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Abstract 

In this paper, a new approach for modeling and con- 
trolling hybrid systems is presented. Discrete abstrac- 
tions are used to approximate the continuous dynam- 
ics and emphasis is placed on the nondeterministic na- 
ture of the abstracting models. The regulator problem 
for hybrid systems is formulated and an example of a 
robotic manufacturing system is used to illustrate the 
approach. 

1 Introduction 

In this paper, a new approach for modeling and con- 
trolling hybrid systems is presented. Discrete ab- 
stractions of the continuous dynamics are studied and 
the emphasis is placed on the nondeterministic nature 
of the abstracting models. Discrete-time models are 
used to model the continuous dynamics. The class of 
systems we are particularly interested in is the class 
of piecewise-linear systems [8]. Piecewiselinear sys- 
tems model interesting engineering applications and 
can be studied with existing powerful mathematical 
tools (6, '71. 

A great amount of research work has already been done 
in the hybrid systems area during the past decade. The 
approach presented in this paper has been influenced 
especially by the work in [l, 101 where a feedback ar- 
chitecture of a continuous plant with a discrete-event 
controller is utilized for hybrid control design. The 
problem of obtaining discrete abstractions of continu- 
ous systems has also been considered in 12, 3, 41. 

The main advantage of the proposed approach is that 
it provides a general framework for hybrid systems 
not only for analysis, but more importantly for con- 
troller synthesis. The notion of quasideterminism is 
used to characterize discrete abstractions that can be 
used for control design and is compared with bisim- 
ulations of hybrid automata. In order to develop ef- 
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ficient algorithms, we concentrate on piecewise-linear 
systems. However, the framework is valid for systems 
with more general dynamics. It should be noted that 
this framework allows the implementation of the anal- 
ysis and synthesis algorithms using existing software 
such as Matlab, Simulink, and Stateflow. 

The paper is organized as follows. A robotic manufac- 
turing system which is used to illustrate the approach 
throughout the paper is presented in Section 2. In Sec- 
tion 3, the proposed modeling formalism is introduced. 
In Section 4, the deterministic nature of the discrete 
abstractions is discussed. Algorithms for the compu- 
tation of the discrete approximations are discussed in 
Section 5. Finally, the regulator problem for hybrid 
systems is formulated in Section 6 and it is illustrated 
using the robotic manufacturing system example. 

2 Hybrid System Example 

A robotic manufacturing system (RMS) will be used 
to illustrate our approach. The system shown in Fig. 1 
consists of two robots whose task is to move compo- 
nents periodically from a parts ban to an assembly area. 
Each robotic arm is driven by an armature-voltage- 
controlled DC servomotor. Each servomotor is con- 
trolled by a local controller and the overall system is 
monitored and coordinated by a supervisor. The su- 
pervisor communicates with the local controllers via 
a standard computer network. The system described 
above is an experimental setup in the control lab at the 
University of Notre Dame. 

Our objective is the design of decision and control algo- 
rithms that guarantee the safe and efficient operation 
of the RMS. The control objective is to supervise the 
actions of the robotic arms to ensure that they will 
not enter the parts bin at the same time. The parts 
bin represents the critical section of the system and 
it is described by lei[ 5 0.1 where 8i is the angular 
position of the ith robotic arm. This problem is sim- 
ple enough to be described here, but also rich enough 
to demonstrate our approach. The safety requirement 
can be addressed using numerous approaches based on 
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Figure 1: Robotic manufacturing system 

logical models only that can result in acceptable solu- 
tions. However, there is an important need to investi- 
gate additional approaches that take into consideration 
the continuous dynamics in order to explore all possible 
solutions. 

3 Hybrid system modeling 

In this section, the proposed modeling formalism for 
hybrid systems is presented. The foundation of the 
model is the set-dynamical system [5). A set-dynamical 
system (SDS) is denoted as ( X ,  A, D, Y, M ;  f, g, m) 
where X is the state set of the system, A is set of control 
actions, D is the set of disturbances, Y is the output 
set, M is the measurement set, f : X x A x D -+ X 
is the state transition function, g : X x A x D -+ Y is 
the output function, and m : X x A x D -+ M is the 

Typical control specifications for hybrid systems are 
safety requirements that are usually formulated with 
respect to a partition of the state space of the system. 
A partition can be described by an equivalence rela- 
tion on the state space and is represented by a projec- 
tion function that assigns every state to its equivalence 
class. We assume that the partition defined by this 
map is appropriate for extraction of important infor- 
mation for the system and it will be called the primary 
partition. 

Consider the state set X of a SDS and define the m a p  
ping x : X -+ B(X) from X into the power set of X .  
The mapping K defines an equivalence relation E ,  on 
the set X in the natural way 351 E,x2 iff ~ ( 2 1 )  = 
x(x2) .  The image of the mapping x is called the quo- 
tient space of X by E ,  and is denoted by XIE,. 
Adopting this notation we can write x : X -+ X / E ,  
where K is understood as the projection of X onto 
XIE,. The mapping K generates a partition of the 
state set X into the equivalence classes of E ,  and will 
be called generator. 

More specifically, in this paper we are interested in the 
case when X = Rn and the generator is defined by a 
set of hyperplanes in R". This assumption is of sig- 
nificant practical importance since piecewise-linear re- 
gions arise in many applications. First, consider the 
collection {h,},=l,a ,..., f ,  h, : In 4 R of real-valued 
functions of the form hi(.) = gFz - wi, i = 1,2 , .  . . , L 
where gi E R" and wi E B. Let Hi = ker(hi) = {z E 
Rn : hi(.) = gTx - wi = 0) and assume that Hi is 
an (n - 1)-dimensional hyperplane (Vh,(z) = gT # 0). 
We define the function hi : Rn + {-I, 0 , l )  by 

measurement function. f -1 if hi(.) < o  
A hybrid dynamical system (HDS) is an SDS where the 
constituent sets consist of a continuous and a discrete 

0 if ha(.) = o  (1) 
1 if hi@) > 0 = t 

part. We assume that the continuous part is a subset of Then, the generator is defined by ~ ( x )  = 
a finite dimensional vector space and that the discrete [il(x), . . . , Although the generator has 
part is finite. The advantage of such a representation is been defined as x : R" -+ { -1 ,O ,  1)' there is a 
that, although it is simple, it provides the tools for in- bijection between { - l , O ,  1)' and the quotient set 
terconnecting heterogeneous systems via input-output X I E ,  (they are the same set). Since any other 
maps and for abstracting parts of the processes using symbols could be used in (1) to identify the region 
equivalence relations. the continuous state lies in, the image of the gen- 

erator will be denoted as XIE,. By the previous 
In this Paper, we restrict ourselves to a Class of SYS- construction, the hybrid system specifications can be 
tems that is characterized in the literature as piecewise- expressed as requirements of the output of the hybrid 
linear systems [6, 81 to facilitate the development of system y ( k )  = s ( z ( k ) )  E X I E ,  that represents the 
analysis and synthesis tools. These systems arise when equivalence c l a s  of the state s ( k ) .  
the state set and/or the input set are partitioned into 
regions described by linear equalities and inequalities Suppose that at time k we have that y ( k )  = T ( x ( k ) )  E 
and the dynamics at each region are described by linear XIE, .  The signals x ( k )  and y ( k )  represent the state 
(or affine) state transitions. Output and measurement and the output of the system respectively at the kth 
maps can be defined also in a similar way. The class of successive iteration of the system. If it is agreed that 
piecewise-linear systems is quite general as it includes the granularity of the partition generated by the m a p  
linear systems, finite state machines, and their inter- ping K is appropriate for the extraction of useful in- 
connections [8]. formation regarding the system's behavior, then it is 
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desirable to uniquely determine the state at the next 
iteration up to its membership on an equivalence class 
y(k + 1) = ~ ( x ( k  + 1)) E XIE,. This can be ac- 
complished by considering a finer partition than the 
partition defined by the generator T to obtain better 
estimates for the continuous state. This partition will 
be called the final partit ion.  

The generator TF is defined in a similar way as the out- 
put function T.  Given a partition defined by a finite 
set of (n - 1)-dimensional hyperplanes the generator 
TF : X -+ X / E n F  separates the state space into a fi- 
nite number of equivalence classes which correspond 
to polyhedral regions in R". The function z = T F ( Z )  

can be seen as a measurement function that provides 
some information about the continuous state. Intu- 
itively, our ability to make decisions to influence the 
behavior of the system depend on the amount of infor- 
mation contained in the measurement signal. 

Example The transfer function of the servomotor and 
the lever arm is 3 = s ~ o ~ o o z s ~ + o , 1 0 8 1 ~ .  The output 
of the system is the angular position of the robotic arm 
with respect t o  a fixed reference system. The parts bin 
corresponds to  0 = 0 and the assembly area to 0 = T.  

The open loop position response of the servomotor is 
unstable due to  the pole at the origin. First, we design 
local controllers for each servomotor so that each task 
is performed in an acceptable manner. Another control 
objective for the specific system is to protect the servo- 
motor for high frequency voltages that can eventually 
damage the gearbox or the brushes. Conventional con- 
trol methods are applied to force each robotic arm to 
follow a reference trajectory with satisfactory perfor- 
mance. The control algorithms are implemented in the 
microcontrollers. The closed loop system consisting of 
the servomotor and its local controller is described by a 
sampled data system with sampling period T = 0.01s. 

There are three available reference inputs with corre- 
sponding controllers associated with the commands of 
the supervisor. A command goto-parts-bin issued by 
the supervisor is translated into the reference signal 
r 1  = 0 representing the angular position when the arm 
is at the parts bin. The controller used for this task 
allows a fast response of the system. Similarly, for 
the second task goto-assemblyarea, the correspond- 
ing reference signal is 7-2 = T and a more conservative 
controller is used to  guarantee an overdamped response 
in order to protect sensitive workpieces. The last com- 
mand available to  the supervisor is stop. Here, it is 
assumed that no brake command is available and that 
the arm can stop only because of its natural damping. 

In order to coordinate the actions of the robotic arms 
to  ensure that they will not enter their critical section 
(parts bin) simultaneously, the mathematical model 

of the system must include the dynamics of the two 
servomotors and take into consideration the effects of 
the computer network. For that, we consider that the 
model of the physical process seen by the supervisor is 
evolving at a slower time rate ( T ,  = 0.1s). In addition, 
a disturbance term has been included in the state space 
representation of each subsystem to take into account 
the stochastic nature of the time delays, since, practi- 
cally, when the message carrying the angular position 
of the arm reaches the workstation over the network, 
the actual position will have changed. 

The RMS is described by the hybrid system with 
states x1 = e 1 , x 2  = &,x3 = 02, and x4 = 
02.  The control actions available to the supervisor 
are A = {goto-parts-bin, goto-assembly-area, stop}Tobotl X 
{goto-parts-bin, goto-assembly-area, stop}robotz. For sim- 
plicity, we will represent this set by A = 
{all, a12,  a13,  a21,  a22,  a23, a31, a32, a33} where a i j  cor- 
responds to the ith task for robot 1 and the j t h  task 
for robot 2 (in the above order). D c R4 is a bounded 
polytope described by ld,l 5 0.1, i = 1,2,3,4. For 
fixed control action a i j ,  the state transition is 

where B d  = 14. Y = X / E ,  is the quotient space in- 
duced by the generator T .  As it was described earlier, 
the mapping T is determined by the control specifica- 
tion, which for the RMS can be expressed using the 
inequalities [O i l  < 0.1. We define the affine functions 
hl(z) = 5 1  + 0.1, h 2 ( x )  = x 1  - 0.1, h3(5) = 5 3  + 0.1, 
and h4(x) = z 3  - 0.1. The generator T : X -+ X/E, 
is then defined by the functions h i .  The final partition 
will be computed in Section 5. 

4 Quasideterminism 

In order to analyze hybrid systems and design control 
algorithms, it is desirable to induce dynamical systems 
in finite quotient spaces that preserve the properties 
of interest and then study the simplified models. Con- 
sider the state set X of an SDS and define the mapping 
T : X + X/E,. Let f be the state transition function 
of an SDS and assume that the inputs are fixed. Con- 
sider the diagram in Fig.2-(a). Intuitively, the map T 

is used to  coarsen the state set of the system. The 
question that arises is whether the system f can follow 
this abstraction. This qyestion is concerned with the 
existence of a mapping f : X / E ,  -+ X / E ,  that makes 
the diagram commute. It is shown in 153 that exists 
if and only if 

2 1  E n  5 2  * (T 0 f ) ( Z l )  = (T 0 f)(x2) (3) 

(where 0 denotes function composition) and moreover, 
if (3) is satisfied then f is unique. Note that the above 
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result does not require any structure on the set X or 
the mappings T and f .  Using equivalence relations on 
the state set X ,  it is possible to define new dynamical 
systems in the derived quotient spaces. These systems 
are called induced dynamical systems. 

X I I I m x  x m x  x m x  

(c) Quasideleministic Partilion (a) Primary Partition (b) Final Partition 

Figure 2: Quasideterminism and the partitions of the 
state space 

In the hybrid system case, consider two states X I ,  2 2  E 
X ,  z1 # 2 2  such that ~ ( 2 1 )  = ~ ( z 2 )  = y E X I & .  
The states x1 and 2 2  may be driven under the mapping 
f to different equivalence classes of the quotient space 
X/E, .  Therefore, in general we have that ( T O  f ) ( x 1 )  # 
(T o f ) ( x g )  and a mapping f that makes the diagram 
in Fig. 2-(a)commute does not_exist. The induced sys- 
tem defined by the mapping f : X / E ,  + X / E ,  can 
be viewed as a nondeterministic system. The nonde- 
terminism of the approximating system has been iden- 
tified as the main drawback in discretization methods 
for hybrid systems. Efforts to relax the commutativity 
requirement and still obtain useful partitions have been 
made in [I] and [9] and this has led to the concept of 
quasideterminism. Here, a similar idea is followed for 
piecewise-linear systems. 

Suppose that at time k ,  r ( x ( k ) )  = y ( k )  E X/E,. In 
the case when the estimates of the state at time k pro- 
vide sufficient information to uniquely determine the 
membership of the state of the induced system at time 
k + 1 on an equivalence class of E,, the system is said 
to be quasideterministic. 

Recently, considerable attention has focused on the 
study of partitions of the continuous state space that 
preserve reachability properties. For example in [3] 
conditions for hybrid systems to admit finite bisimula- 
tions are formulated and finite bisimulations are com- 
puted for certain classes of systems. Bisimulations are 
essentially equivalence relations on the state set of the 
system that preserve the reachability properties and are 
computed by refining an initial partition. In our case, 
the final partition that makes the system quasideter- 
ministic is also computed by refining the primary par- 
tition, but it does not preserve the reachability prop- 
erties. This can be seen from the diagram of Fig. 2-(b) 
which does not commute. Quasideterminism describes 
a weaker requirement where only the membership of 
the continuous state in an equivalence class of the pri- 
mary partition in the next time step can be determined 
by examining the quotient system. Therefore, the best 
thing we can do by studying the finite quotient system 

is to determine the membership of the state in an equiv- 
alence class at a prescribed time interval (multiple of 
the sampling period). However, using only this infor- 
mation we can solve some interesting problems and de- 
sign controllers for hybrid systems as illustrated in the 
remaining of the paper. In addition, it can be shown 
that a final partition with these properties can be al- 
ways computed for discrete-time piecewise linear sys- 
tems. 

5 Computation of the Final Partition 

In this section, we present the mathematical tools for 
the computation of the final partition. Consider the 
hybrid system ( X ,  A,  D, Y, M ;  F, T ,  T F )  where X = R", 
A is a finite set of control actions (or control modes) 
determining which subsystem is active, D c Rm is a 
polytope, and F : X x A x D is the state transition 
function, which for fixed control action is described by 
x ( k  + 1) = A x ( k )  + B x ( k )  + Bdd(k) .  The outputs and 
the measurements are as defined in Section 3. 

Let E ( X )  be the set of all equivalence relations on X .  
A partial order relation 5 on E ( X )  can be defined as 
El  5 E2 if x1E1x2 + xlE2x2. A lattice structure 
can be developed on the set of all equivalence relations 
on X by introducing meet and join operations and is 
called the equivalence lattice (for more details see [SI). 
It can be shown that the set E p ( X )  of all equivalence 
relations on X induced by mappings T : X -+ X / E ,  
which are defined using finite collections of (n - 1)- 
dimensional hyperplanes and thus, they separate the 
state space X into polyhedral equivalence classes, is a 
sublattice of the equivalence lattice E ( X ) ,  and more- 
over that E p ( X )  is not complete. 

A partition defined by the mapping T' is finer than the 
partition defined by T ,  if the induced equivalence rela- 
tions considered as elements of the equivalence lattice 
satisfy the condition E,) 5 E,. The meet operation of 
the equivalence lattice will be used in order to refine the 
state space. Since E p ( X )  is a sublattice, the refinement 
of the state space will result in polyhedral equivalence 
classes. However, the fact that E p ( X )  is not complete 
implies that the algorithms for the computation of the 
final partition can use the meet operation only finite 
number of times. 

In the following, it is shown how the refinement of the 
partition can be implemented in the case we want to 
ensure that the hybrid system satisfies a safety require- 
ment. Given a set of safe states described by the set 
P c R" and an initial condition eo = e(0) E P ,  we say 
that the system is safe if x ( k )  E P for every k.  In or- 
der to refine the state space, we define the predecessor 
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The set pre (P)  represents all the states x for which 
there is a control action that will enforce the state to 
remain in P for any disturbance d. If the set P is 
piecewise-linear (PL), that is P is the union of a finite 
number of sets defined by (finitely many) linear equa- 
tions and linear inequalities, then the set pre (P)  is also 
piecewise-linear and can be defined using only proposi- 
tional connectives. For a proof of this claim the reader 
is  referred to (71, where it is shown that every PL set 
in this framework defined using quantifiers, can be also 
defined using only propositional connectives. 

operator pre : P(X) + P(X) as Example Let P denote the safe set for the RMS, which 
all the states except those in the critical section. The 

P’e(P) = { l a  E A , v d  E D, fa(z, d )  = Aax+Br+Bdad E p ) .  hyperplanes that bound pre (P)  can be computed by 
the following algorithm where equation (2) is denoted 
by x(k + 1) = A x  + Br + Bdd,. 

INPUT: f(x, d )  = Ax + Br + Bdd, 

f o r i = l  ..., 
Hi = {Z E R” : hi(x) = - wi = 0 )  

- d = argmindcD(-gTBd); 
giT = g T A ;  
w; = Wa - -gi T B ~  - gTBdd; 

end 
OUTPUT: Hl = {Z E R” : h : ( ~ )  = - W: = 0 )  

The set of states for which the safety requirement will 
not be violated is calculated using the following algo- 
rithm. 

At each step of the algorithm, the set Q‘ contains all 
the states for which there exists control action which 
will ensure that the system’s state is in Pi. If the al- 
gorithm terminates in a finite number of N steps and 
P-N n QN # 0 the hybrid system is safe with respect 
to  the PL set P. The described procedure, which given 
a hybrid system and a piecewise-linear region checks if 
the system is safe, is semi-decidable, that is if it termi- 
nates it gives the correct answer, but it’s termination 
is not guaranteed. 

An important advantage of the approach is that it al- 
lows to formulate conditions on the control actions, the 
system description, and the safe set that guarantee the 
termination of the above algorithm. This is useful when 
we have the ability to change each control mode, for ex- 
ample by selecting different continuous controllers for 
each subsystem. At each iteration both sets Pi and &i 
are PL sets and therefore can be described by formulas 
without quantifiers. Therefore, for a given N the set 
P - N  n QN can be described without quantifiers and 
we can enforce the termination condition by selecting 
appropriately the control actions. However, note that 
for fixed control actions, the existence of a finite num- 
ber N for which the algorithm will terminate is not 
guaranteed . 

Similar computational procedures can be formulated 
for a region to be reachable or for a system to be 
deadlock-free. Continuous inputs at control mode of 
the system and/or uncontrolled discrete inputs can be 
also incorporated in the framework by modifying a p  
propriately the predecessor operator. Additional de- 
tails are omitted due to length limitations. 

In order to explain the previous algorithm, assume first 
that the disturbance d is fixed. Then it can be shown 
that 

Hl = {x E R” : h:(z) = gITz - w: = 0 )  (4) 

where giT = g T A  and w: = w, - g T B r  - gTBdd. From 
equation (4) it follows that for fixed arbitrary inputs 
the hyperplanes Hi are parallel. Selecting the input 
as d = argmind,D(-gTBdd) corresponds to  the worst 
case in view of the effect of the input d E D. The above 
procedure is repeated for every hyperplane that bounds 
the critical section to compute the hyperplanes H l .  

The above algorithm is repeated for every control ac- 
tion and every hyperplane of the generator x of the 
primary partition. The generator of the final parti- 
tion XF is defined by the original hyperplanes and all 
the computed ones by the above algorithm. For the 
robotic manufacturing system the safety algorithm ter- 
minated in only one iteration by selecting appropriately 
the control modes (practically by reducing the over- 
shoot of each controller). Note that in the general case 
repetitive applications of the above procedure may be 
necessary. 

6 Hybrid System Regulator 

In this section, the regulator problem for hybrid sys- 
tems is formulated. In general, a regulator requests 
certain types of outputs from the plant so that these are 
attained in the presence of disturbances. The desired 
outputs are characterized by a regulation condition and 
they can be described as the outputs of another SDS, 
called the exosystem. The plant and the exosystem are 
linked by a controller to  form a regulator as shown in 
Fig. 3. A feedback controller can be designed to reg- 
ulate the system. The main characteristic of the con- 
troller is that it contains a copy of the exosystem in 
accordance to  the “internal model principle”. 
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tion y = ~ ( x )  = m e ( x e , v )  is satisfied. The regulator 
for the RMS has been implemented using Simulink and 
Stateflow. Here, the output request of the exosystem is 
constant. Problems where the output request function 
changes with time or upon occurrence of events can be 
still formulated in the proposed framework of the hy- 
brid system regulator and they are topics for current 
research. 

Figure 3: Hybrid system regulator 

7 Conclusions 

Example The exosystem, represented an SDS, is spec- 
ified by the designer in such a way as to character- 
ize the output requests and the disturbances from the 
environment. For example, the exosystem for the 
robotic manufacturing system is defined as follows. 
Denote & the equivalence class in X / E ,  that corre- 
sponds to the unsafe region. The exosystem is de- 
scribed by the SDS E = ( X e , D , Y ;  fe,ge,m,) where 
X ,  = X/E,,  Y = X/Er,’ f e  : X / E r  -+ X / E ,  such that 
for every 2 e  E XIE,, f e ( Z e )  # &, and me : X / E ,  + 
X / E ,  such that me(&) = 2,. The disturbance func- 
tion is ge : X / E ,  -+ D and for every E ,  E X I E ,  re- 
turns an arbitrary disturbance signal in D. The exosys- 
tem corresponds to a finite state machine and therefore 
is a PL system. 

Since the output set Y = X / E ,  is defined by the gen- 
erator of the primary partition which characterizes the 
control specifications, the regulation condition can be 
described by y = ~ ( z )  = m,(z , ,v) .  The objective is 
to construct a controller to satisfy this condition. The 
output function of the controller establishes a feedback 
link from the measurements of the extended plant to 
its control actions. 

The controller for the RMS is described by C = 
( X c , A  x M , A ;  f c , g c )  where X ,  = X/E,,,Y x M = 
E, x E,,, and A = {1,2,3}. The current controller 
state Z, E X ,  implies the membership of the contin- 
uous state of the plant to the corresponding region of 
the final partition. This information is updated at ev- 
ery time step using the measurements from the plant. 
Since we assume that the system is quasideterministic, 
for every controller state Zc E X c  and every control ac- 
tion a E A the membership of the continuous state to 
a region of the primary partition can be uniquely de- 
fined. The set of states for which the safety requirement 
will not be violated has been computed for the RMS 
in Section 5. If the initial state belongs to  that set, 
then it is guaranteed that for every region in XIE,, 
there exists an appropriate control action that will sat- 
isfy the safety specification. The output function of 
the controller gc : X ,  x (Y x M )  + A returns exactly 
this control action. The controller can be combined 
with the plant and the exosystem to form a regulator 
as shown in Fig. 3, that guarantees that the regula- 

The proposed approach provides a general framework 
for hybrid systems for analysis and controller synthesis. 
The notion of quasideterminism is used to characterize 
discrete abstractions that can be used for control de- 
sign and the regulator problem for hybrid systems is 
formulated. 
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