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Abstract

The compensation of a plant (possibly unstable
and/or non-minimum phase) via unity feedback with
internal stability is studied in this paper. The
restrictions imposed on the designer by unstable
poles and zeros of the rlant are described and
discussed, and the whole class of appropriate com-
pensators needed for a particular design is given.
The hidden modes which might be introduced in the
closed loop system are fully characterized; and
the sensitivity of the compensated system, as well
as the stability and prcperness of the compensa-
tor and its relation to state observers, are also
treated.

Summary
Assume that unity feedback is used to compen-

sate a given plant described by a proper transfer
matrix P{pxm):

If the feedback loop is well defined, the closed
loop transfer matrix T i1is then given by

T =7P(I + GP)'1 G. (1)

It is of interest in design to choose G so that,
under internal stability in the loop, T 1is a de-
sired stable and proper transfer matrix and

ME (T4 GP)'1 d (2)

is also an acceptable (stable and proper) transfer
matrix; note that u = Mr, that is M character-
izes the control action u needed for the compen-
sation of P.

For convenience, transfer functions here can
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be taken as elements of R{s), the quotient field
of the principal ideal domain R[s] of polynom-
ials with coefficients in R, the real numbers.
However, everything can also be done over an arbi-
trary field k 1in place of R; in this case, the
meaning of stability has to be adjusted appropri-
ately.

It has been shown [1] that all pairs (T,M)
which satisfy

T = PM, (3)

where P 1is given and the pair (T,M)
are given by

is stable,

HREER

where X 1is any stable rational matrix, where the

columns of
N
D

form an R[s]-module basis for ker [I - P], and
where (N,D) is a right prime factorization of P,
Cases in which the pair (T,M) are to be proper
as well are a special case of the results above.

With respect to feedback realization, various
general results are known. TFor example, if P is
strictly proper, Bengtsson [2] has shown that (I,M)
stable and proper is a sufficient condition for in-
ternally stable feedback realization, under suit-
able technicalities. This work has been general-
ized by Pernebo [3]. Notice, however, that here we
are interested in a particular feedback realization,
namely, unity feedback. T = NX dimplies (under
certain mild conditions) that all unstable zeros of
the plant must also be zeros of T, independently
of the particular realization used (compare with
[4]). Equation (4) also implies that there exists
a unique correspondence between realizable [M]

and X; X dis called the design matrix, as it is
exactly what the designer must choose.

For unity feedback, if G = BEI fG is a left-
prime factorization, then in view of (2) and (4)
Y N -1
X = (DGD + hGN) NG. (5)
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Internal Stability. The_ closed loop system is in-
ternally stable [5] if DGD + NGN = A, where a1

exists and is a stable rational matrix, or equiva-
lently, only if

2y ay A A

= - BN = + BD 6
Bp = Axy - BN, NG Ax, (6)

-1,
where B 1s any polynomial matrix, P =D N is

a left prime factorization and XlD + X2N = I. All

internally stabilizing compensators are given by

G = (ax, - By 7L (%, + BD) 7
where A-l is stable and B is such that iAxl -
BN| # 0.

Theorem [6] Ei}= [g] X can be realized via unity

feedback with internal stability if and only if
a) rank (I - NX) is full (8)
and

b) there exist polynomial matrices A,B
(a-1 stable) such that

x=at (ax, + BD). (9)

If a solution exists, the compensator G 1is unique
and is given by

G = (ax, - B Ax. (10)

Notice that (8), guarantees the existence of G in
(10) (fo - BN| # 0 with 4, B from (9)); note
also that %8) is necessary for any unity feedback
compensation to be well defined since I - T =

(1 +p6)-1. Condition (9) quarantees internal
stability.

Observe that if only T = NX 1s of interest
(model matching via unity feedback), (8) and (9)
can be expressed in terms of T; furthermore, if
internal stability .is the only design objective,
so that X need only be stable, then one may al-
ways select (A,B) so that (8) and (9) are
satisfied. This is a generalization of [2], since
P 1is not required to be strictly proper.

There are alternative ways to state a theorem
which do not involve A and B. TFirst notice
that, from (9),

(ax, + BY) = AX (11a)

so that from (6)

BG = AT - x0OD L, (11b)

that is, internal stability implies X and (I -
XN)D'l stable. Sufficiency can also be shown,

therefore condition (9) is equivalent to

X and (I - XN)D™F stable. (12)

Hidden modes.

Now (2) and (4) imply

6=MT -0 = Dx(I - )t = [ - x0T

(13)
which can be used to determine internally stabiliz-
ing G provided that X'satisfies conditions (8) and
(12). Tt should be noted that (9) is also equiva-
lent to the condition

DX B_l = Ms_l stable (14a)

and
(1 - 0¥ = 55! stable (14b)

A -
where S E (I + PG) 1 =1 - T the comparison sen-
sitivity matrix; this can be shown using the dual

factorization NGDG of G.
Stable and Unstable P. Condition (9) can be writ-
ten as:
— -
x - x5t = a7n (15)

which clearly shows (also (12, (14)) that the re-
quirement for internal stability implies restric-
tions on the achievable X only when the plant is
unstable. If the plant is stable, it is clear that
condition (9) is always satisfied i.e. any stable
T = NX satisfying (8) can be realized via unity
feedback with internal stability (see also [7]).

In this case M = DX can be almost any (subject
to (8)) stable proper matrix, which implies for
example that G evaluated from (13) with M any
stable strictly proper rational matrix will in-
ternally stabilize the system (see .also [8]),
giving T = NX as the closed loop transfer matrix.
Notice however that in this case the poles of the
plant are likely to become hidden modes of the sys-
tem thus unnecessarily increasing the order of G.
This point will be clarified below. 1If the plant
is unstable, X 1is not free any longer but it
must have certain structural properties to satisfy
(12) or (15). Furthermore in this case the part
of D which corresponds to the unstable poles
must be known exactly to guarantee that the condi-
tion will be satisfied since exact cancellation is
required.

It is known that if a feedback de-
gign is carried out using transfer matrices, the
order of the resulting compensator can be unneces-—
sarily high or more significantly, bring about un-
wanted stable modes inside the loop. This is due
to the (unintentional) introduction of "hidden
modes' which appear as modes of the closed loop
system but not as poles of the closed loop trans-
fer matrix. The polynomial matrix system descrip-
tion is now used to characterize fully this phen-
omenon and to suggest ways to avoid it. Clearly,
the hidden modes are those zeros of |A] which do
not appear as poles of T. Assume that an X is
given which satisfies congit%ons (8) and (12). 1In
view of (11), A (also NG,DG) can be determined
from

[(I - XN)D_l, x] =AM, N ] (16)
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a left prime faitorlzatlop It can ngw be shown,

that 1if X = D then VG = AX = AlN , A= AlDX

{All are exactly those stable

poles of P which do not cancel in (I - XN)D_l
The polynomial matrlx description of the closed

loop, namely Az = \Gr, v = Nz, clearly implies

that the zeros of ;A

where the zeros of

l' are uncontrollable modes
and therefore hidden modes. Furthermore, there
might be additional, unobservable hidden modes
which are exactly those poles&of X which cancel
in NX =T i.e. A = A D = AlD AZ’ N = NAZ Note
the uncontrollable hldden modes (zeros of {Al[)

will appear in §G = Alﬁx’ while the unobservable
ones (zeros cf %Azz) will appear in [BG’

i.e. as poles of G. All hidden modes will cancel
in the product PG. It is thus clear that, in or-
der to avoid hidden modes choose stable X such
that: first, no cancellations take place in XX
and secondlv, all poles of P are cancelled in

(I - XN)D™ The second requirement is of course
more difficult to satisfy and it is the main cause
for the hidden modes in feedback designs.

Sensitivity. The comparison sensitivity matrix is

(T + PG)_l =I-T=1-2X (17)

iz~

S

and (14) directly implies that the unstable poles
of the plant must be zeros of S 1if internal sta-
bility is to be achieved. That is, if the plant
is unstable then restrictions on the possible
choices for § are imposed. Furthermore, if the
plant is nonminimum phase, additional restrictions
are imposed on S via N (see also [9-10]).

Note also that all of the poles of P must be
zeros of S if no (stable) hidden modes are de-
sirable. 1In general, when internal stability is
present, the zeros of S are: All of the poles
of P except the uncontrollable hidden modes (zeros
of 'a E) and all of the poles of G except the

1
unobservable hidden modes (zeros of 3A2[); the
poles of S are the poles of T.
The Compensator G. The numerator &G and the de-

nominator D. of G satisfv (16). 1In view of the

G
discussion on hidden modes ﬁG = Al\ , Wwhile the
zeros of ‘5C§ (poles of G) are: the zeros of

[Azf and the zeros of SD ~. This implies that if

given X 1s to be realized with stable G then S
should not have unstable zeros other than the un-
stable poles of the plant. So X must be such
that (I - X")D' is stable with stable zeros as
well. This is more difficult to achieve when the
plant is nonminimum phase. If internal stabiliza-
tion is the only objective then X 1s any stable
rational (M = DX strictly proper): for G to be
stable then again X must be chosen so that (I -
XN)D™ is stable with stable zeros (see also [9-
107.

For G proper it is sufficient to choose X

such that DX(=M) is proper and NX(=T) strictly
proper as it can be seen from (13). Note that the

order of G, that is E:ﬁG1 S degree of ?DG}

C o= A B! - :|p| which
‘ n

+

is 3!A] - 3D 1!

shows that for G to be of low order, no hidden
modes must be present. It can now be shown that
for 1nternal stability, properness and no hidden
modes X = lV must satisfy LD + N N = ﬁx with

1 x X Z1n

DDX N_ proper and ND ﬁx strictly proper where

L 1is some 1nvert1ble polynomlal matrlx Note that
this equation is exactly DGD + \ K = with

-1 -1 .
DA NG proper and NA \G strlctly proper which
is obtained when working with polynomial matrices.
It can now be shown that these_ equations have al-
ways a solution as long as EIDX{ (ot [A ) is

higher than B;D; by an amount which depends on
the structure of N and D. 1In general when P is
stable any X (subject to (8) and DX str. proper)
can be realized via G proper as long as we are
willing to accept stable hidden modes (stable

poles and zeros of P). If P unstable and/or

no stable hidden modes are de51rab1e X must
satisfy certain restrlctlons, "D f must be high
enough for properness, NX must be appropriately

chosen. So in this case our choices for X are
certainly restricted and if they are not satisfac-
tory, more complicated compensators should be in-
troduced.

There is an observer of the state of P un-
iquely defined by any given internally stablllzlng
compensator G. This can be seen from (A~ D D +

(A~ &G)N = 1 which in view of Dz = u, Nz = ¥

implies that
~1x -1 L
(A Du+ (A Ny =z

Note that (5G_1A)(A_1§G) which shows that any

internally stabilizing compensator consists of two
factors one square invertible with stable zeros and
the other stable. When G proper, it can also be
written as

1+

I -1 -1% _
((DGDl) A)(DlA NG) = G,G

where D_1 stable and 3'D

1
This implies that given P, P = PG; can always be
stabilized via a proper stable compensator G?.

This is also an alternative proof to the fact that
any given plant P, can be stabilized via an ob-
server (see also [10]).
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