.2 Example

We now provide a simple example in order to illustrate the concepts that have been
covered above. The example plant is partially based on the model of an “unreliable
machine” from [1]. The machine is used to process parts from an input queue, completed
parts are moved to an output queue. The machine is considered unreliable because it is
possible that it may break down and damage a part during operation. This behavior is
captured in the plant model. Damaged parts are moved to a separate queue from the
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queue for successfully completed parts. The Petri net model of tl.le plfmt is shown in
figure 2, and & description of the various places and transitions is given in table 1.

p1 1] pz p3 14 pe
R —t— O—+—0O
p4 15 p7

o A0

ps t6

O—

Figure 2: Petri net model of an uncontrolled unreliable machine.

Places
71 | input queue - Number of tokens = parts remaining
Pz | Machine is “up and busy,” part is being processed
ps | Part is waiting for transfer to completed parts queue
pa | Part is waiting for transfer to damaged parts queue
ps | Machine is waiting to be repaired
ps | Completed parts queue
pr | Damaged parts queue
Transitions
t; | Part moves from input queue to machine
13 | Uncontrollable: Part processing is complete
i3 | Uncontrollable: Machine fails, part is damaged
t4 | Part moves to completed parta queue
ts | Part moves to damaged parts queue
tg | Machine is repaired

Table 1: Place and transition descriptions for the Petri net of figure 2.

The plant model has two uncontrollable transitions, ¢; and £a. Triu}sition 't:; reprfasents
machine break down and so obviously can not be controlled. Transition ¢, is c?nsldered
uncontrollable because the controller can not force the machine to in.stant]y finish a part
that is not yet completed, nor does it direct the machine to stop working on an urlnﬁmshed
part. The transition is labeled uncontrollable in order to prevent a control design from

attempting either of these two actions. o ] )
The Petri net model of the plant has the following incidence matrix and marking

e,

vector. |'

-1 0 0 0 o0 o ]
1 -1 -1 0 0 o0 2
6 1 0 -1 0 o s

Dy=] 00 1 0 -1 0 #o = | pa (18)
0 0 1 0 o0 -1 s
6 0 0 1 o0 o0 s
6 0 0 0 1 o | |
Dy

T

The initial conditions are pp, = [ 3000000O0(.

If the machine is broken, we do not want to load a new part until repairs have been
completed. This means that places p, and ps should contain at most one token:

patps <1 (19)

Parts waiting to be transferred to a storage queue, whether completed or damaged, wait
in the same position on the machine. The Petri net model uses two places, p3 and p,, to
represent waiting parts, because there are two different destinations. In order to prevent
conflict, the second constraint is

patpa <1 (20)
Using the matrix form of constraint (1) we have
01001090 1
[0011.000]“"5[1} 21)
~ o - N
L b

First we must check the uncontrollability condition.

_[-1 0
LD"“[ 1 1}

We need all of the elements of LD, to be less than or equal to zero if we are to avoid using
uncontrollable transitions. There is no problem with the first row, but a transformation
will have to be found to eliminate the 1’s in the second row. This can be done by applying
row operations from the matrix D, to eliminate the positive elements in the second row
of LD,.

Because constraint (19) required no trensformation, the first row of R, will be all
zeros. A row operation involving the addition of the second row of the D, matrix was
required to transform constraint (20), thus the second row of R, will be all zeros with a
one in the second column. It was not necessary to premultiply either constraint, thus R,
will be an identity matrix.

_ |00 0O O0OO0O0OD _flo
R"'[GIOOOOOJ R=—[o 1}

We now apply equations (11) and (12) to find the transformed constraints represented

by L' and ¥,
010 100 <1
0111000|"=]1
" o

o
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The controller is the calculated using equations (16) and (17).

1100 01
D==‘L'DP=[—1 00 11 0]

' 1
F‘q=b"—Lﬂn=[1]

The controlled net is shown in figure 3. The constraint logic is enforced and no input
arcs are drawn to the uncontrollable transitions.
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Figure 3: The controlled unreliable machire.

3.3 Discussion

An extensive look at many of the issues central to this research can be found in .the
work of Li and Wonham [3]. These authors show that optimal, or maximally permissive,
control actions which account for uncontrollable transitions can be found by repeated
applications of a linear integer programming problem (LIP), assuming that valid control
actions actually exist and that the uncontrollable portion of the net contains no loops.
They also give sufficient conditions under which the solution to the LIP has a closed
form expression. These conditions place a certain tree structure on the uncontrollable
portion of the net. When this tree structure is further limited, Li and Wt_mham are able
to prove that the optimal control law which insures Ly, < b can be written Cpp 5. d.
This is the case where it is possible to represent the action of the optimal control léw with
ordinary Petri nets. In this situation, it is possible to find R, and R, by performing row

operations on L% which is much more desitable, computationally, than analytically

solving an LIP. However the tree structure assumed by Li and Wonham is only sufﬁcie'nt,
not necessary, for example, the structure of the uncontrollable part of the plant in section
3.2 does not conform to Li and Wonham's “type 2 tree structure,” however an optimal
solution was found and implemented using an ordinary Petri net controller. There are also
cases where, following the procedures presented above, suboptimal Petri net controllera
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may be derived. These suboptimal controllers may be sufficient for many tasks, depending
on the application. Further exploration and codification of these issues is one of the main
goals of this ongoing research.

4 Conclusions

This paper has presented a particularly simple method for constructing feedback
controllers for untimed Petri nets, even in the face of uncontrollable plant transitions.
The method is based on the idea that specifications representing desired plant behaviors
can be enforced by making them invariants of the controlled net, and that simple row
operations on a matrix containing the uncontrollable columns of the plant incidence
matrix can be used to eliminate controller use of illegal transitions.

The significance of this particular approach to Petri net controller design is that
the control net can be computed very efficiently, thus the method shows promise for
controlling large, complex systems, or for recomputing the control law online due to
some plant failure.

Besides the probiem of uncontrollable plant transitiona, there are also situations where
it 18 not possible to observe certain transitions. For example, it may be too difficult or
costly to place a sensor in a certain part of a plant, or a sensor may fail which might
require the fast online computation of a new control law. Because of a duality in the
mathematics between uncontrollable and unobservable transitions, this research extends
itself naturally to the problem of unobservable transitions.
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