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Abstract

An optimization approach to control reconfiguration, based
on eigenstructure assignment, for control systems with out-
put feedback is presented. The proposed scheme preserves
the max(r,q) most dominant eigenvalues of the nominal
closed-loop system and determines their associated closed-
loop eigenvectors as close to the corresponding eigenvectors
of the nominal closed-loop system as possible. Addition-
ally, the stability of the remaining closed-loop eigenvalues
is guaranteed by the satisfaction of an appropriate Lya-
punov equation. The overall design is robust with respect
to uncertainties in the state-space matrices of the reconfig-
ured system. The approach is applied to an aircraft control
example, where it is shown to recover the shape of the tran-
sient response.

1. Introduction

Eigenstructure assignment is a powerful technique that has
developed considerably over the last fifteen years or so; see
for instance [1], [3], [11], [12], [13], [14], [15], [17], [19], [20].
This technique is concerned with the placing of eigenval-
ues and their associated eigenvectors, via feedback control
laws, to meet closed-loop design specifications. Specifi-
cally, the method alllows the designer to directly satisfy
damping, settling time and mode decoupling specifications
by appropriately selecting the closed-loop eigenvalues and
eigenvectors. The most popular approach to eigenstruc-
ture assignment has appeared in [1], where both cases of
state and output feedback are studied and a design tech-
nique for eigenstructure assignment with output feedback
is presented. Note that a list of papers dealing with eigen-
structure assignment can be found in [19] and the review
paper of [16].

The interest here is in control reconfiguration and the
main objective is the design of a feedback law that pre-
serves the eigenstructure characteristics describing the
nominal closed-loop system. In other words, we assume
changes in the operating conditions or system component
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failures occurring in the nominal system whose perfor-
mance is determined by the nominal closed-loop eigenval-
ues/eigenvectors. The new control law needs to be designed
such that as much of this nominal performance is recovered
as possible; this can be done by recovering as much of the
nominal eigenstructure information as possible. Similar to
the approach presented in [6], [7], the overall design needs
to be robust with respect to the matrices of the impaired
state-space model. Note that the design scheme here is
different from the design scheme of [6], [7], where no infor-
mation regarding the eigenstructure of the nominal closed-
loop system was taken into account.

2. Reconfiguration and eigenstructure assignment

2.1. Problem formulation
We consider the linear multivariable continuous system
with the state-space description

i(t) = Az(t)+ Bult) (1)
y(t) = Cux() (2)

where © € R" is the state vector, u € R the input vector,
and y € R? the output vector; A € R"*", B € R"*",
C € R7™ are the system matrices. The above system is
assumed to be both controllable and observable, that is

rank [ B AB
rank [T ATCT

A"'B] = n (3
@Anm'cy = n 4

We also assume that the input and output matrices are of
full rank, that is rank(B) = r and rank(C) = q. Also, as
is usually the case in aircraft problems, it is assumed that
r < q¢ < n. For this system, an output feedback control
gain
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u(t) = K y(t) = KC x(t) (5)

has been selected such that the closed-loop eigenvalues are
located at {A;,i = 1,..,n} and the shape of the response
is determined by the set of their associated eigenvectors
{vi,i = 1,..,n}. Note that the eigenstructure specified
above characterizes the behavior of the closed-loop system
since the eigenvalues determine the stability of the system
and the eigenvectors the contribution of each system mode
to the system (state or output) response.

Suppose that a system component (e.g. actuator or sen-
sor) failure occurs in the system or that the operating con-
ditions change. The state-space model of (1), (2) can no
longer model the dymanics of the system, which is now
described by

i(t) = Ajaz(t)+ By u(t) (6)
yt) = Cyrz() (7)

where the state-space matrices of the impaired system are
of the same dimensions with the matrices of the nominal
state-space model, and the previous assumptions still hold.
Our objective is to design fast a new stabilizing output
feedback control law

u(t) = Ky y(t) = K;Cy x(t) ®)

such that the new closed-loop system Ay + B;K;Cy can
capture as much of the eigenstructure information charac-
terizing the nominal closed-loop system A+ BKC' as pos-
sible. In other words, the new output feedback matrix has
to be such that the shape of the response of the impaired
system closely approximates the shape of the response of
the nominal system.

Without loss of generality, we assume that the nomi-
nal closed-loop eigenvalues are arranged in decreasing or-
der with respect to their real parts, that is real(\1) >
real(A2) > -+ > real(\,). As shown in [18], with output
feedback we can only choose ¢ closed-loop eigenvalues and
partially assign the same number of closed-loop eigenvec-
tors. Therefore, in order to maintain the performance of
the nominal closed-loop system, we should determine the
new control law (8) such that the set of the impaired closed-
loop eigenvalues includes the ¢ most dominant eigenvalues
of the nominal closed-loop system, {\;,;i = 1,..,q}. On
the other hand, the eigenvectors of the impaired system
that correspond to the above identical eigenvalues have to
be as close to the corresponding eigenvalues of the nom-
inal system, {v;,i = 1,..,q} as possible. Therefore, if we
denote by {()\{,Uif),i = 1,..,n} the closed-loop eigenval-
ues/eigenvectors for the impaired system, the above objec-
tives are translated into

A = MA; +BrK;Cy) = \i = \(A+ BKC), i=1,.,q

min [Z||vf—vz||2] (10)

For reasons explained in [1], [8], [9], we consider the
state-transformation matrix Ty = (By Sy), where Sy
is selected such that rank(Ty) = n. In the new state-
coordinates specified by Ty above, the impaired system is
described by the matrices (Ay, By, Cy), with

By =T;'B = (OI’” ) (11)

where Opn—,,, is defined as an [(n — r) X r] zero matrix.
Note the special structure of the input matrix Bf. The
desired closed-loop eigenvectors, {v;,i = 1,..,q} together
with the actual closed-loop eigenvectors of the impaired
system, {vif,i =1,..,q} need also to be transformed to the
new state-coordinates. Define

b = T;'u (12)
o = T (13)

as the desired and actual closed-loop eigenvectors for the
transformed impaired system respectively. From now on,
we continue our discussion considering the impaired system
in the new state-coordinates specified above. Therefore,
the objective of (10) for the transformed impaired system
is given by

min [ZHE{—EHﬂ (14)

As discussed in [1], [8], [9], all achievable eigenvectors &

that correspond to the closed-loop eigenvalue )\{ must lie in
the subspace spanned by the columns of ()\{In —Af)"'By.
Define

M=\ 1. — A5) ™' By (15)

All achievable closed-loop eigenvectors of the impaired sys-
tem that correspond to the eigenvalue )\f should be of the
form

o = Mips (16)
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where p; is an (r x 1) vector. Note that p; is a real vector
if }\{ is a real eigenvalue or a complex vector if )\f is a
complex eigenvalue. In view of (16), the objective of (14)
is rewritten as

min

q
> I — ain?] (17)
i=1

and the minimizing quantity is defined as

J, =Tr

Z (M — )" (s — 1~fi)] (18)

i=1

where v" denotes the complex conjugate transpose of a
vector v. Each pair of closed-loop eigenvalues/eigenvectors
should satisfy, ([8], [9])

(A} + K;Cp — X[ 1) Mipi = 0 (19)

where A} contains the first  rows of A; and

Orn—r) (20)

We see that the vectors {ui,i = 1,..,¢} that minimize
(18) also need to satisfy the eigenstructure condition of
(19). Therefore, we need to include this condition for the g
eigenvectors of interest in the minimizing quantity, which
becomes

q
+3 M [(A} + Ky Cr = M 1,) T }(21)

i=1

where {M;,i=1,..,q} are (1 x r) Lagrange multiplier vec-
tors, which are real if they correspond to a real eigenvalue
or complex if they correspond to a complex eigenvalue. So
far, we have concentrated on the ¢ closed-loop eigenval-
ues that we wish to preserve with the procedure outlined
above. Although we have no control upon the remaining
(n — q) eigenvalues of the closed-loop system, we need to
ascertain that they remain stable. Therefore, the output
feedback gain needs to be such that the closed-loop system
A;+B;K;Cy is stable. In other words, it suffices to satisfy
the Lyapunov equation

ANTP+P A +Q=0 (22)

where

Af:z&f—l—éf[(féf (23)

As discussed in [6], [7], we also need to safeguard against
possible uncertainties in the state-space matrices of the im-
paired system. It can be shown, [6], [7], that this can be
done by including the term Tr(P?) in the minimizing quan-
tity. Therefore, the overall minimizing quantity is finally
given by

q
J = Tr {Z(ﬁiui — )" (Wi — ;)
i=1

q
+ ZMz [(A}+Kféf—A{I7,,n) f[zuz] +P2}
i=1

(24)

where L1 € R"*" is another Lagrange multiplier matrix.
To summarize the approach outlined above, we should
state that with the minimization of the quantity in (24)
above we seek an output feedback matrix Ky such that

. The g most dominant eigenvalues of the nominal
closed-loop system belong to the set of the eigenvalues of
the impaired closed-loop system Ay + B;K;C}.

e  The eigenvectors of the impaired system that corre-
spond to the above set of closed-loop eigenvalues are as
close to the corresponding eigenvalues of the nominal sys-
tem as possible.

e  The remaining (n — q) closed-loop eigenvalues are sta-
ble.

° Possible uncertainties in the state-space matrices of
the impaired system are taken care of by maximizing the
stability margin allowed to the closed-loop system.

2.2. Algorithmic approach

Without loss of generality, we assume that the set of desired
eigenvalues, that is the set of ¢ most dominant eigenvalues
of the nominal closed-loop system consists of a complex
conjugate pair, that is A/ = (AM)* € €, and (¢ — 2) real
eigenvalues, that is {)\{ € R,i=3,..,q}. Then, 17{ = (&),
The generalization to the case of more complex conjugate
pairs of eigenvalues is straightforward.

We need to compute the partial derivatives of the min-
imizing quantity of (24) with respect to all the matrix
parameters entailed. These parameters are the Lagrange
multiplier vectors {M;,i = 1,..,q}, the Lagrange multi-
plier matrix L, the positive definite matrix P, the output
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feedback matrix Ky, and the vectors {ui,i = 1,..,¢} that
specify the closed-loop eigenvectors. Using the properties
of [2] we have

g]\i = [(A+KCr—NLa)Tw]", i=1,.4
(25)
g—LJI = ATP4+PA;+Q (26)
g_;' = ALT+LTAT 4 2P (27)
aJ T AT T T AT - T TT AT
ok, = BIPLCT +BiPLIC +Z;Mi MaiENes
- (28)
g—#{ = 20 My po — 2105
+ 07 (A} + K;Cp — ML) MY (29)
- (%) (30)
gli = 20 I p; — 210 &
+ 0] (A + K;Cp = M L..)" M,
1=3,..,q (31)
The derivation of (29) and the equivalence of (30) are

shown in [8], [9]. To minimize (24) we use a version of
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimiza-
tion method of conjugate directions. Note that there are
significant changes compared to similar algorithms used in
[5], [6], [7], [10]. This is due to the structure of the present
problem, since now we update the vectors {u:,i = 1,..,q}
instead of the output feedback matrix. On the other
hand, the existence of complex eigenvalues/eigenvectors
imposes certain modifications to the algorithmic scheme.
The proposed algorithm is presented in [8], [9]. Note
that the optimal Ky determined by the above approach
is the optimal gain for the impaired system in the origi-
nal state-coordinates as well, whereas the optimal vectors
{ﬁzf,i =1,..,q} need to be transformed back to the orig-
inal state-coordinates using (13). In [8], [9], the cases of
q < r, state-feedback, and dynamic compensation are also
studied.

3. An illustrative example

Consider the aircraft longitudinal control system of [4],
whose linearized dynamic model is given by

—0.0582  0.0651 0  —0.171
—0.303 —0.685 1.109 0
4 = —00715 —0.658 —0.947 0 (32)
0 1 0
1
1000
B = _310?‘1“ 8 ,C:(O 00 1) (33)
0010
0
z(t) = (aft) ,Bt) w(t) o))" (39)
u(t) = (n(t ()" (35)

where a(t) and B(t) are the forward and vertical speeds,
¥ (t) is the pitch rate and 6(t) is the pitch angle. The con-
trol inputs n(t) and 7(¢t) are the elevator angle and throttle
position respectively. When we consider the static output
feedback law of (5), the controller that assigns the closed-
loop eigenvalues at {—0.5973, —1.5 £ 52, —2} and their cor-
responding eigenvectors at

V = (v1 va=wv3 wva)
—0.1887 0.1465 + 70.0958  0.9680
. —0.9634 0.2257 — j0.2492  0.1441 (36)
- —0.0977 0.3790 + 50.6047  0.0905
0.1636  0.1025 — 50.2664 —0.0453

is given in [4] by

—0.00031
K= < —2.01505

4.77004

1.70457
—1.13002 0.02904> (37)

Next, we suppose that the system dynamics change due to

operating condition variations.

of the impaired model are given below.

The state-space matrices

—0.0582 010 0.0 —0.171
—0.103 —0.685 1.109 0
As —0.0715 —0.658 198 0 (38)
0 0 1.5 0
_0009 8'8 09 0 0 0
By = ' 1, c;=0 0 0 07
~111 0.0 0 0 1 0
0 00
(39)

The algorithmic approach discussed above is used to find
the optimal output feedback matrix Ky, that is the con-
troller gain that minimizes J of (24), for the impaired sys-
tem. Our objective is to preserve the first 3 most domi-
nant eigenvalues of the nominal closed-loop system, that
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is {—0.5973, —1.5 &+ 52}, and achieve closed-loop eigenvec-
tors as close to their corresponding eigenvectors of (36) as
possible. First we need to transform the impaired system
(Ay, By, Cy) to new state-coordinates. Select

0 09 0 0
-009 0 1 O

r= -1.11 0 0 0 (40)
0 0 01

The best results, with regard to closeness of the closed-loop
eigenvectors of the impaired system to the desired eigenvec-
tors specified in (36) are obtained when we assign a weight
factor of 0.1 to the term {(f[l,ul — 171)T (f[l,ul — 171)} of
the minimizing quantity of (24). This is the term that cor-
responds to the real eigenvalue —0.5973. By assigning this
weight, we are able to emphasize the task of achieving op-
timal eigenvectors for the complex conjugate pair of eigen-
values, (—1.5+752). Note that this task is the most difficult
to achieve due to the complex nature of the corresponding
eigenvectors. The introduction of this weight factor only
affects (31), whose first 2 terms need to be multiplied by
this weight factor.

The algorithm yields

155 — % 1” 5] — sl = 0.0230  (42)
Tr(P®) = 0.0788 (43)

The output feedback gain that achieves these results is

—4.42776  5.95419  5.59306
Kf_<—4.15014 —0.71481 0.49365> (44)

With the above controller, the fourth closed-loop eigen-
value is placed at —4.7358. Note that the above results
concern the impaired system in the new state-coordinates
specified by (40). However, the controller remains the same
in the original state-coordinates, as discussed before. The
obtained eigenvectors transformed back to the original co-
ordinates of the impaired system are given by

Vo= (o =)

—0.0674 0.1424 + j0.0945
—0.9950 0.1834 — 50.1722
—0.0453 0.3519 + 50.5667
0.1136  0.1453 — j0.3729

(45)

where obviously the first column is the eigenvector that
corresponds to the real eigenvalue -0.5973, and the sec-

Nominal system: state response
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Figure 1: Nominal system. Closed-loop state response.

Impaired system: state response
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Figure 2: Impaired system. Closed-loop state response.
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ond column the eigenvector that corresponds to the com-
plex conjugate pair of eigenvalues (—1.5 £ j2). As we see,
the above eigenvectors are indeed very close to the desired
eigenvectors of (36), as suggested by (41)-(42) above. This
can also be shown by computing

ol —v1]? 0.0231 (46)

lvd — vs]|* = 0.0210 (47)

lof — wal|?

In Figures 1-2, we compare the state response of the
nominal system (32)-(35) with the output feedback ma-
trix K of (37) and the state response of the impaired
system of (38)-(39) with the output feedback matrix Ky
of (44). The initial conditon vector is chosen as Vi, =
(0.75 0.5 0.3 1)T. As we see, the algorithm is capa-
ble of recovering the performance of the nominal system.
This should be expected, since the eigenvectors of the im-
paired closed-loop system are assigned very close to the
eigenvectors of the nominal closed-loop system, as shown
in (46)-(47) above.

4. Conclusions

An eigenstructure assignment approach to control recon-
figuration for systems with output feedback has been pre-
sented. The emphasis has been on the recovery of the nom-
inal closed-loop performance, which is determined by the
closed-loop eigenvalues and eigenvectors. The overall de-
sign is robust with respect to uncertainties in the state-
space matrices of the impaired/reconfigured system. The
approach has been applied to an aircraft control example.
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