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Abstract 

This paper expands upon results of previous research 
dealing with the supervisory control of Petri net mod- 
eled discrete event systems that contain uncontrollable 
transitions. The concept of unobservable plant transi- 
tions is int,roduced here and incorporated into the con- 
troller design procedure. New conditions are developed 
which govern the existence of controllers for these prob- 
lems. Two procedures are presented for automatically 
generating controllers for plants that incorporate un- 
controllable and unobservable events. 

1 Introduction 

The representation of discrete event system by ordi- 
nary Petri nets [1,2] allows for the use of many pow- 
erful algebraic tools for the realization of supervisory 
controllers [3] for these systems. In particular, it is pos- 
sible to enforce a set of constra.ints on the plant state 
p, E Z f n , p p  2 0 of tjhe form 

LI”, 5 b (1) 

where L E ZncXm, b E Znc and Z is the set of integers. 
The inequality in (1) is rea.d, like all of the vector and 
matrix inequalities in this paper, with respect to each 
element on the corresponding left and right hand sides 
of the inequality. If all of the transitions within the 
plant Petri net are controllable and observable, then it 
has been shown ([4,5]) that (1) can be enforced by a 
Petri net controller which produces a place invariant 
(see [I, 21) on the closed loop plant-controller system. 
The Petri net incidence matrix, D, E PCxn,  of the 
controller is given by 

D, = -LD, (2) 

where D, E ZmXn is t*he incidence matrix of the plant. 
The initial marking of the controller, pco E Z7’c is 

~ c o  = b - L/~po (3) 

where ppo E +” is the initial marking of the plant. The 
incidence matrix, D, and marking, p, of the closed loop 
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plant-controller system a,re given by 

D = [  21 I ” = [  (4) 

Controllers constructed in this way are identical t,o the 
monitors introduced by Giua et al. [6] 

Some sets of constraints can not be enforced and thus 
appropriate controllers do not, exist. It is possible to 
enforce the set of constraints (1) iff 

The discussion above a,ssiimes that a.11 of the transi- 
tions in the Petri net plant will permit observation and 
can be inhibited if the controller deems it necessary. Li 
and Wonham [7,8] have ma.de important contributions 
involving the optimal (maximally permissive) transfor- 
mation of an original set of marking constraints into a 
set which accounts for possible uncontrollable actions 
within the plant net. The uncontrollable a.ctions cor- 
respond to tra,nsitions within the plant Petri net that 
the controller has no power to inhibit. In general, the 
fact that a constraint is linear does not imply that the 
maximally permissive version of this constraint that ac- 
counts for uncontrollable transitions will also be linear. 
However Li and Wonham have presented sufficient con- 
ditions dealing with the structure of the uncontrollable 
portion of the plant that indicate when this situation 
will occur. 

An alternative method for generating transformations 
of constraints to account for uncontrollable transitions 
was introduced in 191. This method is computation- 
ally more efficient t1ia.n that presented in [8], however 
it, always yields a linear transformation, and thus is 
not always optimal. Section 2 of this paper expands 
upon t,hese results by including the idea of unobserv- 
able transitions. Unobservable tx-ansitions provide no 
information to the controller when t,hey fire. When 
they are present in the plant, it is necessary to trans- 
form constraints in a similar manner as that required 
for uncont,rollable t,ransitions. These resultas as well as 
new conditions for the existence of valid controllers and 
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the necessity of certain transformation mechanics are 
presented. Section 3 proposes two procedures for auto- 
matically generating the transformations described in 
section 2. Concluding remarks appear in section 4. 

2 Linear Constraint Transformations Due to 
Uncontrollable and Unobservable Transitions 

Equation (2) in section 1 shows that it is possible t,o 
construct, the incidence matrix D, of a maximally per- 
missive Petri net controller as a linear combination of 
the rows of the incidence matrix of the plant. Neg- 
ative elements in De correspond t,o arcs from con- 
troller places to plant transitions. These arcs act t,o 
inhibit plant transitions when the corresponding con- 
troller places are empty, and thus they can only be 
applied to plant transitions which permit such exter- 
nal control. If, as in the previous section, we group all 
of the columns of D, which correspond to tra.nsitions 
which can not be controlled into the matrix D,,, then, 
in order for a set of constraints to be consistent with the 
uncontrollable transitions in the plant, it must be true 
that the matrix LD,, contains no positive elements, 
as these will correspond to controlling arcs when COE 

structing the controller as De = -LD,. An enforceable 
set, of constraints will satisfy 

It is also possible that, t>ransitions within the plant may 
be unobservable, i.e., they are defined on the Petri net 
graph because they represent the occurrence of a, real 
event, but these events are either impossible or too ex- 
pensive to detect directly. It is also possible, in t,he 
event of a sensor failure, that a transition might sud- 
denly become unobservable, forcing a redesign or adap- 
tation of the control law. The problem of handling 
unobservable transitions has been touched on in [lo]. 
Here the constraints placed on a controller due to im- 
observable transitions are more rigorously defined, and 
a systematic method of dealing with them is proposed. 
It is illegal for the controller to change its sta,te based 
upon the firing of an unobservable transition, because 
there is no direct way for the controller t,o be t.oltl that 
such a transition has fired. Both input and output arcs 
from the controller places are used to change the con- 
troller state based on the firings of plant transitions. 
Let the matrix Duo represent the incidence matrix of 
the unobservable portion of the Petri net. This matrix 
is coniposed of the columns of D, which correspond to 
unobservable transitions, just a,s D,,, is composed of 
the uncontrollable columns of D,. It is illegal for the 
controller De = -LD, to contain any arcs in the un- 
observable portion of the net., thus an enforceable set 
of constraints will satisfy 

LD,, = 0 ('7) 

Conditions (6) and ('7) indicate that it is possible t,o 
observe a transition that we can not inhibit, but it is 
illegal to directly inhibit a transition that we can not 
observe. 

Suppose, given a set of constraints Lp,  5 b, we con- 
struct the matrices LD,, and LD,, and observe that 
there are violations to conditions (6) and/or (7). Since 
the controller is made of a linear combination of the 
rows of D,, it is interesting to consider the situation 
where we use the addition of further rows from D,, in 
order to eliminate the positive elements of LD,,, and 
use rows from D , ,  to eliminate the nonzero elements 
of LD,,, i.e., if we are going to use a place invari- 
ant forming Petxi net controller, what additions to the 
constraints would we need to make in order to elimi- 
nate positive elements from LD,, and nonzero elements 
from LD,,,? What constraints, of the form L'pP 5 b', 
that can be enforced by an invariant-based controller, 
will also maintain the original constraint Lp,  5 b while 
not interfering with the uncontrollable/unobservable 
portions of the plant? The following lemma appeared 
in [SI. 

Lemma 1. 

Let It!, E Z"'x" satisfy Ripp 2 0 V p,. 
Let R, E Z71cXnc p.d. diagonal matrix 

(8) 
(9) 

If L'p, 5 b' where 

(10) 
(11) 

L' = RI $RgL 
h' = Ra(b+l)  - 1 

and 1 is an nC dirnensiorial vector of l's, then L p p  5 b. 

Lemma 1 shows a class of constraints, L'pp 5 h', which, 
if enforced, will imply that LiiT, 5 b are also enforced. 
The following lemnia is iised t o  show the conditions iin- 
der which a particular set of constraints ran be enforcd 
on a particular PetIi w t .  

Lemma 2. The constraint(s) L'p!) 5 b', where L' # 0 
and b' are defined 1 ) ~  ( 10) and ( I  I), can be enforced on 
a Petri net with initial marking i tpo iff 

0 5 R l i ~ p o  5 X z ( b  + 1 - L/lp0)  - 1 (12) 

Proof. Substituting L' and b' into (12) gives 0 5 h' - 
L'ppo which is equivalent t,o the condition L'ppo 5 b', 
which states t,ha.t t,he initial conditions of the phnt  
must, fall within the accepta.ble region of t,he con- 
straints. Clea,rly, if a. controller does exist,. then t,he 
initial conditions of the plant must not viola.te t.lie con- 
straints. Fiirt,herrnore, as shown in in [4- 61, if t,lie initial 
condkions lie within the acceptable region of t,he plant, 
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(inequality (5)) , a controller to mforce the cwntlitions 
c m  tit1 co~nputed with incidenw matrix D,. = -LID, 

0 and initial marking /A,-" = b' - L' /L~ ,~ , .  

Proposition 3 combines conditicms (6) and (7) with the 
conditions for creating a valid set of transformed con- 
straints in lemmas 1 and 2 to show how to construct a 
Pet'ri net controller t,o enforce the const,raints L p ,  5 b 
which does not involve inappropriate interference with 
the uncontrollable and unobservable port,ions of the 
plant net,. 

Propositfori, 3. Let a plant Petri net with incidence 
'natrix D, be given with a set of uncontrollable transi- 
tions described by D,,, and a set of unobservable tran- 
sitions described by Duo. A set of linear constraints on 
the net marking, Lp,  5 b, are to be imposed. Assume 
R1 and R2 meet (8) and (9) with RI + RzL # 0 and 
let 

[ LD,, LD,,, -LD,, Lppo c lPO - b - 1 1 R2 1 [ Dit, Duo -Duo 

< [ U  0 0 -11 
(13) 

D, = -(RI + RzL)D,  -L'Dp (14) 

Then the controller 

pco = R ~ ( b + l ) - l - ( R 1 + R 2 L ) ~ ~ ,  = b'-L'ppO (15) 

exists and causes all subsequent markings of the closed 
loop system (4) to satisfy the constraint Lpp 5 b with- 
out attempting to inhibit uncontrollable transitions 
and without detecting unobservable transitions. 

Proof. According to (2) and (3), equations (14) and 
(15) define a controller that enforces the constraint 
L'pp 5 b'. Lemma 1 shows that if assumptions (8) 
and (9) are met then a controller which enforces a 
particular constraint L ' y  5 b' will also enforce the 
constraint L p p  5 b. The fourth column of inequality 
(13) indicates that the condition in lemma 2 is satis- 
fied, thus the controller exists and the control law can 
be enforced. The first column of (13) indicates that 
L'D,,, 5 0, thus condition ( 6 )  is satisfied and no con- 
troller arcs are drawn to the uncontrollable transitions. 
The second and third columns of (13) indicate that 
L'D,, = 0, thus condition (7) is satisfied and no arcs 
are drawn between the controller places and the unob- 
servable plant transitions. 0 

Note that [ R1 R2 1,  which is used to describe the 
constraint transformation, mukiplies from the left, in 
(13), thus these matrices represent the use of rows from 
D,,, to eliminate positive elements from LD,,,, and the 
use of rows from D,,, to zero the elements of LD,,, as 
discussed above. 

3 Generating Constraint Transformations 

The usefulness of proposition 3 for specifying con- 
trollers to handle plants with uncontrollable and un- 
observable transitions lies in the ease in which the ma- 
trices RI and Ra, with the appropriate properties, can 
be generated. Section 3.1 shows how the information in 
the proposition can be converted into an integer linear 
programming for determining RI and Rz, and section 
3.2 proposes a scheme for determining valid RI and Rz 
values by performing matrix row operations. 

3.1 An Integer Linear Program 
It is possible to convert the conditions in proposition 
3 into an integer linear programming problem (ILP) in 
the standard form of 

minz(z) = 2 T c 

(16) 
r 2 0 (integer) s.t. 

We will consider only a single constraint on the system; 
multiple constraints can be handled individually and 
independently. Thus n,- = 1, L and RI are vectors, 
arid b and R2 are scalars. 

In order to satisfy condition (8) ,  we can specify that 
R1 2 0, since we know that p p  3 0. In fact, it is 
necessary to specify that all of the elements of RI are 
greater than or equal to zero if the markings of the 
plant places are unbounded or they are bounded brit 
the bound is not known. 

Condition (9) states that we want Rz > 0. In order 
to obtain variables that fit the conditions for 2 in (16), 
define 

Ri 1 R2 - 1 (17) 

Since R2 is an integer, Rh 2 0 implies that 

Substituting the new variable Rh into condition (6) 
yields 

RID,, + R~LD, , ,  5 -LD,, 

A vector of slack variables, R.7 > 0, is introduced in 
order to convert the inequality into an equality. 

> 0. 

RID,,- + RhLDLtc + R3 -LD,, 

R.7 is a column vector like R1 hut with dimension equal 
to the number of columns of D,, (the number of un- 
controllable transitions). 

Substituting R; into condition (7) gives 

RID,,  + RLLD,,, = -LDt,o 

which is already in the form of an equality, so an addi- 
t ional slack variable is unnecessary. 
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The new variable Rh is now Substituted into the con- 
dition given in lemma 2 which indicates whether the 
given constraint transformation can be implement,ed. 

and the ILP can now be defined as 

0 R 

Du, Duo 
R LDw LDuo = -L  [ D,,, 

s.t.{ [ I 0 
R 2 0 (integer) 

which is in the form of (16). 

D u o  ] 

(19) 

After solving (19), if the minimum of the objective 
function z* = z(R*)  is greater than b - Lpp0 then the 
problem can not be solved as there are no values of RI 
and Rz which will satisfy the condition in lemma 2. If 
the minimum is less than or equal to b - L p p o ,  then 
transform Ri back into R2 and generate the controller 
using the formulae in proposition 3. 

It is possible that there may be problems associated 
with this method of generating I31 and Rz. For a con- 
troller to exist,, we need the objective function of the 
ILP, z ( R )  5 b - Lppor however it not clear why we 
should attempt to minimize this function or what the 
result,s of such a,n attempt might be. In practical proh- 
lems, t,lie object,ive function may well be unbounded. 
In this case it is nwessary for the designer to phce an 
extra constraint, on the problem to bound the ohjec- 
tive function and oht,ain an answer. It is also possible 
tha.t the ILP mav yield the pathological transforma- 
tion L' = RI + RzL = 0, when t,here are other nonzero 
possibilities for L'. 

3.2 A Procedure Using Matrix Row Operations 
It is possible to obtain appropriate constraint transfor- 
mations by performing row operations on a matrix con- 
t,aining the uncontrollable and unobservable columns of 
the plant incidence matrix. The computational part> of 
this procedure involves little more than the integer tri- 
angularizat,ion of a matrix, and thus it is simpler to 
compute R1 and Rz using this method than by us- 
ing the ILP presented in the previous section. Before 
presenting the algorithm itself, the following tcrnis are 
clarified: 

D,, : An m x nu, matrix consisting of the columns of 
the plant incidence matrix D ,  that correspond 
to transitions that are uncontrollahle, but which 

may he observed. nl;, is the number of t,hese tran- 
sitions. 

D,,, : An rrt x n,, matrix consisting of the columns 
of D p  which are unobservable (just as defined in 
previous sections). 

In the discussions in previous sections, D,, may have 
included columns which were unobservable as well as 
uncontrollable, but here all of the columns of D,, are 
observable. Conditions (6) and (7) show that unobserv- 
ability implies stricter demands than uncontrollability, 
and in fact, any transition labeled as unobservable is 
also uncontrollable. D,,, is defined here as being strictly 
observable so that we can relax our requirements when 
dealing with this section of the matrix. Algorithm 1 
presents the procedure for determining R1 and Rz. 

Algorithm 1 (Constraint Transformation). 

Input : L E ZnCx"' , b  E nlac,~uc E nTnxnl8c, 

Duo E Z"'xnuo, p p o  E Z"' 
i f  (LD,, 5 0 and LD,,, = 0) then 

e l s e  
RI := On,xm,R2 := I n c x n c  

L e t  A f ( i , j )  be t h e  ( ~ , j ) ~ l l  element of A l .  
Zero a l l  p o s i t i v e  elements i n  t h e  LD,,, 

i f  M ( m  + 1 . .  .?n + nc, 1.  . n,,,) has any 
port ion o f  M using Algorithm 2 .  

pos i t ive  elements then 
FAIL 

end i f  
Zero t h e  LDlIo port ion of the  i V  matrix 

i f  M(nz + 1 . . . i n  + n ~ . n , , ~  + 1 . . . T I , , (  + 7 1 , ~ ~ )  

using Algorithm 3. 

has any nonzero elements then 
FAIL 

end i f  

RI := hf(ni+l . .  . ? r i + r I ~ . ? J l , ~ + ? ~ l , " + l .  ? I , , (  + 
nllo + m )  

1 . . . n,,, + nu, + 7n + n,) 
R2 := AI(?)? + 1 . . . T I ?  + 7 ~ ~ , 7 1 , , ~  + + 7 1 )  + 

end i f  
L' .= RI + R2L 
b' := Rz(b + 1) - 1 
i f  L'ppp0 > b' then 

end i f  
Output: L' and b'. 

FAIL 

As was done in section 3.1, we shall insure that, con- 
dition (8) is niet by making RI > 0. In terms of row 
operations, this means that ekmcnts in rows art. dim- 
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iriated strict,ly tjlirough addition, never through sub- 
traction, and that rows can be preniultiplied only by 
positive int,egers. The procedure for zeroing out, the el- 
mients in a colunin of iiiimhers which have the opposite 
sign of the "pivot" is given in Algorithm 4 

Alqovitlirn 2 (Zeroing of positive elem.en,ts in DIlc). 

I ~ ~ ~ ~ :  ~f E ~ ( n l + n , ) x ( n , , , + n , , ~ + m + n , )  

i := 1 
while ,i 5 riiin(nt,,, m,) 

if any A f ( i . .  . n?,, i )  < 0 then 

negative element. 
Find row j in A f ( i . .  .nil i )  with a 

Exchange rows i and j in A f  
Use Algorithm 4 to eliminate 

positive integers in 
Af(i . . .7n + ? E , ,  i )  

else if any A f ( m  + 1.. . m + n,, i )  > 0 then 
FAIL 

end if 
i : = i + l  

end while 
Output A l  and i 

Algorit,hm 1 insures that condition (9) is Inet, because 
the procedure for choosing the "pivot" elements never 
picks from the LD,,, and LD,,o portions of the A4 ma- 
trix. Combined with the zeroing procedure of Algo- 
rithm 4, these steps insure that the Rz portion of the 
Ad matrix is diagonal with strictly positive elements. 

Algorithms 2 and 3 (called by Algorit#hm 1) are used to 
nmke sure that the transformed constraints meet con- 
ditions (6) and (7). The feasibility check at  the end of 
Algorithm 1 directly tests the condition of lemma 2 to 
insure that the controller does exist. The instructions 
for picking positive or negative elements to act as pivots 
in the two main loops are left, specifically vague. Differ- 
ent methods of choosing the pivot will lead to different 
constraint transformations. It would be possible, for 
instance, to find a basis for all valid constraint trans- 
formations by repeating the procedures in Algorithm 1 
whenever there wa.s a choice of more t,lian one pivot for 
a given column. 

Even if all the possible pivots are used in Algorithm 
2, there may still be other RI and R2 values which 
yield trmsformed constraints that meet condition (6). 
Algorithm 2 forces all positive elements in the LD,,, 
portion of the matrix to go to zero. However condition 
(6) states that we need LD,, 5 0, so the question is, 
is it ever desirable or necessary to transform positive 
elements of LD,, into negative elements? Should Al- 
gorithm 2 incorporate this a.bility? At this time, this 
question can not be answered definitely, however tjhe 

following points, shrting witjh the lemma below, are 
presented to shed light on the question. 

Algorithm 3 (Zeroing of all elements in, D,,,,). 

Input: E Z(m+n=)x(n",+n",+mSn.) and i 

while i _< min(ntlC + nuo, m) 
if any A f ( i . .  . m , i )  < 0 then 

Find row j in hl(l:. . . m, i )  which 
contains a negative element. 

Exchange rows i and j of 
k : =  1 

k := 0 
else 

end if 
if any M ( i , .  . m,, i )  > 0 then 

Find row j in A I ( i . .  . m, z) which 
contains a positive element. 

Exchange rows i + k  and j of A4 
Use Algorithm 4 and pivot M ( i  + k . i )  

to eliminate all negative integers 
in M ( i  + k . . . m + T I , ,  i )  

end if 
if k = 1 then 

Eliminate positive integers in 
A l ( i  . . . nL + U,,, i )  with pivot M ( i ,  1:) 

end if 
if any M(m + 1.. .7n + n,, i )  # 0 then 
FAIL 

end if 
i : = i + l  

end while 
output M 

Lemma 4 .  A single controller place can possess either 
an input or an output arc (or neither) to any given 
plant transition, hut it will never contain both, i.e., 
controllers constructed according to the method out- 
lined in section 1 contain no self-loops. 

Proof. The incidence matrix of the invariant forming 
controller for establishing the constraint L p p  5 h is de- 
fined by D, = -LD,. Positive elements in D, refer to 
arcs from plant t,ransitions to the controller, and neg- 
ative elements refer to arcs from the controller to the 
phnt t,ransitions. There are no allowances for self loops 
in this controller construction method. The matrix 0: 
consists of the positive elements in D,, D; consists of 
the negative, and all other elements are zero, i.e., there 
are nevcr any cancellations between D: and 0; used 

U in forniing D,. See [5]. 

A positive Plenwnt in the matrix LD,, means that the 
controllcr would draw an arc to a transition in the un- 
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Algorithm 4 (Column Zerorng). 

and pivot position ( p , j ) .  
Input: E +(m+n~)x(n”,+n,,,+lnfn,) 

i : = p +  1 
while i 5 m + n, 

if M ( Z , j ) M ( p , j )  < 0 then 
while M ( i , j )  # 0 

if IM(P,j)l > IM(i,j)l then 
d := floor ( - M ( p , j ) / M ( i , j ) )  
if ( m ~ d ( ~ ( p , ~ ) , ~ f ( ~ , . ~ ) )  = 0) 

end if 
M ( p ,  .) := M ( p ,  .) + d A f ( i ,  .) 

d := floor (-M(i,j)/Af(p,j)) 
M ( i ,  .) := M ( i ,  .) + dAd(p ,  .) 

then d := d - 1 

else 

end if 
end while 

end if 
i : = i + l  

end while 
Output M 

controllable portion of the plant. Lemma 4 tells us that 
this elenient is not the result of battling input and out- 
put arcs. The controller wishes to output to this tran- 
sition, and it has no reason to receive input from this 
transition. Algorithm 2 would then be used to elimi- 
nate t,he controller’s interaction with the transition all 
together. But what would happen if row operations 
were used to change this output transition of the con- 
troller into an input transition? The aut,hors know of 
no situation in which this transformation is necessary 
or even desirable, however no proof exists at tjhis t,irrie 
to verify this observation. 

4 Conclusions 

This paper represents ongoing work in the formulation 
arid formalization of a discrete event system control de- 
sign procedure that relies on simple a,nd efficient linear 
algebraic techniques. A systemat,ic method for deal- 
ing with unobservable, as well as uncontrollable, plant 
transitions has been presented in section 2 which in- 
cluded new conditions dictating whether or not a con- 
troller exists for a particular set of transformed con- 
straints. The usefulriess and necessity of transforming 
both the right and left hand sides of the set of plant 
constraints have been demonstrated, and two new pro- 
cedures for automatically generating valid constraint 
transformations have been presented. 

An importa.nt question for future resmrch in this area 

deals with the optimality of controllers that are pro- 
duced using the procedures described her?. Rerent 
work shows a possible relationship between the unique- 
ness of the controller and the optimality of the control 
law. Further work is needed in this area before any 
claims Can he made. 
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