
Proceedings of the 1996 IEEE International
Symposium on Intelligent Control
Dearborn, MI September 15-18, 1996

A Hybrid Syste Approach to Output Seheduli
eal-Time Systems

Michael Lemmon and P.J. Antsaklis
Dept. of Electrical Engineering

University of Notre Dame
Notre Dame IN 46556

1. Introduction

There has been recent interest in the use of broadband
communication networks to implement distributed
control systems (DCS). Such systems use a high speed
local area network (LAN) to connect smooth dynam-
ical systems (plants) with their computer controllers.
DCS have appeared with increasing frequency in pro-
cess control and power plant supervision[l]. There
has been recent interest in packet switched networks
using asynchronous trnsfer mode (ATM) [2] [3] as the
communication backbone in DCS [4].

ATM-based control systems can be modeled by both
discrete event and continuous-state (smooth) dynam-
ical systems. These systems can therefore be viewed
as Hybrid Control Systems (HCS) [5] [6] [7] [8]. In
this case, the networked plants and controllers form
the continuous-state part of the HCS. The arrival and
service processes within the network’s ATM switches
can be modeled as discrete event processes. An im-
portant issue in the design of such networks involves
the synthesis of a scheduling protocol [9] to minimize
the transport lag (delay) between network nodes.
The scheduling protocol can be treated as a discrete
event supervisor controlling the order in which pack-
ets (cells) are transmitted by the ATM switch.

This paper proposes using on-line observations to
synthesize optimal scheduling protocols. In section
2, an ATM-based real-time system is recast in the
hybrid system modeling framework proposed in [6].
In section 3, we summarize our prior work [lo] [Ill
[12] in the on-line identification of optimal DES con-
trollers.

switch is patterned after [2] and [3]. The inputs to
the switch are from plant sensors or are feedback sig-
nals generated by the control processors. The outputs
of the ATM switch are connected to plant actuators
and the input buffer of the control processors. The
switch is seen to consist of four parts; the controllers
on the input and output ports, the control unit, and
the switching fabric. When a cell arrives at an in-
put controller, it is assigned to an output port. The
switching fabric routes the cell from the input port to
the appropriate output buffer. An output schedu1in.g
protocol is used to decide the order in which buffered
outputs are transmitted. The scheduling protocol is
implemented by a control unit. This control unit is
also responsible for other high level functions inchid-
ing connection setup, network maintenance and mon-
itoring.

In the design of real-time control systems, an impor-
tant specification that the communication network
needs to satisfy are “hard” time delay constraints [14]
[15] [16]. The delay between a sensor reading and the
controller’s response needs to be constrained so that
the overall system preserves stability. Delays in the
system can arise from a variety of sources. Delays
due to node processing and propagation delays are
usually constant and are not affected by the ATM
switch. Within the ATM switch, delays occur in the
input/output controllers as well as propagation de-
lays within the switching fabric. These delays will
also be constant provided the switching fabric is non-
blocking. Another delay occurs in the output buffer.
This output delay is caused by the transmission order
of the queued cells. This type of delay is directly de-
pendent on the choice of output scheduling protocol
used by the ATM switch.

Examples of well-known scheduling protocols include
round-robin (RR) and first come first served (FCFS)
protocols. These protocols are essentially static
mechanisms with relatively low computational over-
head. In certain cases, however, it may be desirable
to use a dynamic scheduling protocol [9]. Dynamic

2. ATM-based Real-Time Control

This paper considers a real-time system using a single
ATM switch to interconnect sensors, actuators, and
processors. The following description of an ATM-

330

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

scheduling decides on the order of served cells based
on the current state of the switch’s output queues.
Such dynamic scheduling protocols can take into ac-
count dependencies between various nodes in such a
way that can reduce the bandwidth required over ex-
isting static protocols. The implementation of such
dynamic schemes, however, requires that the dynam-
ics of the arrival processes be known. Such knowl-
edge, however, is rarely available on an a priori ba-
sis. This paper proposes using on-line observations of
the arrival processes to identify “optimal” scheduling
protocols.

To achieve this objective, we first recast the system
as a hybrid dynamical s y s t em [S] [7] [8] [5] . Hybrid
dynamical systems consist of discrete event systems
interfaced to smooth dynamical systems. One re-
cently studied class of hybrid systems uses a log-
ical DES controller to supervise the behaviour of
continuous-state (CSS) plants [6]. The above ATM-
network possesses this hybrid nature. The plant and
processes connected to the ATM network are mod-
eled as continuous-state systems. The arrival and
transmission of cells in the ATM switch mark a dis-
crete event process which arises when controller/plant
measurements are packetized at discrete time in-
stants. From the ATM switch’s viewpoint, the plants
and controllers therefore appear to be a logical DES
which we refer to collectively as the DES plant. The
output scheduling protocol controls the traffic flow
through the switch and can be interpreted as the
DES controller found in the HCS framework of [6].
This HCS framework is an extension of the supervi-
sory Ramadge-Wonham supervisory control formal-
ism [17].

In order to describe the language generated by the
DES plant, we first need to examine the switch’s pro-
cessing of cells in more detail. There are a variety of
traffic types handled in ATM networks. The highest
priority (class A) traffic is suitable for real-time con-
trol. It is a connection oriented traffic mode which
guarantees the quality of service (QoS) (i.e., delay
time) for a message. The ATM switch’s scheduling
protocol services the output buffers at regular time-
slots. The transmission of a cell from the switch
therefore marks a controlled event which occurs in
a synchronized manner. The arrival of cells, however,
can be generated from a variety of different sources.
A cell arrival therefore marks an event which occurs
in an asynchronous manner. The ATM switch has no
control over the arrival process (except during con-
nection setup) so arrivals can be treated as uncontrol-
lable events. We therefore see that the cell arrivals
to and transmission from the switch represent uncon-
trollable and controllable logical events, respectively.

In particular, let’s denote the arrival of a cell from
the ith source (plant or controller) destined for node
j in the network as aij. Arrival events are generated
whenever the source packetizes its output and sends it
to the ATM switch. Let A be a fixed output quantiza-
tion interval. Let y be the source’s output and define
a quantization operator so that &A(Y) = Ly/AJ. It
will be assumed that a packet is generated whenever
&A(Y) changes. Denote the servicing of a cell arriv-
ing from the ith source in the j t h output buffer as
cz3. These symbols form the event alphabet E. The
controllable and uncontrollable events in this alpha-
bet are denoted as C, and E,, respectively. Since
the servicing events occur at regular intervals, they
can be used to mark time between batches of cell ar-
rivals. We will assume that only a finite number, k,
of uncontrollable events can occur between any two
consecutive service events. The DES plant language,
L(G), is therefore contained within the following reg-
ular expression (CtE,)*.

In our case, the objective of output scheduling is to
minimize the transmission delay of cells. These delay
specifications are “hard” since violation may result in
system instability. In order to use logical DES control
theory to determine an “optimal” scheduling proto-
col, this delay requirement must be formulated as a
regular specification language, K. We are interested
in determining “optimal” scheduling protocols. The
protocol will serve as the DES controller of the DES
plant. Assume that the protocol is a regular language
L (S) where S is the minimal deterministic finite au-
tomaton (DFA). We introduce the usual notion of a
controlled finite automaton GJS generating a regular
langauge L(G1S). The objective is to determine S so
that &(GIs) is the largest controllable sublanguage
of the specification E. We have therefore framed the
HCS controller synthesis as a logical DES controller
synthesis problem.

3. On-line Controller Synthesis

This section summarizes prior work in the use of in-
ductive learning of DES controllers. In the follow-
ing discussion it is assumed that the plant language,
L(G), and the control specification, E, are regular
prefix-closed languages over an event alphabet, E. It
is assumed that C is partitioned into controllable, E,,
and uncontrollable, E,, events. The plant is assumed
to be completely observable. It is assumed that the
specification language and the uncontrolled events are
initially known. The plant language, L(G), however,
is assumed to be unknown. We also assume that
we may not know a minimal deterministic finite au-
tomaton (DFA) accepting the specification language.

33 1

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

Under the preceding assumptions, we are interested
in identifying the DFA for the supremal controllable
sublanguage, K t of the specification.

In the ATM-based real-time system discussed above,
it will be extremely difficult to characterize the ar-
rival process in an a priori manner. This means that
the DES plant language, L(G), will be initially un-
known. Recall, however, that controllability can only
be assessed once we know L(G). Therefore if we are
to compute K t we will need to use on-line observa-
tions of L(G) in determining K t . In this section, we
discuss how Angluin’s L*-procedure [13] may be used
to accomplish this.

S

SE-S

It is well known that computation of the supremal
controllable sublanguage can be performed in an it-
erative manner using the following formula [18]

KO = R (1)
Ki+i = Ki - [(L(G) - Ki)/Cu]C* (2)

This iteration produces a sequence of languages by re-
moving uncontrollable plant behaviours in L(G) - Ki
from the original specification. Note that each, Ki,
can be computed from the preceding one once we have
observed an uncontrollable plant behaviour which is
“illegal” with respect to Ki-1. The preceding equa-
tions therefore provide a means of including observed
plant behaviours into the original specification. This
iteration therefore serves as the basis for our on-line
identification methods.

E A
& 1 1

aA 1 0
a 1 1

aB 1 1
aa 1 1

aAB 1 0
aAb 1 1
B 1 1
A 1 0

If we already have a minimal DFA consistent with
K , then the construction of K t can be done in a
straightforward manner. Let MO be the minimal au-
tomaton accepting i?. Assume that this automaton
has state space Qo. If we use the specification lan-
guage automaton MO to control the plant, then we
may generate an illegal behaviour if the specification
is uncontrollable. Let s be such an uncontrollable (il-
legal) string. We therefore know that s E L(G) but
s 4 R. The only way this illegal behaviour could
have occured was through an uncontrollable transi-
tion out of a legal state in MO. If we then remove
uncontrollable suffixes from s, until we obtain a legal
behaviour t, then the state q(t) associated with this
behaviour can be removed from MO. The resulting
machine, M I , will accept a language, K1, which is
smaller than but which contains I<+. By repeating
this operation using K I as E, we obtain a sequence
of machines Mt whose number of states form a mono-
tone decreasing sequence. The resulting iteration is
shown below

-

Since MO had a finite number of states, this means
that the iteration terminates after a finite number of
updates yielding a DFA accepting KT.

The above method can be used once the automaton
for is known. Many times, however, the specifi-
cation may be given as a regular expression or an
informal specification. In these situations the L*-
algorithm can be used to help compute the DES con-
troller.

L*-Algorithm

The L*-procedure constructs approximations to
boolean functionals through the use of a member-
ship oracle and (sometimes) an equivalence oracle. A
membership oracle is a function declaring whether or
not a given string lies in the target language. An
equivalence oracle is a function that declares whether
or not an hypothesized DFA accepts the target lan-
guage. In the event that the conjectured DFA is not
accepting, then the oracle returns a counterexample
illustrating the difference between the two sets. The
L*-algorithm is important because it has been shown
to converge after a finite number of updates which is
polynomial in the size of the minimal DFA and the
length of the observed counterexamples [13].

The L*-procedure constructs an observation table
representing the regular language to be learned. The
table is represented by the ordered triple (S , E , T) ,
where S and E are prefix closed and suffix closed lan-
guages, respectively. T : (S U SC)E -+ (0 , l) is a
partial function agreeing with the declarations of a
membership oracle over strings in (S U SC)E. The
observation table can be represented in tabular form
as shown below. The rows are labeled with strings in
S and SE - S . The columns are labeled with strings
in E. An entry in the table is indexed by a string
s E S U SC and e E E. The value of 1 indicates that
the string se is accepted by the membership oracle
and 0 indicates otherwise.

The preceding table is useful in identifying the Nerode
equivalence classes of the minimal DFA consistent

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

with the table entries. Define a function row :
(S U SE) -+ (0, l}lEl. This function returns a sin-
gle row of the above table. The rows of the table
mark right invariant equivalence classes of a regular
langua,ge consistent with the table provided the ta-
ble is complete [13]. Any observation table can be
completed through an algorithmic procedure using
calls to a membership oracle [13]. The table shown
above is complete. Define an equivalence relation RL
such that sRLt if and only if row(s) = row(t). Be-
cause the table is complete, RL,is right invariant and
can be used by the MyHill-Nerode characterization to
construct a DFA accepting a regular language consis-
tent with the table entries. In particular, it has been
shown that the constructed DFA will be minimal in
the sense that any other automaton consistent with
the table will have more states. The label for the
states are the distinct rows of the observation table.
The DFA for the above table is shown below.

a 0
Figure 1: Automaton constructed by L*-algorithm

A flowchart for the procedure is shown in figure
2. Given an initial set S; and E; (ususally cho-
sen to be null), the procedure evaluates the obser-
vation table, (S;,E;,T). It then completes the ta-
ble to obtain (SO, E0,T) and constructs an acceptor
MO = k f (So , Eo, 2"). This acceptor is then given to
the equivalence oracle as an hypothesized acceptor
for the target language R. If the DFA is not equiv-
alent, then the oracle returns a counterexample illus-
trating where the DFA and the target language dis-
agree. This counterexample is used to construct an-
other completed observation table (SI, El , T). From
this table another acceptor is constructed using the
Nerode equivalence classes as states and the process
repeated until the equivalence query returns no more
counter-examples.

DES Controller Synthesis through the L*
Procedure

In [lo] and [12], the L*-procedure was modified to
determine optimal logical DES controllers. The mod-
ification involved using a time-varying membership
oracle. The time-varying membership oracle condi-
tions the oracle's declarations on a list of observed
uncontrollable behaviours. If we let C be a collection

inilializatiim:

counterexample
Equivalence Query generated

equivalent

Figure 2: High Level Flowchart of L*-procedure

of observed uncontrollably illegal plant behaviours,
then the language formed by discarding uncontrol-
lable suffixes of strings in C can be denoted m

&(C) = { s E L(G) such that st E C and t E E:}

The set C is a set of example plant behaviours that
can be used to update a partially specified member-
ship oracle. This suggests that we can construct C
in an iterative manner. In particular, let Ci+l =
Ci U {si+l} where si+l is an observed uncontrollable
(illegal) behaviour. We therefore have a growing set
of observed behaviours that can be used to modify
the membership oracle. In particular, we introduce a
membership oracle represented by the following par-
tial function

(5)

0 if Ti-I(s) = 0 or s E &(Ci+l)C*
1 otherwise

(6)
The function Ti(s) can then be used to evaluate and
complete a given observation table in exactly the
same way as done in the traditional L*-procedure.
An immediate consequence of the preceding discus-
sion is that the language consistent with Ti will be
7is - D,(C,)C*.

Provided the set C is finite, then this iteration ter-
minates after a finite number of iterations. A simple
example of this procedure is shown below. In this
example we consider an event alphabet C = { E , a, b }
where b is uncontrollable. The unknown plant lan-
guage is a*ba* and the specification is akba* where
k 5 2. The initial membership oracle is the prefix-
closed specificatin R. An initial observation table is
constructed by taking S = E and E = E . The result-
ing complete observation table is shown below. The
acceptor extracted from this table is shown in figure
3.

333

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

E

E 1

a 1
b 1

The acceptor for the observation table is then used
as a controller and generates controllable and un-
controllable plant behaviours. The procedure stops
searching when an illegal (w.r.t I() plant behaviour
is identified by the membership oracle. The simu-
lation program written to implement this procedure
produced the illegal accepted plant behaviour aaab.
This behaviour is used to update the observation ta-
ble as shown below. The acceptor extracted from this
table is shown in figure 3.

As before, the acceptor is used to control the plant.
In this case no illegal behaviours were uncovered. We
then begin using the original specification to generate
controllable plant behaviours and see if there are any
accepted legal behaviours. In this case an unaccepted
legal plant behaviour baaa is discovered and added to
the observation table. The resulting completed table
is shown below. The acceptor extracted from this ta-
ble is shown in figure 3. This is the suprema1 control-
lable sublanguage, K t , for the specification language.

aaa
0
0
1
0
1
1
1
1
1
1

-

__

4. Summary

In the synthesis framework discussed in [6], an ex-
tension of the Ramadge-Wonham formalism can be
used to synthesize controllers for HCS. This synthesis,

h

Figure 3: sequence of acceptors generated by modified
L*-procedure

however, requires a prior extraction of the DES plant
language. The analytical determination of such a
DES plant language may not be possible. The ATM-
based real-time control system examined by this pa-
per is an example of such a system. In this case, a
characterization of packet arrival processes will gener-
ally be impossible to determine beforehand. In order,
therefore, to synthesize the controller, we will need
to do an on-line synthesis. This paper has suggested
that a modified verion of Angluin’s L*-learning pro-
cedure may provide the framework for such an on-line
synthesis method.

References
[I] R. Rodd and F. Deravi, Communication Sus-
tems for Industrial Automation, Prentice-Hall Inter-
national, 1989.

[2] H. Bruneel and B.G. Kim, Discrete-Time Mod-
els for Communication Systems Including ATM,
Kluwer Acacemic Publisher Inc., 1993.

[3] A. Raha, M. Malcolm, and W. Zhao, “perfor-
mance evaluation of admission policies in ATM based
embedded real-time systems” , Proceedings 19th IEEE
Conference on Local Computer Networks, pp. 129-
138, October 2-5, 1994, Minneapolis, Minnesota
[4] C.M. Aras, J.F. Kurose, D.S. Reeves, and
H. Schulzrinne, “real-time communication in packet-
switched networks”, Proceedings of the IEEE, Vol 82,

[5] A. Nerode and W. Kohn, “models for hybrid
control systems : automata, topologies, controllabil-
ity, observability” in [7]

[6] J.A. Stiver, P.J. Antsaklis, and M.D. Lemmon,
“a logical DES approach to the design of hybrid con-
trol systems” , technical report of the ISIS group ISIS-

NO. 1, pp. 122-139, 1994.

33

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

94-011, University of Notre Dame, Notre Dame, IN
Oct. 1994 (revised: May 1995). to appear in mathe-
matical and computer modeling special issue on dis-
crete event systems.

[7] R. L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel (eds), Hybrid Systems, Lecture Notes in
Computer Science, 736, Springer Verlag, 1993.

[8] A. Nerode, P.J. Antsaklis, S. Sastry (eds) Hy-
brid Systems 2, to appear in Lecture Notes in Com-
puter Science, Springer Veralg, 1996.

[9] K. Ramamritham, R. A. Stankovic, “scheduling
algorithms and operating systems support for real-
time systems”, Proceedings of the IEEE, Vol 92, No.

[lo] M. Lemmon, P. Antsaklis, X. Yang, C. Lucisano
(1995), “ “Control System Synthesis through Induc-
tive Learning of Boolean Concepts”, IEEE Control
Systems Magazine, June 1995.

[ll] Xiaojun Yang, M.D. Lemmon, P.J. Antsaklis
“inductive inference of logical DES controllers using
the L*-algorithm” , Proceedings of the American Con-
trol Conference, Seattle, Washington, June 1995.

[12] Xiaojun Yang, M. D. Lemmon, P.J. Antsaklis,
“inductive inference of optimal controllers for uncer-
tain logical discrete event systems”, Proceedings In-
ternational Symposium on Intelligent Control, Mon-
terey CA, August 1995.

[13] D. Angluin (1987), “Learning regular sets form
queries and counter-examples” , Int. J. Information
and Computation, Vol 75, No. 1, pp. 87-106, 1987.

[14] A. Gosiewski and A. Olbrot, “the effect of feed-
back delays on the performance of multivariable lin-
ear control systems” , IEEE Dans. Automatic Con-
trol, Vol AC-25, pp. 729-734, Aug. 1980.

[15] K.G. Shin and C.M. Krishna, and Y-H Lee,
“a unified method for evaluating real-time computer
controller and its application”, IEEE Trans. of Auto-
matic Control, Vol AC-30, no. 4, pp. 357-366., Apr.
1985.

[IS] Z.V. Rekasius, “stability of digital control with
computer interruption”, IEEE Trans. of Automatic
Control, Vol AC-31, no. 4. pp. 356-359, Apr. 1986.

[17] P. Ramadge and W.M. Wonham (1987), ‘%U-
pervisory control of a class of discrete event pro-
cesses”, SIAM Journal of Control and Optimization,
Vol 25, No. l., pp. 206-230, Jan. 1987.

[18] W.M. Wonham and P.J. Ramadge (1987), “on
the suprema1 controllable sublanguage of a given lan-
guage” , SIAM Journal of Control and Optimization,

1, pp. 55-67, 1994.

V O ~ 25, NO. 3, pp. 637-659, 1987.

335

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:20 from IEEE Xplore. Restrictions apply.

