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Abstract 
In optimal control problems of switched systems, we 

may need to find both an optimal continuous input and 
an optimal switching sequence since the system dynam- 
ics vary before and after every switching instant. In this 
paper, optimal control problems for both continuous- 
time and discrete-time switched systems are formulated 
and investigated. In particular, we regard an optimal 
control problem as a two stage optimization problem 
and discuss its solution algorithm. The dynamic pro- 
gramming (DP) approach is also studied. Difficulties 
and open problems are discussed. 

1 Introduction 

A switched system is a system that consists of several 
subsystems and a switching law indicating the active 
subsystem at each time instant. Examples of switched 
systems can be found in power train systems, automo- 
tive systems, and electrical circuits, etc. 

This paper gives an overview of optimal control prob- 
lems of switched systems. Such problems have been 
studied before (see e.g., [2, 3, 6,  7, 91). For an op- 
timal control problem of a switched system, we need 
to find both an optimal continuous input and an opti- 
mal switching sequence since the system dynamics vary 
before and after every switching instant. Solving such 
problem is generally very difficult. The main contri- 
bution of the paper is as follows. We first formally de- 
fine a switched system and formulate an optimal control 
problem for it. Then we prove that the optimal control 
problem can be formulated as a two stage optimization 
problem under additional assumptions. Difficulties in 
solving the problem are shown by examples. We pro- 
pose ways to overcome these difficulties by taking into 
consideration minimum dwell time switching and costs 
for switchings. Hamilton-Jacobi-Bellman (HJB) equa- 
tions for optimal control problems of both discrete-time 
and continuous-time switched systems are formulated 
and the complexity in solving them is discussed. 

In the sequel, an optimal control problem for 
switched systems is formulated in Section 2. In Section 
3, a two stage optimization method is proposed for the 
problem, also the difficulties of the problem and the re- 
lated Zenoness problem (i.e., infinite switchings in finite 
time) are addressed. In Section 4, the DP approach is 
used and HJB equations are obtained. Section 5 men- 
tions other approaches and related topics. Section 6 
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2 Problem Formulation 

2.1 Switched Systems 

Switched systems: The following is the definition of a 
switched system. 

Definition 1 Switched System) A switched system 
is a tuple S = t F,V)  where 
0 7 = { fi : R" x R" -+ IW", i E I }  with fi describing 
the vector field for the ith subsystem 2 = f i ( x ,  U ) .  I = 
{1,2,. . . , M} is the set of indices of subsystems. 
0 D = ( I ,  E )  is a simple finite state machine which can 
also be viewed as a directed graph. I is the set of indices 
as defined above. Here I serves as the set of discrete 
states indexing the subsystems. E I x I - {(i, i)li E I }  
is a collection of events. If an event e = (i,j) takes 
place, the switched system will switch from subsystem i 
to j .  

In view of Definition 1, a switched system is a col- 
lection of subsystems which are related by a switching 
logic restricted by V. The continuous state x and the 
continuous input U satisfy x E R" and U E R". If 
a particular switching law has been specified, then the 
switched system can be described as 

k ( t )  = f i ( t )  ( x ( t ) ,  4 t ) )  (1) 

i ( t )  = cp(x(t),i(t-),t), (2) 

where cp : Rn x I x R -+ I determines the active subsys- 
tem at time t. Note that (1)-(2) are used as the defini- 
tion of switched systems in some of the literature (e.g., 
[l]). Here we adopt Definition 1 rather than (1)-(2) be- 
cause in design problems, in general, cp is not defined 
a priori and it is a designer's task to find a switching 
law. A salient feature of a switched system is that its 
continuous state x does not exhibit jumps at switching 
instants. 

Remark 1 If f i ( x , u )  = f i ( x ) , V i  E I ,  then the switched 
system is said to be autonomous. We can also define 
discrete-time switched systems by letting all subsystems 
to be discrete-time systems. 

Switching sequences: For a switched system S ,  the in- 
puts of the system consist of both a continuous input 
u( t ) , t  E [ to , t f ]  and a switching sequence. We define a 
switching sequence as follows. 

Definition 2 (Switching Sequence) For a switched 
system S ,  a switching sequence v in [to, tr]  is defined as 

c =  ((to,eo),(ti,ei),(t2,e2),-.. , ( t ~ , e ~ ) ) ,  (3) 

with 0 5 K < CO, to  5 tl 5 t 2  5 ... 5 t K  5 t f ,  and 
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eo = 20 E I ,  ek = ( i k - 1 ,  i k )  E E for  k = 1,2, ' .. , K .  (If 
K = 0, a = ( ( to ,eo)) . )  

W e  also define C[to, t f l  = {a's in [ t o , t f ] } .  

A switching sequence a as defined above indicates 
that subsystem i k  is active in [ t k , t k + l )  if t k  < t k+ l  

( [ t K d 1 , t K ]  if k = K - l), and i k  is switched through 
at  instant t k  if t k  = t k + l  ('switched through' means 
that the system switches from subsystem i k - 1  to i k  and 
then to i k + l  all at  instant t k ) .  For a switched system 
to be well-behaved, we generally exclude the undesir- 
able Zen0 phenomenon, i.e., infinitely many switchings 
in finite amount of time. Hence in Definition 2, we only 
allow nonZeno sequences which switch finite number of 
times in [ t o ,  t f ] ,  though different sequences may have 
different numbers of switchings. We specify a E C[to, t f l  

as a discrete input to a switched system. 

Remark 2 In this paper, we mostly assume that a 
switching is external in the sense that it is forced by 
a designer or a controller. However, it is worth not- 
ing that for some switched systems, the boundaries for 
switchings are given in Rn so that switchings take place 
when crossing them, or some time instants or time con- 
straints are given so that switchings take place at those 
instants; we call them internal switchings. We will men- 
tion internal switchings in Section 5. 

2.2 An Optimal Control Problem 

Problem 1 For a switched system S = (3 ,V) ,  find a 
switching sequence a E C [ t o , t f ~  and an input U E U = 

{piecewise continuous function U on [ to ,  t f ]  with u(t)  E 

U R", V t  E [ t o , t f ] }  such that the cost functional 

(4) 

is minimized, where t o ,  t f  and x(t0) = xo are given, 
+:IFSn +IFS, L : W  XR" + R .  

Problem 1 is a fixed final time, free final state prob- 
lem. We can similarly formulate other variations of op- 
timal control problems (e.g., fixed final time, fixed final 
state, etc.). There are several results in the literature 
that discuss the optimal control problem in its various 
forms in either continuous time or discrete time [S ,  91. 
The involvement of a makes the dynamics of the system 
vary in [ to ,  t f ] ,  so the problem is very difficult to solve. 

3 Two Stage Optimization 

timal control input (a*,  U * )  such that 
In general, Problem 1 requires the solution of an op- 

J(o* ,u*)  = min J(a,u) .  ( 5 )  
u E q t o , ' / ] ,  uEU 

Notice that for any given switching sequence a,  Problem 
1 reduces to a conventional optimal control problem for 
which we only need to find an optimal continuous input 
U so as to minimize JU(u) = J(a ,u  . The following 
lemma provides a way to formulate ( 5  1 into a two stage 
optimization problem. (The proof of Lemmas 1 to 4 
may be found in [lo].) 

Lemma 1 For Problem 1, i f  

(1). an optimal solution (a*,  U * )  exists and 
(2). for any given switching sequence a ,  there exists a 
corresponding U* = U* (a)  such that J ,  ( U )  is minimized, 

then the following equation holds 

min J(a,u)  = min minJ(a ,u) .  (6)  
aEqto,',], uEU u E q t o , ' / ]  uEU 

By (6), we adopt the following two stage optimiza- 
tion method for Problem 1 satisfying the conditions of 
Lemma 1. 

Two stage odimization method 

Stage 1: Fixing a ,  solve the inner minimization problem. 
Stage 2: Regardin the optimal cost for each a as a 
function J~ = ~ ~ ( 0 3  , minimize 51 with respect to a E 

In [9], a similar formulation for discrete-time 
switched systems is posed; however, the continuous-time 
case is not addressed. 

The two stage optimization is still difficult to handle. 
We can implement the above method by the following 
algorithm. 

Algorithm 

%o,t , l .  

1. Fix the total number of switchings to be K and the 
order of active subsystems, let the minimum value of 
J with respect to U be a function of the K switching 
instants, i.e., 51 = J l ( t l , t z , . . -  , t K )  for K 2 0, and 
then find J1. 
2. (a) Minimize 51 with respect to t l ,  t 2 ,  . . . , t K .  

(b) Vary the order of active subsystems to find an 
optimal solution under K switchings. 

(c) Vary the number of switchings K to find an optimal 
solution for Problem 1. 

The above algorithm has high computational costs. 
In practice, we usually find suboptimal solutions with 
fixed number of switchings by using steps 1, 2(a), 2(b). 
Moreover, in many cases we only need to study problems 
with fixed number of switchings and fixed order of active 
subsystems (e.g., the speeding up of a power train). 

3.1 Two Examples 

The following two examples offer insights into opti- 
mal control problems and their difficulties. 

Example 1 Given a switched system S = (3, V ) ,  where 
3 = { f l  = z + U ,  f 2  = -x + U }  and V = ( I ,  E )  with 
I = {1,2} and E = {(1,2)}, assume that t o  = 0 ,  t f  = 2 

and the system switches once at t = t l ( 0  5 tl 5 2) f rom 
subsystem 1 to  2. Find an optimal switching anstant tl 
and an optimal input U such that x ( 0 )  = 1, x ( 2 )  = 1 
and the cost functional 

is minimized. 
We can define the Hamiltonian functions H I  (2 ,  U ,  X I )  

for t E [ O , t l )  and H2(z ,u ,X2)  for t E [tl.,?]. By 
using the state, costate and stationary conditions [4, 
Chapter 31 along with the Weierstrass-Erdmann cor- 
ner condition Al(t1)  = X z ( t 1 )  at tl [12], we solve 
the minimum cost as a function of tl as J l ( t1 )  = 
2(e4'1-4-2e2'1 - 2 + 1 ) ( ~ 4 '  1 -&2'1 + e 4 )  

Figure 1 shows the plot of J l ( t1 ) .  tl = 1 is optimal 
with corresponding J1 = 0. If we select subsystem 1 
(tl = 2) or subsystem 2 (tl = 0), more control energy 
than 1.5 needs to be spent. U 

Notice that even the above one switching problem 
has a complicated representation of J1 ( t l ) .  In general, 

-2-2e2'1--2+e-2)2 
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Figure 1: The plot of J l ( t 1 )  in [0,2]. 

for a switched system with K > 1 switchings, we can 
first fix the switching times tl , . . . , tK and use numerical 
methods to find J1 (tl , . . . , tK) and then vary t l , .  . . , t K  

to optimize J I  by using some nonlinear programming 
algorithms. In the above discussions about a solution 
algorithm based on the two stage optimization method 
for Problem 1, we assume that a solution exists. Yet this 
may not be true, even for simple cases - see Example 
2. 

Example 2 Consider the same switched system as in 
Example 1 except that E = {(1,2),(2,1)}.  We want 
to find an optimal control (cr,u) such that x(0)  = 1, 
x(2) = 1 and the cost functional 

J = 1 2 [ ( x ( t )  - 1)2 + u2(t)]dt (8) 

is minimized. 
If we consider the switching sequence 

l)/K, (1,2))) and u( t )  = 0 for all t E [0,2], then as 
K + 00, J(crK,O) -+ 0. But J = 0 cannot be achieved 
because it requires infinite switchings in finite time. so 
the problem has no optimal solution in cr E Cp2] and 
u E U. 0 

3.2 Avoidance of Zenoness 

As seen from Example 2,  the undesirable Zen0 phe- 
nomenon may prevent us from finding an optimum. We 
can impose more requirements to  have nonZenonesS. 

Minimum dwell time switching: In practice, it may not 
be possible to  switch from subsystem 1 to 2 and to 3 
at the same instant (e.g., because of the nature of me- 
chanical apparatus or hardware delay). Hence it is not 
restrictive to introduce a minimum dwell time T > 0 
for a switched system (T may be different for different 
e E E ,  however here we assume it is the same for all 
e E E) .  That is, after the system switches from subsys- 
tem i to  j ,  it must dwell at subsystem j at least for time 
T .  With this additional assumption, valid switching se- 
quences may further be restricted. We denote CKo,t,l as 

the set of all valid switching sequences in this case. 

Costs for switchings: Another way to  avoid Zenoness is 
to introduce in J the costs for switchings. In practice, 
a switching usually consumes some energy. Hence it 
makes practical sense to introduce a cost P : E -+ R+ 
for each switching. Then, for any switching sequence 
cr = ( ( to ,eo) , ( t l ,e l ) , . . .  , ( t ~ , e ~ ) )  we can extend our 

definition of P to be P(0)  = E,"=, P(ek). Now if we 
add to J in (4) the term P(cr), we have 

U K  = ((0,1), ( V K ,  ( 1 , 2 ) ) ,  P / K ,  ( 2 , 1 ) ) , * - -  1 ((2K - 

Problem 2 For S = (F ,D) ,  find cr E C[to.t t l  and u E U 
such that the expanded functional 

t t  

J e z p ( g ,  U )  = +(.(tf>> + / L(x ( t ) ,  4 t ) ) d t  + P(,) 
t o  

is minimized, where to, t f  and x(t0) = xo are given. 

For Problem 2, we have the following Lemma. 

Lemma 2 If 

(1). $ 2 0 and L 2 0 hold for all z ( t f ) ,  x ( t ) ,  u ( t )  and 
(2). P(e) > 0 for any e E E and 
(3). for any fixed number and fixed order of switchings, 
the corresponding optimal control problem with J as in 
Problem 1 has an optimal solution with Jmin < 00, 

then Problem 2 has an optimal solution. 

4 Dynamic Programming Approach 

In this section, we formulate the Hamilton-Jacobian- 
Bellman (HJB) equation for Problem 1 using the DP 
approach. Let us start with the optimal control problem 
of discrete-time switched systems. 

4.1 Discrete-time Switched Systems 

Remark 1 mentions that, with slight modifications, 
we can define a discrete-time switched system simi- 
lar to Definition 1 except that the i th subsystem is 
.(IC + 1) = f i ( x ( I C ) , ~  IC)). The switching sequence from 
step 0 to N is c7 = I (O,eo) ,  ( t l , e l ) , . . .  , ( t ~ , e ~ ) )  with 
0 5 K < 00, 0 5 tl 5 5 tK 5 N and tk's are inte- 
gers. Similarly we can define C i O , ~ ] .  Problem 1 can be 
modified accordingly for the discrete-time case. 

Problem 3 For a discrete-time switched system S = 
(F ,D) ,  find a switching sequence D E C[,,N] and an 
inputuEU={u(.)Iu(IC) E U ~ R m , V l c = O , l , . . - , N -  
1) such that the cost functional 

N-1  

J = +(X(N)) + L(x (k ) ,  u(L))  (9) 
k=O 

is minimized, where 0 ,  N ,  +, L and x(0)  = xo are given. 

Remark 3 We assume U = lRm in the followings. 

For Problem 3, we can set up the two stage optimiza- 
tion problem as in Section 3 under similar assumptions 
as in Lemma 1 

min J = min J(cr,u) = min min J(cr,u). 
U E C [ O , N ] ,  UEU c E x [ O , N ]  zlEU 

Minimum dwell time switching: Now if at each time I C ,  
we can switch at  most once, in other words, we have the 
minimum dwell time requirement with T = 1, we have 
the following result. 

Lemma 3 With the minimum dwell time T = 1, we 

From Lemma 3, if a system has a minimum dwell 
time T = 1, then there are finitely many possible 0's. 
We can solve Problem 3 with minimum dwell time T = 1 
by simply enumerating all possible cr E C i O , ~ ] .  Hence by 

finding minzlEU J,,(u) for each possible cr and choosing 
the minimum among all of them, we can solve Problem 
3. This is the so called enumeration method. Therefore, 
if each minu,=,, J(u,u)  has a solution, Problem 3 must 
have a solution. 

~ a v e  P[O,N]I < 03. 
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Although the enumeration method is straightfor- 
ward, it does not show the relationship between different 
switching sequences. Another approach is to use the DP 
approach. The DP approach depends on the principle 
of optimality [4]. We denote Xi,,,,] to be a subset of 

which contains all 0 E that starts with 
subsystem i at instant k .  We define the value functions 
V*(z(k),k), i E I to be the minimum value of J if the 
system starts at time k with state z ( k )  and subsystem 
i, i.e. 

Vi(z(k), k) = min min J(a ,u) .  
u!C;k,Nl UEU 

The principle of optimality gives us the HJB equa- 
tion 

(10) 

And at time t = 0, the optimal value of J is 

V(z(O),O) = ~ ~ V Z ( ( S ( O ) , O ) .  (11) 

With ( lo) ,  we can solve Vi(z(k), k )  backwards and 
finally find V(z(O),O) and then construct an optimal 
solution (a,u). It can be observed that because of the 
involvement of the term Vj(z(k+ l ) ,  k +  l),  the solution 
of (10) is nontrivial even for the following LQR problem. 

Example 3 (An LQR Problem) Consider a discrete- 
t ime switched system S = (3,V) where 3 = {Ala: + 
Blu,A2z+Bzu} and 2) = { I , E } ,  I = {1,2}, E = 
{(1,2)}.  Here N and z(0) = zo are given. Find a n  
optimal solution (a ,u)  such that 

J = ( 1 / 2 ) z T ( N ) Q ~ x ( N )  
N-1 

+(1/2) (zT(k)Qz(k) + u T ( k ) W k ) )  
k=O 

is minimized, where QN 2 0, Q 2 0, R > 0. 
We use the HJB equation to solve this problem (be- 

cause the details are tedious and long, we do not include 
them here due to space limitation; see [lo] for details). 
U 

Using the HJB equation we may solve an optimal 
control problem, but the procedure is quite complicated 
and tedious. For Example 3, the enumeration method 
can also be used, and might not seem to be so com- 
plicated. However, the DP approach provides us with 
more insights into the relationship between subsystems 
that cannot be obtained by the enumeration method. 
Although it is still an largely open problem how to solve 
the HJB equation efficiently, it is expected that an effi- 
cient method based on (10) may be derived in the future, 
at least for some simple problems. 

Costs for switchings: Another way to reduce the 
complexity of Problem 3 is to include a cost P : 
E -+ R+ for switchings so that J e x p  = +(z(N))  + 
xk=O L(z(k) ,u(k) )  + P(0)  as in Section 3.2. In this 
case, we do not force a minimum dwell time at  each 
instant k .  Therefore at  each instant k ,  we may have in- 
finitely many switching patterns, so JCiO,NII may not be 

N-1 

finite. This seems to add more difficulties to our enu- 
meration method. However, the next lemma justifies 
the use of the enumeration method. 

Lemma 4 I f  P(e)  > 0, Ve E E,  then the enumeration 
method can be used for optimizing J,, Moreover, in 
this case, it also applies t o  optimizing g’in Problem 3. 

Under similar assumptions as in Lemma 1, we define 
a value function as 

~ ~ ( z ( k > , k )  = min minJ,,,(o,u) 
u!Ci,,NI UEU 

Then we can obtain the HJB equation 

+(z(N)) ,  if k = N ,  

min{minj,{il!IJ(i,if)!E} {vj(z(k) ,  k) 
V i ( z ( k ) ,  k )  = +P((i,d)}> minu(k){L(z(k),.u(k)) 

+VZ(z(k + l ) ,  k + l)}}, i i f Q < k < N .  

The optimal value of Jesp is equal to V(z(O),O) = 
minier Vi(z(0),O). Notice that the above HJB equation 
is different from (10). 

4.2 Continuous-time Switched Systems 

Now we return to the continuous-time switched sys- 
tems and use the DP approach to solve the problem 
with Jexp. The problem has been studied by Yong [ll] 
for a general class of hybrid systems, here we restate the 
result in a way suitable for our purpose. Under similar 
assumptions as in Lemma 1, we define the value function 

Vi(z,t) = min min Jexp(a,u) .  
(‘EC;*,*f] 

Note that the optimal cost at  ( z , t )  is V ( z , t )  = 
miniEl Vi(z ,  t) .  By the principle of optimality we have 

Vi(z,t)  5 min { ~ j ( z , t )  + ~ ( ( i , j ) ) } , ( 1 2 )  
j !{ 2’ I (i,2’) !E} 

Vi(z,t) 5 min{ UEU l+At L ( z ( t ) , u ( t ) ) d t  

+Vi(z(t + At),  t + At)}. (13) 

Note that in (13), we assume that subsystem i is active 
in [t, t + At]. Also note that at  least one of (12),(13) 
becomes equality at  each (2, t). If (12) satisfies strict 
inequality at (z, t )  then 33 > 0 such that 

Vi(z,t) = min{ L(z( t ) ,u( t ) )dt  
U!U 

+Va(z(t + At), t + At)}, 

VAt E [0,3]. (14) 

If Vi(z, t )  E C1[to, t f ] ,  then we have the following 
HJB equation 

o = min{ min {Vj (z , t )  + ~ ( ( i , j ) ) }  - Vi(z,t) ,  
j!{i’l(i,i‘)!El 

v(z, t )  + min{L(z(t),u(t)) 

+V,i(z, t)fz(z, (15) 

U!U 

Remark 4 In the case when a solution does not exist, 
we may change min to inf and (15) still holds. 
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In [ll], the HJB equation was derived for hybrid sys- 
tems with continuous input, switchings and impulse ef- 
fect. Yong proved the existence and uniqueness of the 
viscosity solutions for the HJB equation under some ad- 
ditional assumptions. However, (15) is very difficult to 
solve in general, even for LQR problems. In practice, 
we usually discretize a continuous switched system and 
then apply the method for discrete-time optimal con- 
trol to solve the corresponding discrete-time version of 
the problem. In this way, we can obtain approximate 
optimal or suboptimal solutions to the continuous-time 
problem. Currently, how to solve the HJB equation ef- 
ficiently is still a largely open problem. 

5 Other Approaches and Related Topics 

Now we briefly mention other optimal control ap- 
proaches in the literature and some related topics. 

Suboptimal control: A performance guided hybrid feed- 
back control law was proposed in [8] for infinite horizon 
LQR problems. This control law can also be modified to 
find a suboptimal control for Problem 1 in finite horizon 
LQR forms with linear subsystems and quadratic cost 
functionals. The law provides us with a practical way 
to find a suboptimal control law for LQR problems. It 
is shown in [lo] that, if the performance guided hybrid 
feedback law provides a valid switching sequence, then 
the resultant cost J at time t o  is never worse than the 
best non-switching control. 

Maximum principle and time optimal control: In [6], 
the authors regard a switching sequence U as an in- 
put a( t )  = (a l ( t ) ,az ( t ) , . . -  ,oM(t))T,  with U(t) E 

D = {a  E { 0 , 1 ) M 1 ~ g ~ a j  = 1) for Vt E 

[ to , t f ]  and then write a switched system equation as 

i ( t )  = EM1 ak( t ) fk (z ( t ) ,u ( t ) ) .  The authors also for- 
m 9 t e d  t i e  cost functional in Problem 1 as J = 
CkZl st",' ak(t)Lk(z(t) ,u(t))dt ,  with L k ,  e defined 

and continuous on IW" x U. The above formulation allows 
the use of the Maximum Principle to obtain necessary 
conditions for optimal solutions. Moreover, the authors 
consider the time optimal control problems for switched 
systems with linear subsystems. Conditions for general- 
ity of position are given in [6] and the optimal control 
is a bang-bang control under this condition. However, 
it is still an important and largely open problem how to 
find the optimal trajectory from the solutions satisfying 
the necessary conditions. 

Switched systems with internal switchings: As men- 
tioned in Remark 2, internal switchings come along 
with a switched system with switching boundary (or 
active region for each subsystem) or time constraints 
being given. In this case, to each trajectory y ( x ,  U ,  t )  
of the system that connects xo and z f ,  there corre- 
spond points to < tl < ...  < tK = t f  and indices 

io, , i~ such that on [tk, tk+l) the trajectory is in the 
active region for subsystem ik and at  t iE f l  it switches 
from subsystem ik to i k + l .  This implies that we have a 
switching sequence generated by internal switchings U = 
( ( t o , i o ) , ( t i , ( i o , i t ) ) , . . .  , ( t ~ , ( t ~ - i , t ~ . ) ) ) .  The optimal 
control problem is then to find an optimal input U E U 

which minimizes the cost functional J = L(x ,  U ,  t)dt 
with initial state and final state xf. Numerical meth- 
ods can be used to compute the solutions 121. [5] ad- 

numerical method was proposed. [7] proved the exis- 
dressed a discrete-time version of the pro b lem and a 

tence of an optimal solution for switched systems with 
two subsystems under some additional assumptions. 

6 Conclusions 

This paper formulates optimal control problems for 
switched systems and proposes some solution methods. 
Both continuous-time and discrete-time switched sys- 
tems are considered. A two stage optimization method 
and a DP approach are studied in detail. It is shown that 
with the additional assumption of minimum dwelling 
time switching or costs for switchings, the problem com- 
plexity can be reduced. Comments on complexity and 
difficulties in finding solutions of the problem are made 
in the paper. Optimal control problems for switched sys- 
tems are still in their early stage of investigation, even 
for linear switched systems, because the involvement of 
switchings complicates the behaviors of the system and 
makes the system nonlinear. Open problems including 
the existence of a solution, the exploration of necessary 
conditions, the solution of the HJB equation, the use of 
numerical methods, etc., still present considerable chal- 
lenges. 
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