
Proceedings of the American Control Conference 
Albuquerque, New Mexico J u n e  1997 
0-7803-3832-41971$10.00 0 1997 AACC 

Characterizatioin of Feasible Controls for Petri Nets with Unobservable 
nansit ions 

John 0. Moody and Panos J. Antsaklis 
Department of Electrical Engineering 

University of Notre Dame, Notre Dame, IN 46556 USA 
j moody @maddog. ee. nd. edu 

Abstract 
Supervisory control of discrete event systems modeled 

by Petri nets involves enforcing a set of constraints on the 
state, or marking, of the plant Petri net. Unobservable 
transitions within the plant may force the control designer 
to alter these original constraints to account for the inabil- 
ity of the supervisor to act when one of these transitions 
fires. A method for characterizing the constraints and the 
associated controllers which can be realized in the face of 
unobservable transitions is presented in this paper. While 
these are preliminary results, the characterization can be 
used by the designer to determine which linear constraints 
can be implemented without change, which constraints 
need to be transformed, and how those constraints should 
be transformed. 

1. Introduction 
The representation of discrete event systems by ordi- 

nary Petri nets [9,11] allows for the use of many power- 
ful algebraic tools for the realization of supervisory con- 
trollers [lo] for these systems. In particular, it is pos- 
sible to enforce a set of constraints on the pla.nt state 
p p  E H", p p  2 0 of the form 

- b p  5 b (1) 

where L E Z""", b E Znc and 7Z is the set, of integers. 
The inequality in (1) is read, like all of the vector and 
matrix inequalities in this paper, with respect to each el- 
ement on the corresponding left and right hand sides of 
the inequality. If all of the transitions within the plant 
Petri net are controllable and observable, then it has been 
shown ([8, 121) that  (1) can be enforced by a Petri net 
controller which produces a place invariant (see 19,111) on 
the closed loop plant-controller system. 

The incidence matrix of the closed loop system, D, 
and its marking, p, are given by 

where Dp E Zmxn i s  the incidence matrix of the plant, 
D, E ZnCxn is the incidence matrix of the controller, and 
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pc E Znc is its marking. The controller and its initial 
marking pco is calculated using 

D, = -LOp (3)  

(4) P c o  = b - LPpo 

where ppo E Z" is the initial marking of the plant. Con- 
trollers constructed in this way are identical to the moni- 
tors introduced by Giua e t  al. [Z] 

Some sets of constraints can not be enforced and thus 
appropriate controllers do not exist. It is possible to en- 
force the set of constraints (1) iff 

( 5 )  

The discussion above assumes that all of the transi- 
tions in the Petri net plant will permit observation and can 
be inhibited if the controller deems it necessary. Li and 
Wonham [3] have made important contributions involv- 
ing the optimal (maximally permissive) transformation of 
an original set of marking constraints into a set which 
accounts for possible uncontrollable actions (transitions) 
within the plant net. An alternative method for generat- 
ing transformations of constraints to  account for uncon- 
trollable transitions was introduced in [ 6 ] .  This method is 
computationally more efficient than that presented in [3], 
however it always yields a linear transformation, and thus 
is not always optimal. 

The concept of unobservable transitions is introduced 
into this framework in [5]. Unobservable transitions are 
defined on the Petri net graph because they represent the 
occurrence of a real event, but these events are either im- 
possible or too expensive to detect directly. It is also pos- 
sible, in the event of a sensor failure, that  a transition 
might suddenly become unobservable, forcing a redesign 
or adaptation of the control law. It is illegal for the con- 
troller to change its state based on the firing of an  un- 
observable transition, because there is no direct way for 
the controller to be told that such a transition has fired. 
Both input and output arcs from the controller places are 
used to change the controller state based on the firings of 
plant transitions, thus, when the entire closed loop sys- 
tem is to be represented by a Petri net, it is illegal for the 
places which represent the controller to draw arcs to any 
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of the unobservable transitions. This means that a Petri 
net controller can not inhibit the firing of an unobservable 
transition. In practice this is a reasonable restriction: it 
is uncommon in closed loop control to attempt to use an 
actuator for which the controller can receive no feedback. 
Thus, in this paper, unobservable transitions are assumed 
to be uncontrollable as well. 

Section 2. of this paper presents a procedure for char- 
acterizing all of the linear constraints that may be realized 
on a Petri net with unobservable transitions. The char- 
acterization allows for the designer to determine, often 
times by inspection, which linear constraints can be real- 
ized, which need to be transformed, and how those con- 
straints need to  be transformed. An example is presented 
in section 3. ,  and concluding remarks appear in section 4.. 

2. Characterization of Feasible 

It is illegal for a controller to change its state based 
on the firing of an unobservable transition in the plant. 
This restriction means that the realization of certain con- 
trol goals must be adapted to account for unobservabil- 
ity. One method for realizing this adaptation is to trans- 
form the original constraints on the plant such that the 
new constraints would not cause a controller to use these 
transitions. Computational techniques for adapting plant 
constraints in the face of unobservable transitions have 
been described in [5]. Section 2.1. provides a method for 
characterizing all linear constraints which can be legally 
enforced on a system with unobservable transitions, and 
section 2.2. shows how this characterization can be used 
to create legal controllers for realizing particular desired 
constraints. 

2.1. Characterization of Linear Con- 
straint Transformations 

Equation (3)  shows that it is possible to construct tlhe 
incidence matrix D, of a maximally permissive Petri net 
controller as a linear combination of the rows of the in- 
cidence matrix of the plant. Non zero elements in the 
columns of De correspond to transition firings for which 
the controller will change its own internal state and, for 
negative elements in D,, possibly introduce inhibitions on 
the plant's behavior. Both input and output arcs from t h e  
controller places are used to change the controller state 
based on the firings of plant transitions. Let the matrix 
Duo represent the incidence matrix of the unobservable 
portion of the Petri net. This matrix is composed of the 
columns of Dp which correspond to unobservable transi- 
tions. It is illegal for the controller D, = -LD, to contain 
any arcs in the unobservable portion of the net, thus an 
enforceable set of constraints will satisfy 

LD,, = 0 (6) 

Any L which satisfies (6) will lie within the kernel of 
Duo. Let X satisfy 

XD,, = 0 (7 )  

where X is an integer matrix with dimension (m - 
rank Duo) x m. The rows of X form a linearly indepen- 
dent basis for the kernel of D,, ( X  is full rank). The 
process of finding X is equivalent to finding the minimal 
support place invariants (an algorithm appears in 141) of 
the unobservable portion of the plant Petri net. All real- 
izable constraints must lie within the basis described by 
the rows of X ,  and thus can be formed as linear combi- 
nations of these rows. Therefore every feasible constraint 
can be described by k T X  where k is an integer vector with 
dimension (m-  rank Duo). In general, the coefficient ma- 
trix of any set of feasible constraints L' E ZIncXm can be 
written 

L' = K X  (8) 

where K E Zncx(nL-rank Equation (3)  can then be 
used to calculate the incidence matrix of the controllers 
which will enforce these constraints: 

2.2. Realizing Constraint Transfor 
tions 

Suppose we :have a set of constraints L p  5 b such 
that LD,, # 0. It is necessary to create new constraint 
matrices (L ' ,  b') with two properties. 

1. L'D,, = 0 

Property 1 is necessary to insure that the new controller 
will not utilize the unobservable transitions. Section 2.1. 
shows how to characterize all such matrices L'. Property 
2 indicates that the new constraints must be at least as 
restrictive as the original ones. We can't have the new 
constraints allowing states that  we originally wanted to 
prohibit. In order to deal with this condition, the following 
lemma from [6] i s  used. 

Lemma 1. 

Let RI c: Zncxm satisfy Rlpp 2 0 V p p .  (10) 
Let Rz E iZncxnc  p.d.d. (11) 

Where p.d.d. 
matrix. If L'pp 5; b' where 

means Rz is a positive definite diagonal 

and P is an ne dimensional vector of l's, then L p p  5 b. 
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Thus to do the transformation, it is necessary to de- 
termine values for the matrices RI and Rz which meet 
assumptions (10) and (11). Computational techniques for 
determining these matrices are given in [5], however it is 
possible for a designer to  determine the values of RI and 
Rz by using the kernel of Duo. Combining equations (8) 
and (12) we see that 

Z I  

pz 
p3 
p4 
DX 

L' = KX 1 RI + R2L 

I "  

S-380 robot aligns the crank shaft. 
S-380 picks up piston rod and positions it.  
M-1 robot picks up the piston pulling tool. 
M-1 Dositions Diston rod and returns uulline tool. 

The designer should premultiply each constraint in L by 
some positive integer (which will determine the diagonal 
elements in Rz) and add new positive coefficients (which 
will determine RI) such that the new constraint is a linear 
combination of the rows of X .  This process will yield the 
L' matrix, and b' can be calculated using Rz and equation 
(13). 

c1 
c2 

c3 
c4 
c6 

3. Example: Piston Rod Robotic 
Assembly Cell 

This example of a piston rod assembly cell is borrowed 
from chapter 8 of [I] and the derivation of the controller 
used is given in [7]. The Petri net model of the plant 
and its controller is shown in Fig. 1. Table 1 details 
the meaning of each place in the net. A token in any of 
the Petri net places signifies that  the action or condition 
specified in Table 1 is taking place. The piston rod assem- 
bly is performed by two robots, and the primary feedback 
mechanism is a vision system. An S-380 robot is used to 
prepare and align the parts for assembly, and an M-1 robot 
installs the cap on the piston rod. The specific duties of 
each robot are described below. 

S-980: The S-380 robot remains idle until a new en- 
gine block and crank shaft become available. This event 
is represented by the appearance of a token in place p l  
in Fig. 1. The firing of transition tl indicates the start 
of the process. At this time the S-380 moves the crank 
shaft into alignment and brings a new piston rod into the 
work area. These actions are represented by places pz and 
p3. The firing of transition t 3  indicates that  the S-380 has 
completed its duties for the particular engine block. 

M - I :  The M-1 robot starts its duties by picking up a 
piston pulling tool (place p 4 )  and, assuming the S-380 has 
brought a piston rod into position, pulls the piston rod 
into the engine block and replaces the pulling tool (place 
p 5 ) .  The M-1 then picks up a cap and secures it to the 
piston rod using two bolts (places p6 and p7) .  The firing 
of transition t 8  indicates that  the M-l has successfully 
installed the cap and the engine block has been conveyed 
out of the work space. At this time work can begin on a 
new engine block. 

The incidence matrix, Dp,  and initial marking, pPo, of 

S-380 robot is available for work. 
M-l robot is available for work. 
S-380 robot has completed preparations. 
A piston rod is available. 
The Diston Dulling tool is available. 

Plant Places 
m 1 Work area clear. engine block. crank shaft readv. 

, 1 Y  , " J 

1 cg I A cap is available. 
1 c7 I Two nuts are available. I 

Table 1: Place descriptions for the piston rod assembly 
Petri net of Fig. 1. 

the plant are given by 

D, = 

- 1 0 0 0 0 0 0 1  
1 - 1  0 0  0 0 0 0 
0 1 - 1 0  0 0 0 0 
0 0 0 1 - 1  0 0 0 
0 0 0 0  1 - 1  0 0 
0 0 0 0  0 1 - 1  0 
0 0 0 0  0 0 1 - 1  

p p 0 = [ 1  0 0 0 0 0 o I T  

It is necessary to insure that the robots' activities are 
synchronized and that the finite resources, including the 
robots themselves, are properly accounted for. The fol- 
lowing constraints are placed on the plant. 

The derivation of these constraints can be found in [7]. 
Each of these constraints yields an individual place in the 
controller. A description of the duties of each of the con- 
trol places is given in table 1. The controller was generated 
by an application of the technique described in section 1.. 
The incidence matrix and initial marking of the controller 
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Figure 1: The assembly cell model with Petri net con- 

1 I 0 0 0 1 1 1 1  

1 0 0 0 0 0 0  
0 1 0  0 0 0 0 
0 0 1 0  0 0 0 

\-A 

triller. 

are 

De = 

0 0 0  
0 0 0  

-1 0 0 
1 -1 0 
0 1 - 1  

-1 0 1  0 0 0 0 0 -  
0 0 0 - 1  0 0 0 1  
0 0 1  0 - 1 0 0 0  
0 - 1 1  0 0 0 0 0  
0 0 0 - 1  0 1 0 0  
0 0 0  0 - 1 0 1 0  
0 0 0  0 - 1 0 0 1  - 

. .  
The piston rod assembly cell presented in [l] uses a vi- 

sion system to provide sensory feedback to the controller. 
Suppose that an obstruction has appeared between the 
camera and the work space, partially obscuring the view 
of the M-1 robot's area. The controller can still observe 
the M-1 robot starting and completing its task, but it 
can no longer track the robot while it performs its du- 
ties. Transitions t5, t 6 ,  and t7 have become unobservable. 
This means that there should be no arcs from any of these 
transitions to  the controller places, however it can be seen 
from (16) that the current version of the controller inci- 
dence matrix contains nonzero elements in columns five 
through seven. Let Duo be a matrix composed of the 

unobservable columns of Dp,  in this example Duo is com- 
posed of the fifth, sixth, and seventh columns of D p .  In 
order to compensate for the sensor failure, we will first 
find the kernel of Duo. There are seven rows in Duo, and 
the rank of the matrix is three. This indicates that the 
kernel X will have 7 - 4 = 3 rows. 

r o  0 0 1  

- - 0  

x ,i O v O 1 1 ,  
D U O  

Rows one through three of X tell us that  constraints in- 
volving only p l l  p,zl and 1-13 are independent and will not 
have to be transformed in order to meet the unobservabil- 
ity requirements. However, row four of X indicates that  
the Coefficients on p4,p5,per and 117 must be equal. It is 
now a simple matter to rewrite the set of constraints (15) 
in order to meet this requirement: 

1-12 + p3 5 2 3 Unchanged 
p4 + b15 + p6 + p7 5 1 + Unchanged 
[Ll + pZ + p3 + 115 + 116 + p7 5 1 * 

(17) 
1.11 + 112 + b13 + P4 + p5 + P6 + p 7  < - 1 

p3 5 1 3 IJnchanged 
Y 4 + P 5 5  ~ * P 4 + b 1 5 + p 6 + 1 1 7 <  1 
Y5 + b16 <. 1 * b14 + p5 + p6 + p7 7 1 
b15 + P6 + 117 5 1 * b1Lq 't p5 + p6 7 b17 < - 1 

In all cases, each transformed constraint can be realized 
by simple additions of new coefficients to the original con- 
straints in (15). This insures that the conditions of lemma 
1 are obeyed: the new constraints will not allow states 
prohibited by the originals. 

The constraints in (17) are now used to generate a 
reconfigured controller. The incidence matrix and initial 
marking are 

De = 

-1 0 1  0 0 0 0 0  
0 0 0 - 1 0 0 0 1  
0 0 1 - l o o 0 0  
0 - 1 1  0 0 0 0 0  
0 0 0 - 1 0 0 0 1  
0 0 0 - 1 0 0 0 1  
0 0 0 - 1 0 0 0 1  
p c o = [ l  1 0 1 1 1 1 I T  

Observe how the fifth through seventh columns of D, have 
been completely zeroed. The reconfigured control is shown 
in figure 2. 

Note that the last three transformed constraints in 
(17) are identical, however all constraints will be imple- 
mented separately in the reconfigured version of the con- 
troller. This is because the different controller places have 
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different interpretations (see table 1) and because we in- 
tend to  transform the controller arcs back to their orig- 
inal configurations once the sensor obstruction has been 
removed. 

P’ 

t l  

Figure 2: The assembly cell model with a controller that  
accounts for a sensor loss making transitions t 5 ,  t 6  and t 7  
unobservable. 

4. Conclusions 
This paper is part of an ongoing project in the formu- 

lation and formalization of a discrete event system control 
design procedure that relies on simple and efficient linear 
algebraic techniques. A method for characterizing the set 
of all realizable linear constraints in the face of unobserv- 
able transitions within the plant has been presented. The 
characterization of feasible constraints includes enough in- 
formation so that it is often possible for the control de- 
signer to  determine appropriate transformations of exist- 
ing constraints simply by inspection. 
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