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Robust stabilizing control laws for a class of second-order switched
systems

Bo Hu*!, Xuping Xu?, Panos J. Antsaklis®, Anthony N. Michel®

Department of Elecirical Engineering, University of Notre Dame, Notre Dame, IN 46356, USA

Abstract

For a class of second-order switched systems consisting of two linear time-invariant (LTT) subsystems, we show that the
so-called conic switching law proposed previously by the present authors is robust, rot only in the sense that the control law is
flexible (to be explained further), but also in the sense that the Lyapunov stability (resp., Lagrange stability) properties of the
switched system are preserved in the presence of certain kinds of vanishing perturbations (resp., nonvanishing perturbations).
The analysis is possible since the conic switching laws always possess certain kinds of “quasi-periadic switching operations”.
We also propose for a class of nonlinear second-order switched systems with time-invariant subsystems a switching control
law which locally exponentially stabilizes the entite nonlinear switched system, provided that the conic switching law
exponentially stabilizes the linearized switched systems (consisting of the linearization of each nonlinear subsystem). This
switched control law is robust in the sense mentioned above. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Second-order switched systems; Switching control law; Robustness; Perturbations

1. Introduction

Switched systems are hybrid systems that con-
sist of two or more subsystems and are controlled
by switching laws. These switching laws may be
cither supervised or unsupervised, time-driven or
event-driven, and may be (logically) constrained or
unconstrained. Many real-world processes and sys-
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tems can be modeled as switched systems, including
chemical processes, computer controlled systems,
switched circuits, and so forth.

Recently, there has been increasing interest in the
stability analysis of systems of this type (see, e.g.,
[1-5,7-9]). The methodologies used in studying the
qualitative properties of switched systems are very
diverse, In [1,2}, multiple Lyapunov functions are in-
troduced and a result for the stability of a switched
system is established. In [9], linear matrix inequality
(LMI) problems are formulated for the stability anal-
ysis of switched systems consisting of linear subsys-
tems. The LMI approach (see, e.g. [4,9]) proves to be
a very good way to determine sufficient conditions for
the stability of switched systems with affine subsys-
tems. Other related topics can be found in the survey
paper [5] and the references therein.

Another important issue is the synthesis problem
on how to derive stabilizing switching laws. Thus far,

0167-6911/99/% - see front matter (€) 1999 Elsevier Science B.V. All rights reserved.
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such results are quite rare, especially for high-order
switched systems. In [9], a “region partition™ proce-
dure is mentioned, which is relevant in this regard.
Actually, this problem was formulated in [9] as an
LMI problem. The partitioning is possible if a solu-
tion to the LMI problem can be obtained. In many
cases, however, the LMI problem turns out to be
quite complicated and the existence of a solution can
not be guaranteed. Note that another approach to the
problem of robust stabilization via controller switch-
ing was presented in [10]. In [11], conic switching
laws were proposed to study second-order linear
time-invariant switched systems, and for switched
systems whose subsystems have unstable foci, both
necessary and sufficient conditions for stabilizability
were established. This method can also be extended
to study switched systems consisting of LTI subsys-
tems not necessarily with foci (see [12]). We point
out that by following the procedure in [9], even for
a given second-order switched system consisting of
two linear time-invariant subsystems, the system still
may or may not be stabilizable if the LMI problem
has no solution. This reinforces the fact that the
approach involving LMI yields only sufficient condi-
tions. Clearly, necessary and sufficient conditions for
second-order LTI switched systems have advantages
over the existing results in the literature.

In the present paper, we study the robustness prop-
erties of the conic switching control laws. For LTI
switched systems, we know from Xu and Antsaklis
[11] (refer also to Section 2) that the conic switching
control laws rely heavily on the switching informa-
tion at the boundaries of certain conic regions. It has
not been shown rigorously whether conic control laws
can still stabilize an entire switched system if the
switching boundaries are not precisely reached when
switching occurs. Also the question whether or not
the stabilizing properties will be preserved in the
presence of perturbations, either vanishing or nonvan-
ishing is not answered. The answers to the above ques-
tions are affirmative and are given below. We show in
Section 3 that for LTI switched systems the conic
switching laws are endowed with a certain kind
of robustness property, either in the sense that
these event-driven control laws have certain flexi-
bility on switching regions, or in the presence of
vanishing/nonvanishing perturbations, or a combina-
tion of both.

In addition to the above, in a more interesting prob-
lem we ask whether or not we can determine conic
switching laws for nonlinear switched systems and

whether or not the conic switching laws are still robust.
We will show that the answer to this question is also
affirmative. For a class of second-order time-invariant
nonlinear switched systems whose linearized subsys-
tems have unstable foci, we propose a conic switching
law in Section 4 and show that this switching law not
only locally stabilizes the entire system, but also pos-
sesses robustness properties similar to those discussed
in Section 3.

To demonstrate our results, we present some nu-
merical examples along with simulations in Section 5.

For clarity of presentation, we primarily addressed
in the present paper switched systems consisting of
two subsystems with foci and of opposite directions.
We point out, however, that similar results can also
be established for more general second-order switched
systems discussed in [12].

2, Conic switching laws for LTI switched systems

In the interests of completeness and clarity, we sum-
marize in the present section the conic switching laws
proposed in [11,12] for switched systems consisting
of two subsystems with foci. As in [12], we say thata
subsystem is of clockwise (counterclockwise) direc-
tion if starting from any nonzero initial condition in
the phase plane its trajectory is a spiral around the
origin in the clockwise (counterclockwise) direction.

Consider the switched systems described by ¥(¢) =
Aix(t), i=1,2, whose subsystems are both assumed to
have unstable foci. Let x=(x,x; )" be a nonzero point
in the ®R? plane, and denote fi(x) = A4,x = (a;,a2)",
fax) = Aox = (a3,a4)T. We view x, f| and /> as
vectors in R? and define the angle 6;, i = 1,2 to be the
angle between x and f; measured counterclockwise
with respect to x {8, is confined to —r £ 8; < 7). Thus,
0; is positive (negative} if f;, as a vector, is to the
counterclockwise (clockwise ) side of x (see Fig. 1(a)).
Also as in [11], we define the regions

Bio={x| - n <8< - 5

or Z<8,(fi(x)) <}

={xIxTfitx)=xT4,x<0}, i=12,
R T
Ew={x - 3 <0(ixn <3}
={xlx" filx) =xT4,x20}, i=1,2.

Clearly, the interior of Ej5 (E,, ) is the set of all points in
the R? plane where the trajectory of the ith subsystem
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Fig. 1. (a). The angle 6. (b). Figure for Case 2.

would be driven closer to (farther from) the origin if
the subsystem evolves for sufficiently small amount
of time starting from the point.

To design stabilizing switching control laws, we
identify the following two different cases: (Case [}
two subsystems are of the same direction; (Case 2)
two subsystems are of opposite directions. In accom-
modation with the subsequent discussion, without loss
of generality, we only discuss the results for the lat-
ter case, assuming that subsystem | is of clockwise
direction while subsystem 2 is of counterclockwise
direction.

The basic idea for determining an asymptotically
stabilizing switching law is motivated by the observa-
tion that in any conic region where 0, | + |th| =7 (see
Fig. 1(b)}, the following trajectory will be bounded,
where the trajectory starts from x; in the conic region
and evolves following subsystem 1 and then switches
to another subsystem upon intersecting the boundaries
of the conic region. This basic idea is formalized be-
low. Let

Q) = EsNEy, 2 = E N Ey,

B =E,NEwN {xla;a; — ajay 20},
y=E,NEyN {xfa3a3 —aay SO}.
Q=FE,NExnN {x|aas — ayay =0},

Qg = E3y N Exy M {x|ara; — ayay <0},

from Xu and Antsaklis [11] we have the following
‘esult concerning the stabilizability of the switched
system.

Theorem 2.1. The switched system X)y=A;x(1), i=

+2. consisting of 1wo subsystems with foci and of
spposite divections is asympiotically stabilizable if
nd only if Int(£2)) U Int(23) U Int(2s) # 0, where
n($2) denotes the interior of set Q.

X2 ¢

Xy
XL

X,
L,
x,
x,

8o

X

Fig. 2. Switching happens on the boundary of the safe region ©:
fy and /.

Conic switching law: First, by following sub-
system 1, force the trajectory into the interior of one
of the conic regions $,,Qs, Qs (there must be one
acvailable if the system is stabilizable according to
Theorem 2.1), and then switch to another subsystem
tpon intersecting the boundary of the region so us
10 keep the trajectory inside the conic region.

3. Robustmess analysis of conic switching laws for
LTI switched systems

In the present section, we investigate the robustness
problem of the previous proposed switching control
law for LTI switched systems.

We call the conic regions in Section 2, @,, Q;, Qs,
safe regions, since the existence of nonempty interior
of such regions guarantees the existence of a stabiliz-
ing switching control law.

The reason that the conic switching law applies
lies in the fact that there exists a safe region  (see
Fig. 2) such that for every point x, €/, C 9, by
following an appropriate subsystem (for example,
we assume subsystem A4, in the subsequent discus-
sion), the trajectory will intersect another boundary
at x; €/, C 04, then switch to another subsystem
A until it intersects /) again at x; € /;. Since each
subsystem is a second-order LTI system, we can see
that if there exists a switching control law which
stabilizes the entire switched system then the follow-
ing condition is satisfied: x; = gx, for some constant
0 < ¢ < 1. From this, we know that if such a switch-
ing control law exists, it exponentially stabilizes the
entire switched system.

In this section, we first study switched systems de-
scribed by

¥E)=A;x(t), =12, 3.1
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where 4; and 4> are with foci and of opposite di-
rections. Without loss of generality, we assume the
following conic switching taw: for any xy € R?, sub-
system A is first activated until the trajectory inter-
sects /|, and then proceeds following the procedure
described above.

Before going further, we introduce the following
lermmas.

Lemma 3.1. Let X(r) = Ax(t) be a LTI system with
Jocus, where

"=[—aﬁ5]'

The solution with x(to) = xy # 0 has the follow-
ing properties: If « < 0 and B > 0, then the solution
x(£)y=e"")xy is a logarithmic spiral that converges
to the origin clockwisely, If x <0 and § < 0, then
the solution x(t) = e"U'"")xy is a logarithmic spiral
that converges to the origin counterclockwisely; If
« > 0and B > 0, then the solution x(t) =el~"xy is
a logarithmic spiral that diverges to co clockwisely,
If e > 0 and B < 0, then the solution x(t) = e ~lx,
is a logarithmic spiral that diverges to o counter-
clockwisely.

Proof, See [12). It follows also from the proof of
Lemma 3.2 0O

Remark 3.1. For an LTI system ¥(t) = Ax(¢) with fo-
cus, if 4 is of general form, then by well known results,
there exists a nonsingular matrix P (with detP > 0,
see [12]) such that

P*'AP:[_“ﬁ f]

Using the linear transformation x = Py, we can al-
ways map the system trajectory properties in the Yo~
¥, plane into the X;—X, plane. By the property of non-
singular linear transformations, it is easy to see that
the solutions are also spiral-like in the X3-X, plane.

Lemma 3.2, Consider an autonomous system
X(t) = Ax(t) + g(x(2)), (3.2)

where g€ C, Le., g is continuous, and g(0) = 0. For
initial value x(ty) = xq # 0, let T > 0 denote the
time required for the solution of system ¥(t} = Ax(1)
to move between two rays I, and I, once (see. e.g.,
Fig. 2) and let T + AT > 0 denote the time period
the solution of ¥(1) = Ax(1) + g(x(t)) takes to move

between o rays Iy and I once (if possible). We

have the following properties:

(i) There exists a constant vy > 0 such that when
0<v<vwy, then for every £20, whenerer
lgColl S vl|xl| + ¢ is satisfied, there exists a con-
stamt K > 0 so that when the trajectory is oui-
side the disc Oy, it proceeds along a spiral-like
curve similarfy to the solution of ¥(t) = Ax(t).
Furthermore, if £ < 1. for a trajectory outside the
disc Oy 7 there exist 1wo constants C|,C> > 0
(independent of v) such that |AT| < C\v+ C2\/E.

(i) If lime_q ||lgC/lIxll = O, then there exists a
constant rg > 0 such that when 0 < r < rg, each
solution starting inside O, & {x € R%: |x| < r}
goes towards the outside of O, (or converges
to 0) along a spiral-like curve similar to the
solution of (1) = Ax(t).

Proof. Without loss of generality, we only prove the
case when

A=[—aﬂ£]

with 2 > 0, 8 > 0. (If 4 is of general form, the proof
follows similarly, by Remark 3.1, and the fact that the
traveling time between two rays remains the same in
both the original plane and the transformed (mapped)
plane.) By Lemma 3.1, we know that all the solu-
tions of X(+) = Ax(t) diverge to infinity clockwisely
along a logarithmic spiral. Changing the coordinates
to polar form, we have x () = p(¢)cos 6(¢), x2(t) =
p(2)sin0(t). Let g(x) = (g1(x), g2(x))" and express it
in polar coordinates form: g;(x)=g;(p, #), and g»(x)=
g2(p.8). Substitute the expression of x;(¢t), i = 1,2,
into X(¢) = Ax(t) + g(x(¢)), we obtain that

pcosd — psing- 8 =apcost + Bpsin0 + gi1{p, 6),
psind+pcosf -6 = —PpcosB+apsing + g (p, 0).
Then
p=ap+cost-g(p,0)+sind-g,(p.6),
b=-p+ ﬁ(—sin & g1(p,0) +cosd - ga(p, 0)).
Since
lcos 8 - gi(p,B)+sin 8 - g2(p. 0)|
< Vcos? §+sin’ § - \/gf(p,ﬂ) + g3(p. 9)
=[lgtoll <vllxll + e=vp +e,

and similarly, since

| —sinG-g,(p.0)+cos @ g2(p.0)| Svp+e,

e e D S S ————— T S
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we have

(x—v)p—egp<(a+v)p +e,

e . £ (3.3)
~B-v—-<O0<-B+v+ L
d p J p

Now clearty, if we let vy = imin{a, B} and K =
4/min{a. fi}, the solution of (3.3) diverges to ¢ along
a spiral-like curve as the solution of ¥(r) = Ax(1).
Furthermore, denote the angle from /> to /| by @,
(&0 > 0, see Fig. 2). It is clear that it takes By/f time
for the trajectory to move from /, to /,. Now, by the
second nequality of (3.3 ), we have (- — v—gfpT+
AT)S - O S(~B+v+e/p)T + AT). Therefore

& on
[AT| Smax{ ﬂ—v—s/p__ﬂ_ .
& &
lﬁ+v+e/p B }
Ou(v + ¢/p)

N ETET)
For v<vy and the above X, if p2K\/ezKe (for

£ 1), we have that

7l < Oov+ (/K )/E)
T B(B2 - (1/K)WE)
Oo(v + (B/4)V/%)
B x (B/4)
%’(41' + BVe)

C]V‘FC;\/E.

<

Pl

e

Therefore, the results of ( i) follow. For (ii), similar
arguments can be applied by using “¢ — 6" arguments.
Due to space limitations, we omit the details. O

We also need the following lemma for the analysis
on nonlinear switched systems in Section 4.

Lemma 3.3. For systems described by ¥(1) = Ax(1)
+ 9(x(¢)} and inirial condition (19,xp), if g€l
Svlix|| +e, then it is true that |[x(e)] <( [lxoll + /]| 4]|
+ v)e(ﬂ-“||+0(l—~'o] - E/HA” + v

Proof. Write the equation in the form x(r) =x(tn) +
ff;(Ax( )+ g(x(t))dr, and then use the Gronwall in-
equality (see, e.g., [6]) to establish the above inequal-
ity. Due to space limitations, we omit the details. [J

Xz

). ¢

Fig. 3. Switchings oceur within the conic regions R) and R,

3.1. Robustess for switchings only

Robustness Question 1: In view of the previous dis-
cussion, it is required that switchings occur exacily at
times when a trajectory intersects /) or l5. Can this
requirement be slightly relaxed? This gives rise to the
following question: are there any marginal conic re-
gions R, and R; that include /, and {2, respectively
(see Fig. 3), so that any switchings that happen in-
side these two regions will lead to exponentially stable
system?

It is clear from Fig. 3 that such marginal regions
are characterized by angles 6;>0,4j=12, and
in fact R, = {xeR’|x = [rcosf,rsind]", 8, —
02 <8<8; 46, 0<r< oo}, i = 1,2, where 8,
is the angle between /; and X, 1-axis. We need to show
the existence of B;; that guarantees the robustness of
the switching control law.

To answer the above questions, for solutions begin-
ning from any initial condition (f0. X0 ), we assume that
the trajectory follows subsystem A, for ¢, — o time un-
til it switches at x| = e?*'~%)x, € R, Then it follows
subsystem A, for t; — ¢, time until it switches at Xy =
el =iyl & Ry Next, it switches back to subsystem
Aj for t; —£; time until it arrives at xy=eddli=tiy e g
and so forth.

Assume that from any point x; € /|, it takes 7 time
toarrive atx; =e"1 x| & [ while following subsystem
A4, and it takes 7> time to return from X to f; at
Xy = ety < el Tiy e, Clearly, T and T;
are independent of the choice of x,. As before, we
assume that x; = gx; for some constant 0 < g <1,
That is, e*T:e"tTix; = gx;, which implies that ¢ is an
eigenvalue of matrix e':Te1 71

It is also clear that there exist quantities Ay, Aty
Arp, Aty, which might be negative, and points
X20,¥22€1> and x;,x3&€/; such that x, = ety
€ h.xé = e’"AlZ',\‘y. X3 = e'*i‘\’ﬂx; €l v =
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gtitli—an s €14, .\’3 =C'h'h-‘.‘(3, where 1+ — 1 = A +
T4+ An Lt —th =AM+ T+ Al

Denoting 0 2 (0;,0,2,021.0) (see Fig. 3), we
have the following

Observation: There exists a nonnegative continuous
function (@) =0 satisfying limy_ (@) = ¢(0) =0
such that

max{ Al AL AL, AI3|}-<..C(9).

This observation follows intuitively from the idea
given in the proof of Lemma 3.2.

Now due to the quasi-periodicity of the switching
law (i.e., it switches back and forth for almost the
same periods of time T, and T, respectively), it suf-
fices to show that there exist switching regions R, R
(i.e., 011,612, 82,62 =0) such that no matter when the
switchings occur within regions R| and R», it is true
that

34

with a constant 0 < ¢; < 1. (3.5}

31 < g flxq l
To see this, we compute

_‘-; = @t !:)e‘l(-':—ll )x’l
- eA;('_\f13+T1+A.r3 )CAI(L\“ + T+ A )x{

- erf;(;)n':g-i—.ﬁh)e.-h Hh 4T e.-|| (- )xl;

€

A Ara+An) AT

=g [+ [+
Al At An Y AT ATy oAl S0+ Ary) '
+e 1ha e (e an 1 __I)xl

A T‘;

— eA:(Af33+AiJ )e,-rz ' e.-[,?‘,xl

+ etldm+anlatal i Ty - JEIEY )t1

4t dmrAn) gt Tagh T (eA.(AI|+AJ:|) _ I).x’,
—= qcf‘:(-—\f::+.ﬁf3)e-‘f|3.r x.;
+ e_-l;[.-_\:;g-f»'_\r;)e.-l;T;eA‘.T (1 - e.l,An )x.;
+eAz(.'.\I::+._\rJ )eA_‘T;e.{.T- (e.—l (An+amy) _ I)xi]"

where I denotes the identity matrix. It is now not dif-
ficult to see that there exists £ > {0 such that when

max{|At |, |Atz |, |Ata|, |Al|} e,

we have

”e.-lglAI:;+_\!.s)e.-l|;‘.r| " <1+ (l _ q)/gq,

et dmeh e i) _ oAy <} — g)/8,

e (A m Mgt Tt Ti (A A0=3) _ [y < (] — g)/4.

Therefore, [|¥il| <(¢+ (1 — g)/8+(1 —q)/8+ (1 —
@) Mx( || = (1 + g)/2]x) || If we let g, = (1 + ¢)/2,
then since ¢ < ¢, < |, relation (3.5} holds.

Now by (3.4), we know that there exist con-
stants 0], 87,.09,.6%, >0 such that whenever

R:
X2 Rs ’\‘\ Z,

Fig. 4. Switching happens inside the strip regions R3 and Rj.

0<8; <00, i.j = 1.2, c(0)<e. Therefore, (3.5)
holds.

By induction, whenever switchings occur within
these conic regions, we always have that ||x5, . || <
(1 + g)/2|xb _,ll, for ke N2{1,2,...}. Therefore,
Xy — 0 as k — o0o. Since the trajectory between
¥y _, and xj ., for k20 is uniformly bounded by
[|x3_ |l (denote x”_, =xo) and since the traveling time
periods are uniformiy bounded as well (for example,
we can pick a bound like max {7, 2(T; + T2)} (where
Ty is a uniform upper bound of ¢} — # for any initial
condition (#y,xp}) for smatl 8, i, j=1,2), we conclude
that ||x()|| <ce((1 + ¢)/2) ~"]|xo|| for some constant
¢o > 0 (which depends on 8;;, i,j = 1,2). Therefore
the entire switched system is exponentially stable. This
proves that the conic switching law is robust in the
sense of Question 1. O

Robustness Question 2: 1f switchings happen inside
the strip regions Ry and Ry (see Fig. 4), the best we
can hope for is that the switching control law would
drive the trajectory to the vicinity of the origin expo-
nentially, but not to the origin. Since once the trajec-
tory enters into the dark shaded region (see Fig. 4),
either subsystems can be chosen, and clearly the arbi-
trary choice of switching may force the trajectory to
go outwards.

The reason that we can force the trajectory to move
to the vicinity of the origin is simple. From the answer
to Question 1, we know that there exist 9,-1 >0, ij=
1,2, such that when switching happens inside conic
regions R and R, the trajectory converges to the oni-
gin exponentially. Now pick d;; > 0, ¢.j = 1.2, suffi-
ciently small (the choice depends on how close to the
origin we require). From Fig. 4, we know that there
exist intersecting points E, F, G, H. Clearly, the

i, Ly

Zrri T Pmi
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trajectory will finally move into the polygonal region
OFEFGH.

Once the trajectory enters the polygon OEFGH,
it may leave this region if we still employ the strip
switching control law. For this reason, the robustness
property of the first case is of much greater interest to
us. In the following, we will mainly discuss the robust
problem of the first kind.

3.2. Robustness for perturbations only

In this subsection, we will study the stability prop-
erties of the switched systems in the presence of
perturbations, including both vanishing and nonvan-
ishing perturbations.

Theorem 3.1. For the switched system described
by (3.1) where A\.4; are with unstable foci and of
opposite directions, suppose that there exists the
aforementioned conic switching law that makes
(3.1) exponentially stable. Then for the perturbed
switched system described by

() =A;x(t) + g, (x(+)), i=1,2, (3.6)

and the switching law given below:

Switching Law (event-driven): For any x,€ R,
Jollow 4, until the trajectory intersects I, on x| at
n, then alternatively switch on subsystems | and 2
when the trajectory crosses 1) and I, respectively,
where I\ and I, are determined by the linear part of
subsystems.

We have the following conclusion:

(a) There exists a constant vy > 0 such that whenever
0 < v < v, if |lgi(x)|| < v||x]| (vanishing perturba-
tions) is satisfied for j = 1,2, then the switching
law stabilizes exponentially the entire switching
system (3.6} with the following robust property:
there exist two conic regions in which switchings
are allowed as discussed in Section 3.1.

{b) There exists a constant 0 < £, <1, such that
whenever |lg;(x}{| <e<# (nonvanishing pertur-
bations}, the switching law will exponentially
drive the trajectory to an open disc of radius K¢
for some constant K; > 0, i.e., Ok,e

Forgi{x),asin (a} and (b}, the switching law is robust

in the sense of Robustness Question 1 discussed in

Section 3.1.

Proof of Theorem 3.1. We first prove (a). From
Lemma 3.2(i), there exist small constants vg when-

ever v<vg, such that the solution starting from
{fo.xy) will intersect /) at x| =x(r, ) by following sub-
system 2. If the system switches to subsystem 1, the
solution will intersect /1 at x; = x(3). If the system
then switches back to subsystem 2, the solution will
intersect /) at x3 = x(13). Continuing in this manner,
we have x| =x(ty.. ) on /; and xy =x(ty)on I,
For exponential stability, we first show that there
exists v > 0, such that whenever 0 < v < vy, then

sl <gillxi]|  for a constant 0 < ¢, < 1. (3.7

Let 7\ (resp., 7> ) be the time period for the trajectory
to move from /| to /; (resp., from /; to /) by following
subsystem A, (resp., 42). Since £, —1; = 71+ Ay, then
1 —t;=T> + Ats, and by Lemma 3.2(i) (with ¢ = 0),
there exist constants vg > 0 and C > 0 {independent
of the choice of v), such that whenever 0svsw, it
is true that Ay; £Cv, i=1,2. Write

I
x(t) =M + f e =%g, (x(1)) dr,

n

T3
x(ny) = et g(4) -i—f ey (x(1))dt
i

— e-":(!s - )efh(l.-—n'l ].‘E(L'] )

12
+e-4:(f3—f:)f efh(f: ”g.(x(r))dr

n

I3
+f et g (x(7)) dt
I
i qu;'_\l;x(t! ) + e.-ly_\l:e.-f:Tge:hT](e.»h.ﬁ!. - ])X(ﬁ )

L&
+c.41(f3—i:l[ e-"l(’:"f}gl(x(-r))dt

n

3
+ f e Ngy(x()) dz, (3.8)
LH
since e e Nix(1)) = gu(ny).

There exists v| < vy (which will be further specified
later), such that whenever 0 < v< vy, it is true that

max{[As|.|An} Smax{T), T»}.
l-q

A Ar -~<...l )

e+ L

: -
”e‘_,_\_\,_,c,.;.yze.; T,(c_.r Ar ___])| S_.4_‘]

Let T=2max{7;,T>} and /‘.émax{ﬂA,i,HAgH}.
We know from Lemma 3.3 that for refe.m],
el e~ llx(t) )], while for £ € [, 131, [Ix(2)] <
eI < T (e )|l. Therefore, by (3.8),
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we have

1+
2

+ ‘,Te).r L @vs }T“.\’(ﬁ )”

_ (l ;-q v TeiT el =T (i

q ; AT (i
flets)ll < Il + ve” - Te e T |lx(n))

+e(,.+;..r)) ()]l

Pick v, sufficiently small such that whenever 0 < v
< vy, it is true that (1 + g)/2 + vTe el (eiT +
e ITY3(1 + ¢)/4. Then for 0 < v < v,, we have
bl <gullaill, with 0 < g =3(1 + g)/4 < 1.

By induction, we can show that [|xa: . || g ||x2e -1}
for k2 1. Therefore x(#;) — 0 as ¥ — oo. Since
there exists a constant ¢ > 0 such that for ¢ € [t _,

by (=) = fo), it is always true that |x(¢)||<
cllx(t2—1 )|, and therefore, (a) is proved.

Now for case (b), by Lemma 3.2(i) (with v=0), we
know that for any & > 0, there exists a constant X such
that outside Oy, the solutions of subsystems 1,2 be-
have like their corresponding linear subsystems. Sup-
pose that for ¢ € [¢. 3], the trajectory of the switched
system does not go inside Og;. Then for

te[to. i) Uet by =ty + Tolxo, g2)),
lix (N < (letro)l| + e[| Jel 21 Totws2) — g1 4.
From (3.8) we have

-hAnxU' )+ el2idn e.4grge.4.r.(e.4.A.v.

x(t3) =ge™""

{2
—f)x(t|)+e‘43(”_'3)/ e.—hlf:—r)gl(x(r))dr

Ul

13
+/ e =T ga(x(1)) dr.

f

By Lemma 3.2(i), we know that there exists a suffi-
ciently small constant ¢ and a constant 7 such that
whenever ( < g < gy, it is true that

max{T. , Ah . Tz, A[g. T{)(.\‘o. [25] )} = T.
le™ 2=l <1+ (1 - ¢)/4g,
fle.v!;;_‘.rge.-lgf'_-e,-‘l'. T-(e.h_\l. 1)| --<..(l _ q)4

Therefore, we have that

lx(e)]| <g(1 + (1 — q)/4q}||x(:)|
+(1 = g)ax(e)l| + 2Te* e e

2T e 2(1 + ¢)/2]x()]| + Cae.

Since for t € [1y, 41].
et < ClxCo)lf + &[] [yl 11Tt o2)
&/l & T [lx(ro)|| + Cae,
by induction we have that
e~ <L+ @)/ 2) Clieen)l
=2C3e/(1 — @)+ 2C3¢/(1 — q)
<+ g)/ 2 [ix(r)ll + 2Cse/(1 — q)
<1+ ¢)2) e |Ixoll +(Ca + 2C3/(1 = g))e.

For t € [tap—1. 251 ], |IX()IF< Cs|x(eax—1 )| + Cos al-
ways holds for some constants Cs, C > 0. We con-
clude that the trajectory will finally enter into a disc
O, of radius K¢ for some constant K, > 0,

The argument for robustness follows a similar ap-
proach as was done in answering Robustness Question
t in Section 3.1. Due to space limitations, we omit the
details, O

Remark 3.2. For more general perturbations satisfy-
ing | g:(x}|| < v|'x|| + &, we can establish similar results
for the switching law as was stated in Theorem 3.},

Remark 3.3. Another switching law which is
event-driven plus time-driven might also be worth
mentioning here. This law is stated as follows: for
any xp € R?, follow A, until the trajectory intersects
!, and then follow alternatively 4, and 4, for time
periods 7 and 7>, respectively (T} and T; are known
a priori from the precise conic switching law). Un-
fortunately, this switching law does not stabilize the
entire switched system because of the occurrence of
accumulation of errors in switchings. Example 5.3 in
Section 5 demonstrates this phenomenon, which also
implies that a time-driven control law may eventually
cause trouble to the entire switched system due to the
accumulation of switching inaccuracy.

4. Stabilizing switching control law for nonlinear
switched systems

In this section, we study the stabilization problem
of nonlinear switched systems. To accomplish this, we

S s,

R T e i t——

T g T

will use linearization. The problem of interest is that |

if each subsystem is locally exponentially unstable,
then is it still possible to determine switching laws to
stabilize the entire switched system? If affirmative, are

1

these laws robust in the sense discussed in Section 37 |
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In the present section, we study only local exponential
stability.

As before, we will study only the following sample
problem. For the remaining cases, similar approaches
may be pursued. Consider the second-order nonlinear
switched system described by

W) = filx(1)) = Aix(1) + g(x(0), i=1.2. (4.1)

where fi€C,ie., f is continuously differentiable,
S(0) =0 and 4, is the Jacobian of [ at the origin,
ie., [6filx)/ex],_q. Clearly, ¢, € C'. 4:(0) = 0 and
lim,_g [|g,()f|/]|x]| = 0.

Lemma 4.1. For the system described by X(t) =
A + g(x(1)), where g€ C' and lim, _, Ilg¢o)l/
llxlt=0. for every & > 0 and any given constant T > 0,
there exists § = 8(¢) > 0 such that Jor any initial
condition (ty, o). whenever ||xo|| < eI+ potds
JSor some constant $< 3. it is true Jor t€ty.ty + T)
thar

Ihe(e)ll s =57 el < 4. (4.2)

Proof. Since lim,—o [|g(x)||/||lx]| = 0 and geC,
then for £ > 0, there exists & > 0 such that lg(x)] <
gllx|l whenever ||x|j<d. Suppose that (4.2) is not
true. Then by continuity, there exists a ¢, € [to. 0+ T)
such that |lx(¢)} < e+ |ixo || for £&{tg,4,) and
(el = eI || Hence, lg(v(e))] <élfx(e))]
for t € [ty,£)]. Also, we have for s € [to.41] that x(7) =
Xo + L;(A.Y(T) + g(x(z)))dr, so that ||x(¢)]| < ||xo|| +
j:]( l4]| + £)|lx(t)|| dz. By the Gronwall inequality we
obtain that [lx(1)}] < et ll==Xr=n)jxg | < etltllear
which implies that (|x(t) )| < e!ll+=7[|x ) which is
1 contradiction. We conclude that Lemma 4.1 is true.

0

Theorem 4.1. For the switched system described by
4.1), where 4, and A> have unstable Joci with op-
1site directions, suppose that there exists a conic
witching law that renders the linearized System
(t)=dA;x(r), i=1,2 exponentially stable. Then the
witching law proposed in Theorem 3.1 will locally
xponentially stabilize the nonlinear switched s Vstem
4.1). Furthermore. the robustness properties in the
ense of Theorem 3.1 and Remark 3.2 are preserved.

‘roof. Due to space limitations, we only present a
<etch of the proof of exponential stability of the
wvitching law in case {a), Other resuits can be estab-
shed similarly. The main idea follows the technique

developed in [3] and the treatment indicated in Sec-
tion 3.

First, by Lemma 3.2(ii) we know that there exists
adisc Oy, (with radius &, > 0) inside which the solu-
tions rotate outwards like the solutions of I()=Aax(r).
From the proof of Lemma 3.1(ii), it is not hard to
see that there exists another smaller disc 0., C Oy
(02 <4d()and a constant Ty > 0 such that the solutions
of (4.1) with initial condition (fo.x0), x0 € G;,, inter-
sect /| within finite time less than Ty by following
subsystem 2, and such that the entire trajectory stays
inside O, after switching 4, on (from /, to /») and
A2 on (from /> 10 1)), consecutively and only once.
Let T\ and T denote the activating time for the lin-
earized switched system ¥(1) = A;x(r), as before. As
in the proof of Theorem 3.1, we have

4]
x(n) =e'*h vy [ e =g () dr e,
Jy

[

(4.3)

da
x(r)=eMEv() + f etV (x(1))dr e I,
f
(4.4)

13
x(h) =ttty 4+ f e g (x(1))dr €/
i
=qe.-|-_\r:x(tl ) + e.»h.\rge.ﬁrge.-hT|(e,-l'|.’_\l| _ .[)X(ﬁ)

4]
_e.-f_'l'h—-'_')/ eA {f ‘t)g,l(x(,r))cl,r

{)
3
+ / ety (x(1)) dr, (4.5)
f
where 1, = ¢, + I+ Ay, 1 = tH+ T + At and
e Tet Tix(y) = gx(1)) with constant 0 < g<l Let
A= max{||4,]],]|42||} and TS 2max{T,,T\.T:}.

By Lemma 3.2(i), there exists a constant vg > 0,
such that whenever 0<v < vy, if [lg: || < vilx)l, we
have ||Ay|| < Cv. Now pick v<iy sufficiently small
so that

max{|Anl, |Anl} <max{T,. T), T3},

1 -

LYY q

e gl 4 1,

e <1 + rp
Ile.'ngl:e.-f:Tge.-hT](e.*hAh _ ])”"-<-. 1 ;q

and s = (1 4+ ¢)/2 4+ vTe** (] + 7)) < 1. For the
above v, there exists a d > 0 such that [tgiCe Y < vilx|
whenever [lx|l<4. Pick d; = min{8,d,}e=3t"~mT
Then for every xg € O;,, we have by Lemma 4.1
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that
(1)) < e x|
< min{é. 8} fors=st <. i=012

Therefore,

()| <1 +q)2[x(0)]
+Tve ¥ ™ x| + Tve” [ x(2)]

<1 +q)/2 + T (1 + M) x(n)]

=s|x(t).

By induction, since 0 < s < 1, it is readily shown that
flx(r)|} €min{d,d, } holds forall # >, and the solution
approaches zero exponentially.

We have proved that the proposed switching law
locally exponentially stabilizes the nonlinear switched
system (4.1). For the robustness analysis, we can mod-
ify the arguments used in answering the Robustness

Questions | and 2. [

5, Numerical examples and simulations

Example 5.1. Consider the switched system consist-
ing of two unstable subsystems with foci and of op-
posite directions, given by

(1) = 4;x(0),
5 -8
4-3]"

where
1 3
A= [—3 1]’ A=
After some calculations, we can determine that the in-
terior of Qs is nonempty and Qs is bounded by the
two lines [, : x> = 0.9087x, with angle 42.261" and
I» : x» = —20.9087x, with angle 92.738". The tra-
jectory of the system (starting from xp = [2.0,3.0]7)
under the conic switching law is shown in Fig. 5(a).
We determine that ||xa] = ¢|lxif]. 4 =0.786, T} =
0.293, and T>=0.2269. Now if we let max{| At |, | Atz
|At:], |At]} £0.0022, we find that

[t £ 1.0244 < 1.0340 = 1 + (1 - ¢)/84.
e.—!g(.‘ll::-‘rﬁ-’.\ )e.-l: T:e.'h H (] _ e.-I|A|| )“

£0.0263 £0.0267<(1 — ¢)/8.
-i:i.‘l-'::+éls)eA‘:T:e-'th(5-41($-'|~-\f:|J — 1)“

£0.0526<0.0535 = (1 — ¢)/4.

Corresponding to the above result, we find that if we
choose conic regions R) and R> with 8, =8, =0, =
., =0.2269", then according to the discussion in Sec-
tion 3.1, the switched system is robust with respect to

(5.1}

e
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variations in switchings. The trajectory of the system
(starting from xy = [2.0. 3.0]") in this case is shown
in Fig. 5(b).

Since the estimates in Section 3.1 are very conser-
vative, we may try larger disturbances than the one
given above. If we choose conic regions R and R»
with ), = Ga=0- = 02, =3.0 , then we will find that
the system is still exponentially stable under the conic
switching law. The trajectory of the system (starting
from xo = [2.0,3.0]7 ) is shown in Fig. 5(c).

Example 5.2. Consider the nonlinear switched sys-
tem whose linearizations are the switched systems in
Example 5.1. Subsystems 1, 2 are described, respec-
tively, by

Xy =x + 3x:+ .\‘I(xf + ,'c?z_).

Xa=-=3x)+x2+ .tz(xf +.\'§)

and

X = 5x — 8oy +x§.

.\53 =4x, — 3.\72 + X7,

In the above two subsystems, the nonlinear terms can
be viewed as vanishing perturbations to their corre-
sponding linearized systems. Using the switching law
proposed in Section 3.2, we find that the switched sys-
tem is locally exponentially stable (Fig. 6(a) shows
the trajectory starting from xo = [0.05,0.08]).

Example 5.3. To show that the switching law stated |

in Remark 3.3 in Section 3 may not exponentialty sta-
bilize a switched system, we consider the same non-
linear switched system as in Example 5.2. Fig. 6(b)
shows the trajectory starting from xp = [0.05,0.08]".
We find that the switched system is not locally expo-
nentially stable.

Example 5.4. Consider the nonlinear switched sys-;

tem whose subsystems are subsystems in Example 5.1 |
with nonvanishing perturbations

¥ =x1 + 3x; + 00071,
X = =3x; +x2 + 0.0071

and

X = 5x| — 8x7 + 0.0071,
X2 = 4dx; — 3x3 + 0.0071. i

Here ||g.(x)|| = £ = 0.01. Using the switching law pro-
posed in Section 3.2, we can determine that the system.
trajectory can be driven exponentially into the open:
disc of radius 0.0198 (Fig. 6(c) shows the trajectory:
starting from x = (0.05,0.08]"). {
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Fig. 5. Trajectories for Example 5.1,
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Fig. 6. Trajectories for Examples 5.2-5.4.
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