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Optimisation approach to robust eigenstructure

assignment

I.K.Konstantopoulos and P.J.Antsaklis

Abstract; A systematic optimisation approach to robust eigenstructure assignment for control
systems with output feedback is presented, The proposed scheme assigns the maximum allowable
number of closed-loop eigenvalues to desired locations, and determines the corresponding closed-
loop eigenvectors as close to desired ones as possible. Additionally, the stability of the remaining
closed-loop eigenvalues is guaranteed by the satisfaction of an appropriate Lyapunov equation.
The overall design is robust with respect to time-varying parameter perturbations. The approach is
applied to a literature example, where it is shown to capture the shape of the desired transient

response.

1 Introduction

Eigenstructure assignment is a powerful technique that has
developed considerably over the last |5 years or so; see for
instance the seminal paper of [1], the review papers of [2
4] and the recent book of [5]. The technique is concerned
with the placing of eigenvalues and their associated eigen-
vectors, via feedback control laws, to meet closed-loop
design specifications. Specifically, the method allows the
designer to satisfy damping, settling time and mode
decoupling specifications directly by selecting appropriate
closed-loop eigenvalues and eigenvectors. Note that
comprehensive lists of papers dealing with eigenstructure
assignment can be found in [4-6).

Eigenstructure assignment methodologies for the robust
control of linear uncertain systems have appeared in [3, 7,
8]. In [7], an algorithm for robust eigenstructure assign-
ment, which utilises a sufficient condition for robust
stability, is proposed; constraints are placed on the desired
modes. In {3, 8], constrained optimisation procedures are
presented. The objective functions to be minimised are
based on the transient response; constraints are placed on
the desired modes and some sufficient conditions for
robust stability. The interest here is in a formulation similar
to that presented in [6], where an eigenstructure-assign-
ment procedure for the state feedback case, which
minimises the difference between the actual and desired
closed-loop eigenvalues and eigenvectors, is presented.
A robustness term is included in the objective function
enlarge the class of nondestabilising perturbations. How-
ever, the inclusion of this term may result in closed-loop

1 IEE, 1999
{EE Proceedings online no. 19990632
DOF: 101049 1p-cla: 19990632

Paper first received 2nd December 1998, and in revised form 8th June
1999

[.K. Konstantopoulos is with the Control Systems Research, Department of
Engineering, University of Leicester, Leicester LE1 7RH, UK

P.J. Anisaklis is with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame [N 46556, USA

1EE Proc.-Control Theory Appl., Tol. 146, No. 6, November 1999

eigenvalues and eigenvectors considerably away from the
desired ones.

In this paper, a systematic optimisation approach is
proposed for the more general case of output feedback.
This approach assigns the maximum allowable number of
closed-loop eigenvalues to desired locations, and deter-
mines the corresponding closed-loop cigenvectors as close
as possible to those desired. The structure of the achievable
closed-loop eigenvectors is taken into consideration. The
stability of the remaining closed-loop eigenvalues is main-
tained by the inclusion of a closed-loop Lyapunov equation
in the objective function. As in [6], a robustness term is
also included in the objective function enhance the robust-
ness of the control scheme. Unlike in [6], though, the
inclusion of this term does not affect the determined
eigenstructure, since the actual eigenvalues can still be
placed at the desired locations. Note that, for the state feed-
case, as in [6], the proposed robust-cigenstructure-assign-
ment approach here places all closed-loop eigenvalues at
the desired locations.

2 Eigenstructure assignment using output
feedback

Consider the linear multivariable continuous system with
the state-space description

x(y=A x(t) + B u{f) (1)
¥ =C x(n (2)
where x € R is the state vector, ¥ € *R” is the input vector,
and y € WY is the output vector; 4 € R**", B g R"*',

C € MY*" are the system matrices. The above system is
assumed to be both controllable and observable, i.e.

rank [B AB-- A" 'Bl=n (3)
rank [CT A7CT - (4TY'CT) =n (4)

It is assumed that the input and output matrices are of full
rank, i.e. rank (B)=r and rank (C)=g4. Also, as is usually
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the case in aircraft problems, it is assumed that r <g <n.

Consider static output feedback of the form
u(t) = K y(1) = KCx(1) (5)

The freedom which characterises the placing of the closed-
loop poles using output feedback has been studied exten-
sively; see for instance [9, 10]. For the additional freedom
that characterises the selection of the associated closed-
loop eigenvectors, the following theorem has been proven
in [10].

Theorem 2.1 Consider the controllable and observable
system of egns. | and 2 with the output feedback law of
eqn. 5 and the assumption that the matrices B and C are of
full rank. Then, there exists a matrix K € R *9 such that

(1) max(n g) closed-loop eigenvalues can be assigned;
(ii) max(r, g) eigenvectors can be partially assigned with
min(r; g) entries in each arbitrarily chosen vector.

Note that the above theorem also applies to the general
case where the closed-loop eigenvalues can be repeated or
in complex-conjugate pairs. Note that eigenvalue assign-
ment for the state feedback case has been investigated
thoroughly as well; see for instance [11, 12]. For controi-
lable systems with the state feedback law u{f)= Kx(?), it
has been shown in [12] that:

{a) All n closed-loop eigenvalues and a maximum of ar
eigenvector entries can be arbitrarily assigned, and

{b) No more than r entries of any one eigenvector can be
chosen arbitrarily.

In other words, a maximum of » entries in each of the »
closed-loop eigenvectors can be chosen arbitrarily. It is
apparent that state feedback offers a greater flexibility with
regard to eigenstructure assignment than does output feed-
back. Note, however, that, from a practical point of view,
state feedback is undesirable, since for large systems it
requires measurement and feedback of all states of the
system. This can be expensive; in addition, several states
are usually not available for measurement. This is the
reason why it is usually preferable to feed back only the
measured states, which makes output feedback very attrac-
tive. Note that an extensive discussion of eigenstructure
assignment with respect to both state and output feedback
can be found in [1].

3 Robust eigenstructure assignment

3.1 Problem formulation

For a linear multivariable system with the state-space
description of eqns. | and 2, and the conditions of eqns.
3 and 4, an output feedback control gain (eqn. 5) needs to
be determined such that:

(1) the set of closed-loop eigenvalues includes a subset of ¢
closed-loop eigenvalues located at {7, i=1,..., g}, and
(ii) their associated eigenvectors should be given by the set
{V,‘, i= lv‘ L] q}

Note that the desired ¢ modes, as specified by the
desired g pairs of cigenvalues and eigenvectors, can
either be the most significant ones (such as the roll or
Dutch roll modes in an aircraft-control problem), or the ¢
most dominant ones in a control-reconfiguration scheme
[13].

As is seen next, the desired eigenvectors are not always
achievable. Therefore, the control design needs to deter-
mine closed-loop eigenvectors as close to the desired ones
as possible. Therefore, if the actual closed-loop eigen-
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values/eigenvectors are denoted by {(2¢, ), i=1,...,
n}, the above objectives are translated into

JA+BKC) =7, i=1,....q (6)

q
min(Z I - v,-||2) )
i=1

For reasons explained in [1, 14], consider the state-trans-
formation matrix T=(B §), where § is selected such that
rank (T)=n. In the new state co-ordinates specified by T
above, the system is described by the matrices (4, B, ©),
with

B:T“B:(ol" ) (8
n=rs

where 0, _ ., is defined as an [(n — r) % r] zero matrix.
Note the special structure of the input matrix B. Note also
that the state transformation does not affect the output-
feedback matrix. This is also true for the eigenvalues of the
transformed system, which remain the same as the eigen-
values of the original system. However, the desired closed-
loop eigenvectors {v;, i=1,..., g}, together with the
actual closed-loop eigenvectors ¥, i=1,..., g}, need to
be transformed to the new state co-ordinates. Define

=Ty, ©

¢ = Ty (10)

as the desired and actual closed-loop eigenvectors for the
state-transformed system, respectively. From now on, the
discussion will continue by considering the system in
the new state co-ordinates specified above. Therefore, the
objective of eqn. 7 for the transformed system is given by

q
min(z ¢ - \7,~||2) (11)
i=1

As discussed in [1], all achievable eigenvectors ¥¢ which
correspond to the closed-loop eigenvalue 2¢ = 2; must lie
in the subspace spanned by the columns of (4; I, — A) !
B. Define

i,=(d,-A4)"'B (12)

All achievable closed-loop eigenvectors that correspond to
the eigenvalue /; should be of the form

v =ITg (13)

where g; is an (r x 1) vector. Note that g; is a real vector if
/i is a real eigenvalue, or a complex vector if /; is a
complex eigenvalue. In view of eqn. 13, the objective of
eqn. 11 is rewritten as

q
min(z I17,g,— s‘»fllz) (14)
i=1

and the minimising quantity is defined as
q .l ~ = -~
Ji=Tr Z(Hr'gi - vi)H(nigi - "i)} (15)
=l

where v denotes the complex-conjugate transpose of a
vector v. It can easily be shown that each pair of closed-
loop eigenvalues/eigenvectors should satisfy

(‘Zl + K& - /."J'IJ'.H)“"? =0
= (A +KC—id,,)g =0 (16)
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where A, contains the first r rows of 4 and

L,=U. 0., (17)
It can be seen that the vectors {g; i=1,..., ¢} that
minimise eqn. 15 also need to satisfy the eigenstructure
condition of eqn. 16, Therefore, it is necessary to include
this condition for the g eigenvectors of interest in the
minimising quantity, which becomes

q ~— ~
S=Tr [Z(nfg,- -5)"(l.g, - %)
=1
+iMi|(‘al +K&_;'r']mr)ﬁigilj| {18}
il

where M;, i=1,..., ¢ are (l xr) Lagrange-multiplier
vectors, which are real if they correspond to a real
eigenvalue, or complex if they correspond to a complex
eigenvalue. So far, this paper has concentrated on the g
closed-loop eigenvalues that we want to assign with the
procedure outlined above. However, it is necessary to
guarantee that the remaining (n — g) eigenvalues of the
closed-loop system remain stable. Therefore, the output-
feedback gain needs to be such that the closed-loop system
A + BKC is stable. In other words, it suffices to satisfy the
Lyapunov equation

A P+PA+Q=0 (19)
where
A=A4+BKC (20)

As discussed in [6, 15, 16], it is also necessary to safeguard
against uncertainties in the state-space matrices of the
closed-loop system. It has been shown that, for the case
of unstructured perturbations in the system matrix A, this
can be done by including the term Tr{P?) in the minimising
quantity; the smaller this robustness term, the more
robustly stable the closed-leop system will be to unstruc-
tured time-varying parameter perturbations. Therefore, the
overall minimising quantity is given finally by

i=1

4. . ,, “ ~
J=Tr [Zj(nfg; — 51,8, - %) + L(A"P+ P4 + Q)

+ Zq:M,.I(A, + K€ - /".,-I,..,,)ﬁ,-g,.] + Pz] @1
i=1

where L} € R"** is another Lagrange-multiplier matrix.
To summarise the approach outlined above, it should be
stated that, with the minimisation of the quantity in eqn. 21
above, an output-feedback matrix X is sought such that

(a) A specified subset of ¢ desired closed-foop eigenva-
lues belong to the set of eigenvalues of the closed-loop
system 4 + BKC.

(b) The achieved eigenvectors are as close to the corre-
sponding desired eigenvectors as possible.

{¢) The remaining (n — g) closed-loop eigenvalues are
stable.

(d) Uncertainties in the state-space matrices, in the form
of unstructured time-varying parameter perturbations, are
taken care of by maximising the stability margin allowed to
the closed-loop system.
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3.2 Algorithmic approach

Without loss of generality, it is assumed that the set of ¢
desired eigenvalues consists of a complex conjugate pair,
ie. A4y =(i)* € €, and (g — 2) real eigenvalues, i.e. is
{4, €M, i=3,..., g}. Then, ¥, = (¥;)*. The generalisation
to the case of more complex conjugate pairs of eigenvalues
is straightforward.

It is necessary to compute the partial derivatives of the
minimising quantity of eqn. 21 with respect to all the
matrix parameters entailed. These parameters are the
Lagrange-multiplier vectors {M; i=1,..., g}, the
Lagrange-multiplier matrix £L,, the positive-definite
matrix P, the output-feedback matrix K and the vectors
{g;, i=1,..., g} that specify the closed-loop eigenvectors.
Using the properties of [17] one obtains

af - . . .
B_MZAM, _[(A|+Kc—/.j1r.")”igj]]r I = l!_”’q
(22)

aJ - -

o—=4;, =A'P+PA+Q (23)
oL, '

W A T AT

@-AP—ALi +Li4A" +2P (24)

-~ - - q — =
%: Ax=BTPL,CT + BTPLICT +) Mgl C"

i=1

(25)
g_l = A, = 2018 i1,g, — 201%5,
+ (4, + KC — i1,,) M7 (26)
- (%2)* @7)
% = A, =201 iTg,— 20

+ T4, +KC -0, )’ M! i=3,....4q
(28)

The derivation of eqn. 26, and the equivalence of eqn. 27,
can easily be shown [14]. To minimise eqn. 21 a version of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisa-
tion method of conjugate directions is used. Note that, in
each algorithmic step, the gradients of eqns. 22-25 are set
equal to zero, i.e. {Ay, =0,i=1,...,q}, 4, =0,Ap=0,
Ax=0, and solve for K, P, L, {M;, i=1,..., q}, respec-
tively, in that specific order; then a line search is performed
to update the vectors {g;, i=1,..., g} using eqns. 26 and
28. The optimal K determined by the above approach is
also the optimal gain for the system in the original state co-
ordinates. The algorithm also determines the optimal
vectors {g, i=1,..., g} and therefore, in view of eqn.
13, the optimal eigenvectors {¥?, i=1,..., g}; note that
these eigenvectors need to be transformed back to the
original state co-ordinates using eqn. 10.

The proposed algorithm is presented in detail in [14],
which is available via anonymous FTP. Note that there are
significant changes compared with similar algorithms used
in [16, 18]. This is due to the structure of the present
problem, since the vectors {g;, i=1,..., g} are now
updated instead of the output-feedback matrix. On the
other hand, the existence of complex eigenvalues/eigen-
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vectors imposes certain modifications to the algorithmic
scheme.

There are certain advantages in using the algorithmic
approach above, since it can easily be extended to include
more terms in the minimising quantity. These terms could
be associated with an LQR performance, as studied in [18],
or with the robust stability of the closed-loop system with
respect to lime-varying unstructured structurcd perturba-
tions in the input, output matrices B, € as well. A similar
generalisation has appeared in [18] For example,_for the
case of unstructured perturbatlons in both 4 and B, it can
easily be shown that it is only necessary to add the term
Tr{(KC)r (KC)} in the minimising quantity of eqn. 21,
which results in the term 2K€C" being added in eqn. 25.

In some practical applications, complete specification of
the desired closed-loop eigenvectors is not needed [3]. In
such cases, the interest is only on certain components of
the eigenvectors that are related to design specifications
such as mode decoupling, whereas the remaining eigen-
vector components can be varied freely. The proposed
optimisation scheme here can easily accommeodate the
case of unspecified components in the desired closed-
loop eigenvectors. This can be done by considering only
the significant components of the difference vectors in the
minimising quantity of eqn. 14; this results in obvious
changes in only the first two terms of eqns. 26 and 28.

4  lllustrative example

The optimisation approach for robust eigenstructure
assignment presented here is used in the control-reconfi-
guration scenario of [13]. For the following nominal
system

T —0.0582  0.0651 0 —0.171
o | 0303 0685 1109 0
—0.0715 —0.658 —0.947 0
L0 0 I 0
-0 I
[ 00 0
po | TOOHL O 6 0 29
—111 0
L . 001 0

with the static output-feedback law of eqn. 5, the controller
that assigns the closed-loop eigenvalues at {—0.5973,
—1.5%/2, —2} and their corresponding eigenvectors at

V= [V! vZ V3 v4]

0.1887 0.1465 +,0.0958 0.1465 —j0.0958  0.9680
~0.9634 0.2257 —j0.2492 0.2257 +,0.2492  0.1441
0.0977 0.3790 +j0.6047 0.3790 — j0.6047  0.0905
0.1636  0.1025 — j0.2664  0.1025 +j0.2664 —0.0453

(30)

is given in [13] by

—2.01505

K _ [ —0:00031
= —1.13002  0.02904

4.77004 1.70457] 31)

Next, assume that the system dynamics change due to
system-component failures. The state-space matrices of the
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impaired model are given below [13]:

r—0.0582 0.0 00 —0.171
p —0.103 —0.685 1.109 0
ST —0.0715 —0.658  1.98 0
L0 0 i.5 0
0 09
0.09 0.0 09 000
B, = ' ' C,=| 0 00 07 32
4 —1.11 0.0 ! (32)
0 0
L0 00

The desired eigenstructure for the impaired system is that
specified above for the nominal system; therefore, the
objective (as specified in [13]) is to preserve the first
three most dominant eigenvalues of the nominal closed-
loop system ie. {—0.5973, —1.54,2}, and achieve
closed-loop eigenvectors as close to the corresponding
eigenvectors of eqn. 30 as possible. The algorithmic
approach proposed here is used to find the optimal
output-feedback matrix K, that will maintain the nominal
eigenstructure shown above; in other words, the algorithm
determines the controller gain that minimises ./ of eqn. 21
for the impaired system.

First it is necessary to transform the impaired system
(s Bs C)) to new state co-ordinates. Select

0 09 0 0
009 0 1 0

T=|1_111 o o o 33)
0 0 0 1

The best results, with regard to the closeness of the closed-
loop cigenvectors of the impaired system to the desired
eigenvectors specuﬁed in eqn. 30, are obtained when a
weight factor of 0.1 is assngned to the term {(ngl — )7

(I1,g, — ¥)} of the minimising quantity of eqn. 21. This is
the term that corresponds to the real eigenvalue —0.5973.
By assigning this weight, it is possible to emphasise the
task of achieving optimal eigenvectors for the complex
conjugate pair of eigenvalues, (—1.5%,2). Note that this
task is the most difficult to achieve due to the complex
nature of the corresponding eigenvectors. The introduction
of this welght factor affects only eqn. 28, whose first two
terms {2” g — 217 \ ¥} need to be multiplied by this
weight factor The algonthm yields

7]~ %1 = 0.0242 (34
7, = 5,12 = 19 — %12 = 0.0230 (35)
Te (P?) = 0.0788 (36)

Note that the robustness term of eqn. 36 implies that the
closed-loop system A4 is robustly stable to unstructured
time-varying  parameter  perturbation  given by
Omax(AA) <0.4037. The output-feedback gain that
achieves these results is

k. — [—442776
7= | -4.15014  —0.71481

5.95419 5.59306
0.49365] 37

With the above controller, the fourth closed-loop eigenva-
lue is placed at —4.7358. Note that the above results
concern the impaired system in the new state co-ordinates
specified by eqn. 33. However, the controller is the same,
as discussed above. The eigenvectors obtained transformed
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back to the original co-ordinates of the impaired system are
given by
vi=[v] vi V]

—0.0674 0.1424 4 0.0945
—0.9950 0.1834 —0.1722

—0.0453
0.1136

0.1424 — j0.0945
0.1834 +j0.1722
0.3519 +,0.5667 0.3519 — j0.5667
0.1453 — j0.3729  0.1453 + j0.3929
(38

where the first column is the eigenvector that corresponds
to the real eigenvalue —0.5973, and the last two columns
are the eigenvectors that correspond to the complex conju-
gate pair of eigenvalues (—1.51/2). As can be seen, the
above eigenvectors are indeed very close to the desired
eigenvectors of eqn. 30, as suggested by eqns. 34 and 35.
This can also be shown by computing

I} — v I? = 0.0231 (39)
v, — vl = IV}, — w2 = 0.0210 (40)
In Figs. | and 2, the state response of the nominal system

of eqn. 29 is compared with the output-feedback matrix K
of eqn. 31, and the state response of the impaired system of

-1.5

0 05 10 15 20 25 30 35 40 45 50
time, s

Fig. 1 Nominal system

Closed-loop state response for the initial condition vector Py,
— x
..... X3
X3
Xy

1.5

0 05 10 15 20 25 30 35 40 45 50
time, s

Fig. 2 Impaired system

Closed-loop state response for the initial condition vector V),
. X
..... X2
I X

Xy
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eqn. 32 is compared with the output feedback matrix K, of
eqn. 37, The initial condition vector is chosen as

V,=(075 05 03 1) (41)

As can be seen, the algorithm is capable of recovering the
performance of the nominal system. This should be
expected, since the ecigenvectors of the impaired closed-
loop system are assigned to be very close to the eigen-
vectors of the nominal closed-loop system, as shown in
eqns. 39 and 40.

5 Conclusions

An optimisation approach to robust eigenstructure assign-
ment for systems with output feedback has been presented.
The proposed algorithm assigns the maximum allowable
number of closed-loop eigenvalues to desired locations,
and determines the corresponding eigenvectors as close to
the desired ones as possible. The overall design is robust
with respect to unstructured time-varying parameter pertur-
bations. The approach has been applied to a literature
example, where it was shown to achieve the nominal/
ideal eigenstructure.
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