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Intelligent control describes the discipline where control methods are developed that attempt
to emulate important characteristics of human intelligence. These characteristics include
adaptation and learning, planning under large uncertainty and coping with large amounts of
data. Today, the area of intelligent control tends to encompass everything that is not
characterized as conventional control; it has, however, shifting boundaries and what is called
"intelligent control" today, will probably be called "control" tomorrow. The main difficulty in
specifying exactly what is meant by the term Intelligent control stems from the fact that there
is no agreed upon definition of human intelligence and intelligent behavior and the centuries
old debate of what constitutes intelligence is still continuing, nowadays among educators,
psychologists, computer scientists and engineers. Apparently the term Intelligent control was
coined in the 70's by K.S. Fu. Reference 1 is the main source of the several descriptions of
intelligent control and its attributes discussed in this article.

There are a number of areas related to the area of Intelligent control. Intelligent control is
interdisciplinary as it combines and extends theories and methods from areas such as control,
computer science and operations research. It uses theories from mathematics and seeks
inspiration and ideas from biological systems. Intelligent control methodologies are being
applied to robotics and automation, communications, manufacturing, traffic control, to
mention but a few application areas. Neural networks, fuzzy control, genetic algorithms,
planning systems, expert systems, hybrid systems are all areas where related work is taking
place. The areas of computer science and in particular artificial intelligence provide
knowledge representation ideas, methodologies and tools such as semantic networks, frames,
reasoning techniques and computer languages such as prolog. Concepts and algorithms
developed in the areas of adaptive control and machine learning help intelligent controllers to
adapt and learn. Advances in sensors, actuators, computation technology and communication
networks help provide the necessary for implementation Intelligent control hardware.
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In the following, fundamental ideas of Intelligent control are emphasized, rather than
particular methodologies such as fuzzy control; note that several related areas are described at
length elsewhere in this encyclopedia. Fundamental ideas and characteristics of intelligent
systems are introduced in the section on Foundations of Intelligent Control, and a historical
perspective is brought in in the section on Intelligent Learning Control where the role of
machine learning is discussed. The quest for machines that exhibit higher autonomy has been
the driving force in the development of control systems over the centuries and this is
discussed in the section on Intelligent Control for High Autonomy Systems. Hybrid Systems
that contain both continuous and digital components are also briefly discussed, as they are
central in Intelligent control.

FOUNDATIONS OF INTELLIGENT CONTROL

The term "intelligent control" has come to mean, particularly to those outside the control area,
some form of control using fuzzy and/or neural network methodologies. Intelligent control,
however does not restrict itself only to those methodologies. In fact, according to some
definitions of intelligent control not all neural/fuzzy controllers would be considered
intelligent. The fact is that there are problems of control today, that cannot be formulated and
studied in the conventional differential/difference equation mathematical framework using
"conventional (or traditional) control" methodologies; these methodologies were developed in
the past decades to control dynamical systems. To address these problems in a systematic
way, a number of methods have been developed in recent years that are collectively known as
"intelligent control" methodologies. There are significant differences between conventional
and intelligent control and some of them are described below. It is worth remembering at this
point that intelligent control uses conventional control methods to solve "lower level" control
problems and that conventional control is included in the area of intelligent control. In
summary, intelligent control attempts to build upon and enhance the conventional control
methodologies to solve new challenging control problems.

Conventional and Intelligent Control

The word control in "intelligent control" has different, more general meaning than the word
control in "conventional control". First, the processes of interest are more general and may be
described, for example by either discrete event system models or differential/difference
equation models or both. This has led to the development of theories for hybrid control
systems, which study the control of continuous-state dynamic processes by discrete-state
controllers. In addition to the more general processes considered in intelligent control, the
control objectives can also be more general. For example, "replace part A in satellite" can be
the general task for the controller of a space robot arm; this is then decomposed into a number
of subtasks, several of which may include for instance "follow a particular trajectory", which
may be a problem that can be solved by conventional control methodologies. To attain such
control goals for complex systems over a period of time, the controller has to cope with
significant uncertainty that fixed feedback robust controllers or adaptive controllers cannot
deal with. Since the goals are to be attained under large uncertainty, fault diagnosis and
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control reconfiguration, adaptation and learning are important considerations in intelligent
controllers. It is also clear that task planning is an important area in intelligent control design.
So the control problem in intelligent control is an enhanced version of the problem in
conventional control. It is much more ambitious and general. It is not surprising then that
these increased control demands require methods that are not typically used in conventional
control. The area of intelligent control is in fact interdisciplinary, and it attempts to combine
and extend theories and methods from areas such as control, computer science and operations
research to attain demanding control goals in complex systems.

Note that the theories and methodologies from the areas of operations research and computer
science cannot, in general be used directly to solve control problems, as they were developed
to address different needs; they must first be enhanced and new methodologies need to be
developed in combination with conventional control methodologies, before controllers for
very complex dynamical systems can be designed in systematic ways. Also traditional control
concepts such as stability may have to be redefined when, for example, the process to be
controlled is described by discrete event system models; and this issue is being addressed in
the literature. Concepts such as reachability and deadlock developed in operations research
and computer science are useful in intelligent control, when studying planning systems.
Rigorous mathematical frameworks, based for example on predicate calculus are being used
to study such questions. However, in order to address control issues, these mathematical
frameworks may not be convenient and they must be enhanced or new ones must be
developed to appropriately address these problems. This is not surprising as the techniques
from computer science and operations research are primarily analysis tools developed for non
real-time systems, while in control, synthesis techniques to design real-time feedback control
laws for dynamic systems are mainly of interest. In view of this discussion, it should be clear
that intelligent control research, which is mainly driven by applications has a very important
and challenging theoretical component. Significant theoretical strides must be made to address
the open questions. The problems are nontrivial, but the pay-off is very high indeed.

As it was mentioned above, the word control in intelligent control has a more general
meaning than in conventional control; in fact it is closer to the way the term control is used in
every day language. Because intelligent control addresses more general control problems that
also include the problems addressed by conventional control, it is rather difficult to come up
with meaningful bench mark examples. Intelligent control can address control problems that
cannot be formulated in the language of conventional control. To illustrate, in a rolling steel
mill, for example, while conventional controllers may include the speed (rpm) regulators of
the steel rollers, in the intelligent control framework one may include in addition, fault
diagnosis and alarm systems; and perhaps the problem of deciding on the set points of the
regulators, that are based on the sequence of orders processed, selected based on economic
decisions, maintenance schedules, availability of machines etc.. All these factors have to be
considered as they play a role in controlling the whole production process which is really the
overall goal.

Another difference between intelligent and conventional control is in the separation between
controller and the system to be controlled. In conventional control the system to be controlled,
called the plant, typically is separate and distinct from the controller. The controller is
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designed by the control designer, while the plant is in general given and cannot be changed;
note that recent attempts to coordinate system design and control have been reported in areas
such as space structures and chemical processes, as many times certain design changes lead to
systems that are much easier to control. In intelligent control problems, which are most often
complex and challenging, there may not be a clear separation of the plant and the controller;
the control laws may be imbedded and be part of the system to be controlled. This opens new
opportunities and challenges as it may be possible to affect the design of processes in a more
systematic way.

Areas relevant to intelligent control, in addition to conventional control include hybrid
systems, planning and knowledge based systems, machine learning, search algorithms, fault
diagnosis and control reconfiguration, predicate logic, automata, Petri nets, neural nets and
fuzzy logic. In addition, in order to control complex systems, one has to deal effectively with
the computational complexity issue; this has been in the periphery of the interests of the
researchers in conventional control, but it is clear that computational complexity is a central
issue whenever one attempts to control complex systems.

Intelligence And Intelligent Control

It is appropriate at this point to briefly comment on the meaning of the word intelligent in
"intelligent control". Note that the precise definition of "intelligence" has been eluding
mankind for thousands of years. More recently, this issue has been addressed by disciplines
such as psychology, philosophy, biology and of course by artificial intelligence (AI); note that
AI is defined to be the study of mental faculties through the use of computational models. No
consensus has emerged as yet of what constitutes intelligence. The controversy surrounding
the widely used IQ tests, also points to the fact that we are well away from having understood
these issues. In this article we introduce and discuss several characterizations of intelligent
systems that appear to be useful when attempting to address complex control problems.

Intelligent controllers can be seen as machines which emulate human mental faculties such as
adaptation and learning, planning under large uncertainty, coping with large amounts of data
etc. in order to effectively control complex processes; and this is the justification for the use of
the term intelligent in intelligent control, since these mental faculties are considered to be
important attributes of human intelligence. An alternative term, that is further discussed below
in this article, is "autonomous (intelligent) control"; it emphasizes the fact that an intelligent
controller typically aims to attain higher degrees of autonomy in accomplishing and even
setting control goals, rather than stressing the (intelligent) methodology that achieves those
goals. We should keep in mind that "intelligent control" is only a name that appears to be
useful today. In the same way the "modern control" of the 60's has now become "conventional
(or traditional) control", as it has become part of the mainstream, what is called intelligent
control today may be called just "control" in the not so distant future. What is more important
than the terminology used are the concepts and the methodology, and whether or not the
control area and intelligent control will be able to meet the ever increasing control needs of
our technological society.

Defining Intelligent Control Systems
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Intelligent systems can be characterized in a number of ways and along a number of
dimensions. There are certain attributes of intelligent systems, that are of particular interest in
the control of systems; see reference 1. We begin with a general characterization of intelligent
systems: An intelligent system has the ability to act appropriately in an uncertain
environment, where an appropriate action is that which increases the probability of success,
and success is the achievement of behavioral subgoals that support the system's ultimate goal.
In order for a man-made intelligent system to act appropriately, it may emulate functions of
living creatures and ultimately human mental faculties.

An intelligent system can be characterized along a number of dimensions. There are degrees
or levels of intelligence that can be measured along the various dimensions of intelligence. At
a minimum, intelligence requires the ability to sense the environment, to make decisions and
to control action. Higher levels of intelligence may include the ability to recognize objects and
events, to represent knowledge in a world model, and to reason about and plan for the future.
In advanced forms, intelligence provides the capacity to perceive and understand, to choose
wisely, and to act successfully under a large variety of circumstances so as to survive and
prosper in a complex and often hostile environment. Intelligence can be observed to grow and
evolve, both through growth in computational power and through accumulation of knowledge
of how to sense, decide and act in a complex and changing world.

The above characterization of an intelligent system is rather general. According to this, a great
number of systems can be considered intelligent. In fact, according to this definition even a
thermostat may be considered to be an intelligent system, although of low level of
intelligence. It is common however to call a system intelligent when in fact it has a rather high
level of intelligence. There exist a number of alternative but related definitions of intelligent
systems which emphasize systems with high degrees of intelligence. For example, the
following definition emphasizes the fact that the system in question processes information,
and it focuses on man-made systems and intelligent machines: Machine intelligence is the
process of analyzing, organizing and converting data into knowledge; where (machine)
knowledge is defined to be the structured information acquired and applied to remove
ignorance or uncertainty about a specific task pertaining to the intelligent machine. This
definition relates to the principle of increasing precision with decreasing intelligence of
Saridis.

Next, an intelligent system can be characterized by its ability to dynamically assign subgoals
and control actions in an internal or autonomous fashion: Many adaptive or learning control
systems can be thought of as designing a control law to meet well-defined control objectives.
This activity represents the system's attempt to organize or order its "knowledge" of its own
dynamical behavior, so to meet a control objective. The organization of knowledge can be
seen as one important attribute of intelligence. If this organization is done autonomously by
the system, then intelligence becomes a property of the system, rather than of the system's
designer. This implies that systems which autonomously (self)-organize controllers with
respect to an internally realized organizational principle are intelligent control systems.

A procedural characterization of intelligent systems is given next: Intelligence is a property of
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the system which emerges when the procedures of focusing attention, combinatorial search,
and generalization are applied to the input information in order to produce the output. One can
easily deduce that once a string of the above procedures is defined, the other levels of
resolution of the structure of intelligence are growing as a result of the recursion. Having only
one level structure leads to a rudimentary intelligence that is implicit in the thermostat, or to a
variable-structure sliding mode controller.

Control and Intelligent Systems

The concepts of intelligence and control are closely related and the term "Intelligent control"
has a unique and distinguishable meaning. An intelligent system must define and use goals.
Control is then required to move the system to these goals and to define such goals.
Consequently, any intelligent system will be a control system. Conversely, intelligence is
necessary to provide desirable functioning of systems under changing conditions, and it is
necessary to achieve a high degree of autonomous behavior in a control system. Since control
is an essential part of any intelligent system, the term "intelligent control systems" is
sometimes used in engineering literature instead of "intelligent systems" or "intelligent
machines". The term "intelligent control system" simply stresses the control aspect of the
intelligent system.

Below, one more alternative characterization of intelligent (control) systems is included.
According to this view, a control system consists of data structures or objects (the plant
models and the control goals) and processing units or methods (the control laws): An
intelligent control system is designed so that it can autonomously achieve a high level goal,
while its components, control goals, plant models and control laws are not completely
defined, either because they were not known at the design time or because they changed
unexpectedly.

Characteristics or Dimensions of Intelligent Systems.

There are several essential properties present in different degrees in intelligent systems. One
can perceive them as intelligent system characteristics or dimensions along which different
degrees or levels of intelligence can be measured. Below we discuss three such characteristics
that appear to be rather fundamental in intelligent control systems.

Adaptation and Learning: The ability to adapt to changing conditions is necessary in an
intelligent system. Although adaptation does not necessarily require the ability to learn, for
systems to be able to adapt to a wide variety of unexpected changes learning is essential. So
the ability to learn is an important characteristic of (highly) intelligent systems.

Autonomy and Intelligence: Autonomy in setting and achieving goals is an important
characteristic of intelligent control systems. When a system has the ability to act appropriately
in an uncertain environment for extended periods of time without external intervention it is
considered to be highly autonomous. There are degrees of autonomy; an adaptive control
system can be considered as a system of higher autonomy than a control system with fixed
controllers, as it can cope with greater uncertainty than a fixed feedback controller. Although
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for low autonomy no intelligence (or "low" intelligence) is necessary, for high degrees of
autonomy, intelligence in the system (or "high" degrees of intelligence) is essential.

Structures and Hierarchies: In order to cope with complexity, an intelligent system must have
an appropriate functional architecture or structure for efficient analysis and evaluation of
control strategies. This structure should provide a mechanism to build levels of abstraction
(resolution, granularity) or at least some form of partial ordering so to reduce complexity. An
approach to study intelligent machines involving entropy (of Saridis) emphasizes such
efficient computational structures. Hierarchies (that may be approximate, localized or
combined in heterarchies) that are able to adapt, may serve as primary vehicles for such
structures to cope with complexity. The term "hierarchies" refers to functional hierarchies, or
hierarchies of range and resolution along spatial or temporal dimensions, and it does not
necessarily imply hierarchical hardware. Some of these structures may be hardwired in part.
To cope with changing circumstances the ability to learn is essential so these structures can
adapt to significant, unanticipated changes.

In view of the above, a working characterization of intelligent systems (or of (highly)
intelligent (control) systems or machines) that captures the essential characteristics present in
any such system is: An intelligent system must be highly adaptable to significant
unanticipated changes, and so learning is essential. It must exhibit high degree of autonomy in
dealing with changes. It must be able to deal with significant complexity, and this leads to
certain types of functional architectures such as hierarchies.

Some Examples

Man-made systems that solve complex problems and incorporate some of the above essential
characteristics of intelligent control systems do exist today. Here are some examples from
reference 1: A hierarchically intelligent control System was designed and built at the NASA
CIRSSE/RPI (Renssellear Polytechnic Institute) laboratories, to do truss construction
remotely in deep space for the NASA space station "Freedom". This Intelligent control system
had a functional hierarchy that consisted of three levels: the lowest was the Execution level,
the highest was the Organization level and the middle was the Coordination level (see Figure
1 and the section on Intelligent Autonomous Control later in this article). The innovation of
the project was that a system was directing the flow of data at the execution level located at
the site, while only commands were communicated to and from the coordination level on
Earth. The following are examples of intelligent control systems in NIST's (National Institute
for Standards and Technology) RCS (Real-time Control System) implementations: Robot
vision-based object pursuit; robot deburring; composites fabrication; automated
manufacturing research facility; robot machine loading/unloading for a milling workstation;
multiple autonomous undersea vehicles; NASA space station telerobotics; army field material
handling robot; DARPA submarine automation; coal mine automation; and army unmanned
land vehicles. Other examples of existing intelligent control systems include mobile robots
that exhibit some autonomy at Oak Ridge National Laboratory, and at the Massachusetts and
Georgia Institutes of Technology.

For additional information and insight into the foundations of Intelligent control, the
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interested reader may refer to references 1-8.

INTELLIGENT LEARNING CONTROL

The term Intelligent control was coined in the 70's. Earlier terms used included Learning
Control and Self-organizing Control. A brief description of some of the early developments in
the area that is known today as Intelligent control is given.

As discussed previously, learning is an important dimension or attribute of Intelligent control.
Highly autonomous behavior is a very desirable characteristic of advanced control systems, so
they perform well under changing conditions in the plant and the environment (even in the
control goals), without external intervention; note that intelligent autonomous control is
discussed at length below in this article. This requires the ability to adapt to changes affecting,
in a significant manner, the operating region of the system. Adaptive behavior of this type
typically is not offered by conventional control systems. Additional decision making abilities
should be added to meet the increased control requirements. The controller's capacity to learn
from past experience is an integral part of such highly autonomous controllers. The goal of
introducing learning methods in control is to broaden the region of operability of conventional
control systems. Therefore the ability to learn is one of the fundamental attributes of
autonomous intelligent behavior; see references 1, 2.

The ability of man-made systems to learn from experience and, based on that experience,
improve their performance is the focus of machine learning. Learning can be seen as the
process whereby a system can alter its actions to perform a task more effectively due to
increases in knowledge related to the task. The actions that a system may take depend on the
nature of the system. For example, a control system may change the type of controller used, or
vary the parameters of the controller, after learning that the current controller does not
perform satisfactorily within a changing environment. Similarly, a robot may need to change
its visual representation of the surroundings after learning of new obstacles in the
environment. The type of action taken by the machine is dependent upon the nature of the
system and the type of learning system implemented. The ability to learn entails such issues
as knowledge acquisition, knowledge representation, and some level of inference capability.
Learning, considered fundamental to intelligent behavior, and in particular the computer
modeling of learning processes has been the subject of research in the field of machine
learning since the 1960's; see references 9,10.

Learning Control

The problem of learning in automatic control systems has been studied in the past, especially
in the late 60's, and it has been the topic of numerous papers and books; see for example
references 11-15. References 11, 13, 15 provide surveys on the early learning techniques. All
of these approaches involve a process of classification, in which all or part of the prior
information required is unknown or incompletely known. The elements or patterns that are
presented to the control system are collected into groups that correspond to different pattern
classes or regions; see reference 15. Thus learning was viewed as the estimation or successive
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approximation of the unknown quantities of a function; see reference 11. The approaches
developed for such learning problems can be separated into two categories: deterministic and
stochastic. Where can learning be used in the control of systems? As it was already
mentioned, learning plays an essential role in the autonomous control of systems. There are
many areas in control where learning can be used to advantage and these needs can be briefly
classified as follows: 1. Learning about the plant; that is learning how to incorporate changes
and then how to derive new plant models. 2. Learning about the environment ; this can be
done using methods ranging from passive observation to active experimentation. 3. Learning
about the controller; for example, learning how to adjust certain controller parameter to
enhance performance. 4. Learning new design goals and constraints. What is the relation
between adaptive control and learning control? Learning is achieved, in a certain sense, when
an adaptive control algorithm is used to adapt the controller parameters so that for example
stability is maintained. In this case the system learns and the knowledge acquired is the new
values for the parameters. Note however, that if later the same changes occur again and the
system is described by exactly the same parameters identified earlier, the adaptive control
algorithm still needs to recalculate the controller and perhaps the plant parameters since
nothing was kept in memory. So, in that sense the system has not learned. It has certainly
learned what to do when certain type of changes take place. In particular, it has been told
exactly what to do, that is it was given the adaptive algorithm, and this is knowledge by rote
learning. The knowledge represented by the new values of the controller and the plant
parameters and the circumstances under which these values are appropriate, are not retained.
So a useful rule of thumb is that a controller to be a learning controller, memory is required
where past knowledge is stored in such a way so it can be used to benefit when a similar
situation arises.

Some Historical Notes

Regarding terminology it is perhaps beneficial at this point to bring in a bit of history: In the
60's, adaptive control and learning received a lot of attention in the control literature. It was
not always clear however what it was meant by those terms. The comment by Y.Tsypkin, in
reference 14 describes quite clearly the atmosphere of the period: "It is difficult to find more
fashionable and attractive terms in the modern theory of automatic control than the terms of
adaptation and learning. At the same time, it is not simple to find any other concepts which
are less complex and more vague." Adaptation, learning, self-organizing systems and control
were competing terms for similar research areas, and K.S. Fu says characteristically in
reference 11: "The use of the word 'adaptive' has been intentionally avoided here... adaptive
and learning are behavior-descriptive terms, but feedback and self-organizing are structure, or
system configuration-descriptive terms. Nevertheless the terminology war is still going on...It
is certainly not the purpose of this paper to get involved with such a war." The term pattern
recognition was also appearing together with adaptive, learning and self-organizing systems
in the control literature of that era. It is obvious that there was no agreement as to the meaning
of these terms and their relation. Pattern recognition is today a research discipline in its own
right, developing and using an array of methods ranging from conventional algorithms to
artificial intelligence methods implemented via symbolic processing. The term self-organizing
system is not being used as much today in the control literature. Adaptive control has gained
renewed popularity in the past decades mainly emphasizing studies in the convergence of

P.J. Antsaklis, "Intelligent Control," E ncyclopedia o f E lectrical a nd E lectronics E ngineering , Vol. 10, pp. 
493-503, John Wiley & Sons, Inc., 1999.



adaptive algorithms and in the stability of adaptive systems; the systems considered are
primarily systems described by differential (or difference) equations where the coefficients are
(partially) unknown. In an attempt to enhance the applicability of adaptive control methods,
learning control has been recently reintroduced in the control literature; see for example
reference 7 for learning methods in control with emphasis on neural networks.

INTELLIGENT CONTROL FOR HIGH AUTONOMY SYSTEMS

From a control systems point of view the use of Intelligent control methods is a natural next
step in the quest for building systems with higher degrees of autonomy. These ideas are
discussed below.

In the design of controllers for complex dynamical systems there are needs today that cannot
be successfully addressed with the existing conventional control theory. They mainly pertain
to the area of uncertainty. Heuristic methods may be needed to tune the parameters of an
adaptive control law. New control laws to perform novel control functions to meet new
objectives should be designed, while the system is in operation. Learning from past
experience and planning control actions may be necessary. Failure detection and identification
is needed. Such functions have been performed in the past by human operators. To increase
the speed of response, to relieve the operators from mundane tasks, to protect them from
hazards, high degree of autonomy is desired. To achieve this, high level decision making
techniques for reasoning under uncertainty and taking actions must be utilized. These
techniques, if used by humans, may be attributed to intelligent behavior. Hence, one way to
achieve high degree of autonomy is to utilize high level decision making techniques,
intelligent methods, in the autonomous controller. Autonomy is the objective, and intelligent
controllers are one way to achieve it.

Evolution of Control Systems and the Quest for Higher Autonomy

The first feedback device on record was the water clock invented by the Greek Ktesibios in
Alexandria Egypt around the 3rd century B.C.. This was certainly a successful device as water
clocks of similar design were still being made in Baghdad when the Mongols captured that
city in 1258 A.D.. The first mathematical model to describe plant behavior for control
purposes is attributed to J.C. Maxwell, of the Maxwell equations' fame, who in 1868 used
differential equations to explain instability problems encountered with James Watt's flyball
governor; the governor was introduced in 1769 to regulate the speed of steam engine vehicles.
When J.C. Maxwell used mathematical modeling and methods to explain instability problems
encountered with James Watt's flyball governor, it demonstrated the importance and
usefulness of mathematical models and methods in understanding complex phenomena and
signaled the beginning of mathematical system and control theory. It also signaled the end of
the era of intuitive invention. Control theory made significant strides in the past 120 years,
with the use of frequency domain methods and Laplace transforms in the 1930s and 1940s
and the development of optimal control methods and state space analysis in the 1950s and
1960s. Optimal control in the 1950s and 1960s, followed by progress in stochastic, robust,
adaptive and nonlinear control methods in the 1960s to today, have made it possible to control
more accurately significantly more complex dynamical systems than the original flyball
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governor.

Conventional control systems are designed today using mathematical models of physical
systems. A mathematical model, which captures the dynamical behavior of interest, is chosen
and then control design techniques are applied, aided by CAD packages, to design the
mathematical model of an appropriate controller. The controller is then realized via hardware
or software and it is used to control the physical system. The procedure may take several
iterations. The mathematical model of the system must be "simple enough" so that it can be
analyzed with available mathematical techniques, and "accurate enough" to describe the
important aspects of the relevant dynamical behavior. It approximates the behavior of a plant
in the neighborhood of an operating point.

The control methods and the underlying mathematical theory were developed to meet the ever
increasing control needs of our technology. The need to achieve the demanding control
specifications for increasingly complex dynamical systems has been addressed by using more
complex mathematical models such as nonlinear and stochastic ones, and by developing more
sophisticated design algorithms for, say, optimal control. The use of highly complex
mathematical models however, can seriously inhibit our ability to develop control algorithms.
Fortunately, simpler plant models, for example linear models, can be used in the control
design; this is possible because of the feedback used in control which can tolerate significant
model uncertainties. When the fixed feedback controllers are not adequate, then adaptive
controllers are used. Controllers can then be designed to meet the specifications around an
operating point, where the linear model is valid and then via a scheduler a controller emerges
which can accomplish the control objectives over the whole operating range. This is, for
example, the method typically used for aircraft flight control and it is a method to design fixed
controllers for certain classes of nonlinear systems. Adaptive control in conventional control
theory has a specific and rather narrow meaning. In particular it typically refers to adapting to
variations in the constant coefficients in the equations describing the linear plant; these new
coefficient values are identified and then used, directly or indirectly, to reassign the values of
the constant coefficients in the equations describing the linear controller. Adaptive controllers
provide for wider operating ranges than fixed controllers and so conventional adaptive control
systems can be considered to have higher degrees of autonomy than control systems
employing fixed feedback controllers.

Intelligent Control for High Autonomy Systems

There are cases where we need to significantly increase the operating range of the system. We
must be able to deal effectively with significant uncertainties in models of increasingly
complex dynamical systems in addition to increasing the validity range of our control
methods. We need to cope with significant unmodelled and unanticipated changes in the plant,
in the environment and in the control objectives. This will involve the use of intelligent
decision making processes to generate control actions so that certain performance level is
maintained even though there are drastic changes in the operating conditions. I have found
useful to keep in mind an example that helps set goals for the future and also teaches humility,
as it shows how difficult, demanding and complex autonomous systems can be: Currently, if
there is a problem on the space shuttle, the problem is addressed by the large number of
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engineers working in Houston Control, the ground station. When the problem is solved the
specific detailed instructions about how to deal with the problem are sent to the shuttle.
Imagine the time when we will need the tools and expertise of all Houston Control engineers
aboard the space shuttle, or an other space vehicle for extended space travel. What needs to be
achieved to accomplish this goal is certainly highly challenging!

In view of the above it is quite clear that in the control of systems there are requirements
today that cannot be successfully addressed with the existing conventional control theory. It
should be pointed out that several functions proposed in later sections, to be part of the high
autonomy control system, have been performed in the past by separate systems; examples
include fault trees in chemical process control for failure diagnosis and hazard analysis, and
control system design via expert systems.

An Intelligent Control Architecture For High Autonomy Systems

To illustrate the concepts and ideas involved and to provide a more concrete framework to
discuss the issues, a hierarchical functional architecture of an intelligent controller that is used
to attain high degrees of autonomy in future space vehicles is briefly outlined; full details can
be found in reference 16. This hierarchical architecture has three levels, the Execution Level,
the Coordination Level, and the Management or Organization Level. The architecture exhibits
certain characteristics, which have been shown in the literature to be necessary and desirable
in autonomous systems. Based on this architecture we identify the important fundamental
issues and concepts that are needed for an autonomous control theory.

Architecture Overview: Structure and Characteristics: The overall functional architecture for
an autonomous controller is given by the architectural schematic of the Figure 1, below. This
is a functional architecture rather than a hardware processing one; therefore, it does not
specify the arrangement and duties of the hardware used to implement the functions
described. Note that the processing architecture also depends on the characteristics of the
current processing technology; centralized or distributed processing may be chosen for
function implementation depending on available computer technology.

Figure 1. Intelligent Autonomous Controller Functional Architecture. The three levels of a
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hierarchical Intelligent control architecture are the Execution Level, the Coordination Level,
and the Management or Organization Level.

The architecture in Figure 1 has three levels. At the lowest level, the Execution Level, there is
the interface to the vehicle and its environment (the process in the figure) via the sensors and
actuators. At the highest level, the Management or Organization Level, there is the interface
to the pilot and crew, ground station, or onboard systems. The middle level, called the
Coordination Level, provides the link between the Execution Level and the Management
Level. Note that we follow the somewhat standard viewpoint that there are three major levels
in the hierarchy.

Figure 1. Intelligent Autonomous Controller Functional Architecture. The three levels of a
hierarchical Intelligent control architecture are the Execution Level, the Coordination Level,
and the Management or Organization Level.

It must be stressed that the system may have more or fewer than three levels which however
can be conceptually combined into three levels. Some characteristics of the system which
dictate the actual number of levels are the extent to which the operator can intervene in the
system's operations, the degree of autonomy or level of intelligence in the various subsystems,
the dexterity of the subsystems, and the hierarchical characteristics of the plant. Note that the
three levels shown here in Figure 1 are applicable to most architectures of intelligent
autonomous controllers, by grouping together sublevels of the architecture if necessary. The
lowest, Execution Level involves conventional control algorithms, while the highest,
Management and Organization Level involves only higher level, intelligent, decision making
methods. The Coordination Level is the level which provides the interface between the
actions of the other two levels and it uses a combination of conventional and intelligent
decision making methods.

The sensors and actuators are implemented mainly with hardware. Software and perhaps
hardware are used to implement the Execution Level. Mainly software is used for both the
Coordination and Management Levels. There are multiple copies of the control functions at
each level, more at the lower and fewer at the higher levels. Note that the autonomous
controller is only one of the autonomous systems on the space vehicle. It is responsible for all
the functions related to the control of the physical system and allows for continuous on-line
development of the autonomous controller and to provide for various phases of mission
operations. The tier structure of the architecture allows us to build on existing advanced
control theory. Development progresses, creating each time higher level adaptation and a new
system which can be operated and tested independently. The autonomous controller performs
many of the functions currently performed by the pilot, crew, or ground station. The pilot and
crew are thus relieved from mundane tasks and some of the ground station functions are
brought aboard the vehicle. In this way the degree of autonomy of the vehicle is increased.

Functional Operation: In Figure 1, commands are issued by higher levels to lower levels and
response data flows from lower levels upwards. Parameters of subsystems can be altered by
systems one level above them in the hierarchy. There is a delegation and distribution of tasks
from higher to lower levels and a layered distribution of decision making authority. At each
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level, some preprocessing occurs before information is sent to higher levels. If requested, data
can be passed from the lowest subsystem to the highest, e.g., for display. All subsystems
provide status and health information to higher levels. Human intervention is allowed even at
the control implementation supervisor level, with the commands however passed down from
the upper levels of the hierarchy.

Here is a simple illustrative example to clarify the overall operation of the autonomous
controller. Suppose that the pilot desires to repair a satellite. After dialogue with the
Management Level via the interface, the task is refined to "repair satellite using robot A". This
is a decision made using the capability assessing, performance monitoring, and planning
functions of the Management Level. The Management Level decides if the repair is possible
under the current performance level of the system, and in view of near term other planned
functions. Using its planning capabilities, it then sends a sequence of subtasks to the
Coordination Level sufficient to achieve the repair. This sequence could be to order robot A
to: "go to satellite at coordinates xyz", "open repair hatch", "repair". The Coordination Level,
using its planner, divides say the first subtask, "go to satellite at coordinates xyz", into smaller
subtasks: "go from start to x1y1z1", then "maneuver around obstacle", "move to x2y2z2",...,
"arrive at the repair site and wait". The other subtasks are divided in a similar manner. This
information is passed to a control implementation supervisor at the Coordination Level, which
recognizes the task, and uses stored control laws to accomplish the objective. The subtask "go
from start to x1y1z1", can for example, be implemented using stored control algorithms to
first, proceed forward 10 meters, to the right 15 degrees, etc. These control algorithms are
executed in the controller at the Execution Level utilizing sensor information; the control
actions are implemented via the actuators.

Characteristics of Hierarchical Intelligent Controllers for High Autonomy Systems

Based on the architecture described above, important fundamental concepts and
characteristics that are needed for an autonomous intelligent control theory are now identified.
The fundamental issues which must be addressed for a quantitative theory of autonomous
intelligent control are discussed.

There is a successive delegation of duties from the higher to lower levels; consequently the
number of distinct tasks increases as we go down the hierarchy. Higher levels are concerned
with slower aspects of the system's behavior and with its larger portions, or broader aspects.
There is then a smaller contextual horizon at lower levels, i.e. the control decisions are made
by considering less information. Also notice that higher levels are concerned with longer time
horizons than lower levels. Due to the fact that there is the need for high level decision
making abilities at the higher levels in the hierarchy, the proposition has been put forth that
there is increasing intelligence as one moves from the lower to the higher levels. This is
reflected in the use of fewer conventional numeric-algorithmic methods at higher levels as
well as the use of more symbolic-decision making methods. This is the "principle of
increasing intelligence with decreasing precision" of Saridis; see also reference 5 and the
references therein. The decreasing precision is reflected by a decrease in time scale density,
decrease in bandwidth or system rate, and a decrease in the decision (control action) rate.
(These properties have been studied for a class of hierarchical systems in reference 17.) All
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these characteristics lead to a decrease in granularity of models used, or equivalently, to an
increase in model abstractness. Model granularity also depends on the dexterity of the
autonomous controller.

It is important at this point to discuss briefly the dexterity of the controller. The Execution
Level of a highly dexterous controller is very sophisticated and it can accomplish complex
control tasks. The Coordination Level can issue commands to the controller such as "move 15
centimeters to the right", and "grip standard, fixed dimension cylinder", in a dexterous
controller, or it can completely dictate each mode of each joint (in a manipulator) "move joint
1, 15 degrees", then "move joint 5, 3 degrees", etc. in a less dexterous one. The simplicity, and
level of abstractness of macro commands in an autonomous controller depends on its
dexterity. The more sophisticated the Execution Level is, the simpler are the commands that
the control implementation supervisor needs to issue. Notice that a very dexterous robot arm
may itself have a number of autonomous functions. If two such dexterous arms were used to
complete a task which required the coordination of their actions then the arms would be
considered to be two dexterous actuators and a new supervisory autonomous controller would
be placed on top for the supervision and coordination task. In general, this can happen
recursively, adding more intelligent autonomous controllers as the lower level tasks,
accomplished by autonomous systems, need to be supervised.

There is an ongoing evolution of the intelligent functions of an autonomous controller. It is
interesting to observe the following: Although there are characteristics which separate
intelligent from non-intelligent systems, as intelligent systems evolve, the distinction becomes
less clear. Systems which were originally considered intelligent evolve to gain more character
of what are considered to be non-intelligent, numeric-algorithmic systems. An example is a
route planner. Although there are AI route planning systems, as problems like route planning
become better understood, more conventional numeric-algorithmic solutions are developed.
The AI methods which are used in intelligent systems, help us to understand complex
problems so we can organize and synthesize new approaches to problem solving, in addition
to being problem solving techniques themselves. AI techniques can be viewed as research
vehicles for solving very complex problems. As the problem solution develops, purely
algorithmic approaches, which have desirable implementation characteristics, substitute AI
techniques and play a greater role in the solution of the problem. It is for this reason that we
concentrate on achieving autonomy and not on whether the underlying system can be
considered "intelligent".

Models for Intelligent Controllers

In highly autonomous control systems, the plant is normally so complex that it is either
impossible or inappropriate to describe it with conventional mathematical system models such
as differential or difference equations. Even though it might be possible to accurately describe
some system with highly complex nonlinear differential equations, it may be inappropriate if
this description makes subsequent analysis too difficult or too computationally complex to be
useful. The complexity of the plant model needed in design depends on both the complexity
of the physical system and on how demanding the design specifications are. There is a
tradeoff between model complexity and our ability to perform analysis on the system via the
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model. However, if the control performance specifications are not too demanding, a more
abstract, higher level, model can be utilized, which will make subsequent analysis simpler.
This model intentionally ignores some of the system characteristics, specifically those that
need not be considered in attempting to meet the particular performance specifications; see
also the discussion on hybrid systems later in this article. For example, a simple temperature
controller could ignore almost all dynamics of the house or the office and consider only a
temperature threshold model of the system to switch the furnace off or on.

Discrete Event System (DES) models using finite automata, Petri nets, queuing network
models, Markov chains, etc. are quite useful for modeling the higher level decision making
processes in the intelligent autonomous controller. The choice of whether to use such models
will, of course, depend on what properties of the autonomous system need to be studied.

The quantitative, systematic techniques for modeling, analysis, and design of control systems
are of central and utmost practical importance in conventional control theory. Similar
techniques for intelligent autonomous controllers do not exist. This is mainly due to the
hybrid structure (nonuniform, non homogeneous nature) of the dynamical systems under
consideration; they include both continuous-state and discrete-state systems. Modeling
techniques for intelligent autonomous systems must be able to support a macroscopic view of
the dynamical system, hence it is necessary to represent both numeric and symbolic
information. The non uniform components of the intelligent controller all take part in the
generation of the low level control inputs to the dynamical system, therefore they all must be
considered in a complete analysis. Research could begin by using different models for
different components of the intelligent autonomous controller since much can be attained by
using the best available models for the various components of the architecture and joining
them via some appropriate interconnecting structure. For instance, systems that are modeled
with a logical discrete event system (DES) model at the higher levels and a difference or
differential equation at the lower level should be examined; see the discussion on hybrid
systems later in this article. In any case, good understaanding of hierarchical models is
necessary for the analysis and synthesis of intelligent autonomous controllers.

Research Directions

One can roughly categorize research in the area of intelligent autonomous control into two
areas: conventional control theoretic research, addressing the control functions at the
Execution and Coordination levels, and the modeling, analysis, and design of higher level
decision making systems found in the Management and Coordination levels.

It is important to note that in order to obtain a high degree of autonomy it is necessary to
adapt or learn. Neural networks offer methodologies to perform learning functions in the
intelligent autonomous controller. In general, there are potential applications of neural
networks at all levels of hierarchical intelligent controllers that provide higher degrees of
autonomy to systems. Neural networks are useful at the lowest Execution level - where the
conventional control algorithms are implemented via hardware and software - through the
Coordination level, to the highest Management level, where decisions are being made based
on possibly uncertain and/or incomplete information. One may point out that at the Execution
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level - conventional control level - neural network properties such the ability for function
approximation and the potential for parallel implementation appear to be very important. In
contrast, at higher levels abilities such as pattern classification and the ability to store
information in a, say, associative memory appear to be of significant interest. Machine
learning is of course important at all levels.

We stress that in control systems with high degrees of autonomy we seek to significantly
widen the operating range of the system so that significant failures and environmental changes
can occur and performance will still be maintained. All of the conventional control techniques
are useful in the development of autonomous controllers and they are relevant to the study of
autonomous control. It is the case however, that certain techniques are more suitable for
interfacing to the autonomous controller and for compensating for significant system failures.
For instance the area of "restructurable" or "reconfigurable" control systems studies
techniques to reconfigure controllers when significant failures occur.

Conventional modeling, analysis, and design methods should be used, whenever they are
applicable, for the components of the intelligent autonomous control system as well as fuzzy
controllers. For instance, they should be used at the Execution Level of many autonomous
controllers. The symbolic/numeric interface is a very important issue; consequently it should
be included in any analysis. There is a need for systematically generating less detailed, more
abstract models from differential/difference equation models to be used in higher levels of the
autonomous controller; see discussion below on hybrid systems. Tools for the implementation
of this information extraction also need to be developed. In this way conventional analysis can
be used in conjunction with the developed analysis methods to obtain an overall quantitative,
systematic analysis paradigm for intelligent autonomous control systems. In short, we propose
to use hybrid modeling, analysis, and design techniques for non uniform systems. This
approach is not unlike the approaches used in the study of any complex phenomena by the
scientific and engineering communities.

HYBRID SYSTEMS

Hybrid control systems contain two distinct types of systems, systems with continuous
dynamics and systems with discrete dynamics, that interact with each other. Their study is
central in designing intelligent control systems with high degree of autonomy and it is
essential in designing discrete event supervisory controllers for continuous systems; see
references 1, 18-23.

Hybrid control systems typically arise when continuous processes interact with, or are
supervised by, sequential machines. Examples of hybrid control systems are common in
practice and are found in such applications as flexible manufacturing, chemical process
control, electric power distribution and computer communication networks. A simple example
of a hybrid control system is the heating and cooling system of a typical home. The furnace
and air conditioner, along with the heat flow characteristics of the home, form a
continuous-time system which is to be controlled. The thermostat is a simple discrete event
system which basically handles the symbols {too hot, too cold} and {normal}. The
temperature of the room is translated into these representations in the thermostat and the
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thermostat's response is translated back to electrical currents which control the furnace, air
conditioner, blower, etc.

Since the continuous and discrete dynamics coexist and interact with each other it is important
to develop models that accurately describe the dynamic behavior of such hybrid systems. In
this way it is possible to develop control strategies that fully take into consideration the
relation and interaction of the continuous and discrete parts of the system. In the past, models
for the continuous and discrete event subsystems were developed separately; the control law
was then derived in a rather empirical fashion, except in special cases such as the case of
digital controllers for linear time-invariant systems. The study of hybrid systems provides the
backbone for the formulation and implementation of learning control policies. In such
policies, the control acquires knowledge (discrete data) to improve the behavior of the system
as it evolves in time. Hybrid systems has become a distinctive area of study due to
opportunities to improve on traditional control and estimation technologies by providing
computationally effective methodologies for the implementation of digital programs that
design or modify the control law in response to sensor detected events, or as a result of
adaptation and learning. The interested reader should consult references 20-23.

Certain important issues in hybrid systems are now briefly discussed using a paradigm of a
continuous systems supervised by a discrete event system (DES) controller from references
18, 19. The hybrid control system of interest here consists of a continuous-state system to be
controlled, also called the plant, and a discrete-state controller connected to the plant via an
interface; see Figure 2.

Figure 2. Hybrid Supervisory Control Architecture. The interface receives continuous
measurements z(t) and issues a sequence of symbols {z(i)} which the DES controller

processes to issue a sequence of control symbols {r(i)}. Thses are translated by the interface
to (piecewise) continuous input commands r(t).

The plant contains all continuous-state subsystems of the hybrid control system, such as any
conventional continuous-state controllers that may have been developed, a clock if time and
synchronous operations are to be modeled, etc.. The controller is an event driven,
asynchronous discrete event system (DES), described by a finite state automaton or an
ordinary Petri net. The hybrid control system also contains an interface that provides the
means for communication between the continuous-state plant and the DES controller. The
interface receives information from the plant in the form of a measurement of a continuous
variable z(t), such as the continuous state, and issues a sequence of symbols {z(i)} to the DES
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controller. It also receives a sequence of control symbols {r(i)} from the controller and issues
(piecewise) continuous input commands r(t) to the plant.

The interface plays a key role in determining the dynamics and the behavior of the hybrid
control system. Understanding how the interface affects the properties of the hybrid system is
one of the fundamental issues in the theory of hybrid control systems. The interface can be
chosen to be simply a partitioning of the state space; see reference 18. If memory is necessary
to derive an effective control, it is included in the DES controller and not in the interface.
Also the piecewise continuous command signal issued by the interface is simply a staircase
signal, not unlike the output of a zero-order hold in a digital control system. Including an
appropriate continuous system at (the input of) the plant, signals such as ramps, sinusoids,
etc., can be generated if desired. So the simple interface is used without loss of generality. It
allows analysis of the hybrid control system with development of properties such as
controllability, stability and determinism, in addition to control design methodologies; see
references 18, 19. In general the design of the interface depends not only on the plant to be
controlled, but also on the control policies available, as well as on the control goals.
Depending on the control goals, one may or may not need, for example, detailed state
information; this corresponds to small or large regions in the partition of the measured signal
space (or greater of lower granularity). This is, of course, not surprising as it is rather well
known that to stabilize a system, for example, requires less detailed information about the
system's dynamic behavior than to do say tracking. The fewer the distinct regions in the
partitioned signal space, the simpler (fewer states) the resulting DES plant model and the
simpler the DES controller design. Since the systems to be controlled via hybrid controllers
are typically complex, it is important to make every effort to use only the necessary
information to attain the control goals; as this leads to simpler interfaces that issue only the
necessary number of distinct symbols, and to simpler DES plant models and controllers. The
question of systematically determining the minimum amount of information needed from the
plant in order to achieve specific control goals via a number of specialized control policies is
an important question.

INTELLIGENT CONTROL AS A DISTINCT RESEARCH AREA

There may be the temptation to classify the area of intelligent autonomous systems as simply
a collection of methods and ideas already addressed elsewhere, the need only being some kind
of intelligent assembly and integration of known techniques. This is of course not true. The
theory of control systems is not covered by say the area of applied mathematics, because
control has different needs and therefore asks different questions. For example, while in
applied mathematics the different solutions of differential equations under different initial
conditions and forcing functions are of interest, in control one typically is interested in finding
the forcing functions that generate solutions, that is system trajectories, that satisfy certain
conditions. This is a different problem, related to the first, but its solution requires the
development of quite different methods. In a rather analogous fashion the problems of interest
in intelligent systems require development of novel concepts, approaches and methods. In
particular while computer science typically deals with static systems and no real-time
requirements, control systems typically are dynamic and all control laws, intelligent or not,
must be able to control the system in real time. So in most cases one cannot really just directly

P.J. Antsaklis, "Intelligent Control," E ncyclopedia o f E lectrical a nd E lectronics E ngineering , Vol. 10, pp. 
493-503, John Wiley & Sons, Inc., 1999.



apply computer science methods to these problems. Modifications and extensions are
typically necessary for example in the quantitative models used to study such systems. And
although say Petri nets may be adequate to model and study the autonomous behavior at
certain levels of the hierarchy, these models may not be appropriate to address certain
questions of importance to control systems such as stability, without further development and
modifications. In addition, there are problems in intelligent autonomous control systems that
are novel and so they have not studied before at any depth. Such is the case of hybrid systems
for example that combine systems of continuous and discrete state. The marriage of all these
fields can only be beneficial to all. Computer science and operation research methods are
increasingly used in control problems, while control system concepts such as feedback, and
methods that are based on rigorous mathematical framework can provide the base for new
theories and methods in those areas.
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