
Automated Synthesis of Deadlock Prevention Supervisors Using
Petri Nets

Technical Report of the ISIS Group

at the University of Notre Dame

ISIS-2000-003

May, 2000

Revised in October 2000 and November 2001

Marian V. Iordache John O. Moody Panos J. Antsaklis

Department of Lockheed Martin Department of

Electrical Engineering Federal Systems Electrical Engineering

University of Notre Dame 1801 State Rt. 17C, MD 0210 University of Notre Dame

Notre Dame, IN 46556 Owego, NY 13827-3998 Notre Dame, IN 46556

iordache.1@nd.edu john.moody@lmco.com antsaklis.1@nd.edu

Interdisciplinary Studies of Intelligent Systems

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



AUTOMATED SYNTHESIS OF DEADLOCK PREVENTION

SUPERVISORS USING PETRI NETS

Marian V. Iordache∗, John O. Moody†, Panos J. Antsaklis∗

Abstract

Given an arbitrary Petri net structure, which may have uncontrollable and unobservable transitions,

the deadlock prevention procedure presented here determines a set of linear inequalities on the marking

of a Petri net. When the Petri net is supervised so that its markings satisfy these inequalities, the

supervised net is proved to be deadlock-free for all initial markings that satisfy the supervision constraints.

Deadlock-freedom implies that there will always be at least one transition that is enabled in the closed

loop (supervised) system. The method is not guaranteed to insure liveness, as it can be applied to

systems that cannot be made live under any circumstances. However, it is shown that when the method

does insure liveness, it is at least as permissive as any other liveness-insuring supervisor. Moreover, it is

shown that the method is not too restrictive even for Petri nets in which not all transitions can be made

live. The procedure allows automated synthesis of the supervisors. Based on this method we formulate

and prove two extended methods with guaranteed termination and a method for maximally permissive

deadlock prevention.

1 Introduction

Deadlock is an undesirable phenomenon that may occur in systems that contain components running in

parallel and sharing common resources. A system is deadlocked when, due to mutual interdependencies and

reliance on shared resources that can not be freed, no further actions can be taken by the system. Deadlock

prevention differs from liveness-insurance: when the liveness of a system is guaranteed, all actions that a

system can perform may be repeated infinitely often. Deadlock prevention insures that at least some subset

of the system’s actions may be repeated, but not necessarily all. Deadlock prevention may be applied to any

system in which liveness can be guaranteed, however it is not possible to insure liveness for every system

that can be made deadlock-free. The procedure presented here can be computationally expensive, however,

all computations are performed off-line. This differentiates the technique from deadlock avoidance strategies

that perform potentially expensive computations while the system is in operation. A controller resulting

from our deadlock prevention method requires very little in terms of computational resources at run time.

Issues regarding conflict, synchronization, and concurrency naturally arise during the study of deadlock.

These properties make the Petri net a particularly useful formalism for modeling systems that are susceptible

to deadlock. The use of Petri nets also provides a powerful suite of algebraic and graph-theoretic tools for

analyzing the nature of deadlock and performing automatic synthesis procedures. The deadlock prevention
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method presented here uses Petri net models for the plant and results in a Petri net model of the super-

visor, providing a unified formalism for representing the closed-loop system. The unified plant/controller

model allows the approach to handle timed Petri nets or plants that include uncontrollable or unobservable

transitions. The method presents the conditions necessary to insure deadlock freedom as a set of linear

integer inequalities. This output is important because it can be used directly in optimization problems, e.g.,

determining the minimum number of resources a system requires using a linear integer program. The pro-

cedure also supports initial constraints. In this way the user is allowed to prevent the procedure to generate

constraints which would conflict with other requirements. The procedure is flexible enough to be able to

create a deadlock prevention supervisor even in such cases.

Deadlock prevention methods rely on structural properties of the net. Deadlock in Petri nets has been

related to siphons (see section 2 and [4]). Among deadlock prevention papers, [20] and [10] use control places

to supervise the net, as in our approach. Control places have also been used in the deadlock avoidance

method of [2]. The deadlock prevention method of [10] defines a subclass of the ordinary and conservative

Petri nets and requires the target Petri net to be in that subclass. In these conditions liveness is enforced,

rather than (total) deadlock prevention. The advantages of the method of [10] are simplicity and guaranteed

success. The disadvantages are the assumptions made on the Petri net structure and that the method can be

restrictive. The deadlock prevention method of [20] is intended for bounded Petri nets. A major advantage

of this approach is that it can effectively handle Petri nets that are not ordinary. One disadvantage of the

approach in [20] is that it is not effective for nonrepetitive Petri nets. Another problem is that [20] cannot

guarantee deadlock prevention since it does not detect the case when the siphon supervision enforced by a

control place is disabled by the transformation to ordinary Petri nets.

The procedure presented here is related to the approach of [20], but differs in several aspects. This

new method is appropriate for use on nets that may not be structurally live, i.e., non-repetitive systems for

which liveness cannot be enforced under any circumstances. When the procedure is applied to repetitive

systems, complete system liveness may well be the result. We show that the resulting supervisor is at

least as permissive as any liveness-enforcing supervisor, i.e., no liveness-insuring supervisor will ever allow a

transition to fire that our procedure would prevent from firing. Thus, when the procedure enforces liveness,

it can be said to be a “maximally permissive” liveness supervisor. With regard to our previous work ([15]

and [16]), now we approach Petri nets which may have uncontrollable and unobservable transitions and

allow initial constraints. Also, we include new significant theoretical results. Based on them the current

deadlock prevention method could be changed for better performance, including better permissivity results

and relaxed requirements for the proof of deadlock prevention. Among the new results we mention a new

termination theorem and a procedure which is proved to produce maximally permissive deadlock prevention.

The method is an iterative approach that removes new potential deadlock situations at every iteration.

When (and if) the procedure terminates, the control designer is presented with either a supervised net that

is guaranteed to be deadlock-free or an indication that the plant cannot be made deadlock-free under any

circumstances. Unlike [20], the algorithmic computations are independent of the initial conditions of the

plant, in fact, the control designer is presented with a set of valid initial conditions (initial markings) for

which deadlock may be successfully prevented as part of the output of the procedure.

An interesting property of our method is that it solves a problem which cannot be solved with finite

automata based approaches. Indeed, by considering all possible initial markings, an automaton with an

infinite number of states is obtained. Note that this is not the case for the methods which consider a given

initial marking and a bounded Petri net. The applications which benefit most from considering the initial
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marking to be unknown may be in the area of Flexible Manufacturing, as the initial marking corresponds to

the number of available resources.

The document is organized as follows. Section 2 reviews basic Petri net properties and describes the

notations which are used throughout the paper. Section 3 presents some deadlock and liveness properties.

We emphasize the supervisory control aspect of enforcing liveness and preventing deadlock and we derive

significant consequences of a known result. Thus Corollary 3.2(c) provides sufficient conditions that our

method enforces liveness. We also derive Corollary 3.3 which is the basis for better deadlock tests, such as

Proposition 3.5 and Proposition 3.6. Proposition 3.5 allows us to make our method effective for nonrepetitive

Petri nets and Proposition 3.6 allows us to formulate a maximally permissive deadlock prevention approach

in section 6.4.3. In section 4 we present preliminaries to our methodology. The supervisory technique used by

our method is supervisory control based on place invariants ([37] and [24]), which we also outline in section

4.2. The transformation technique for nonordinary Petri nets presented in section 4.1 is a modification of

that of [20]. The siphon control approach (largely a particularization of the supervision based on place

invariants) is given in section 4.3. Section 5 defines the deadlock prevention procedure and the operations

which are involved. The procedure is defined in section 5.4. Illustrative examples are given in section 5.6.

Section 6 gives the formal characterization of the procedure. The analysis of the procedure is complex, so in

section 6.1 we provide some basic results, which are used by our main results, characterizing the procedure

or the operations involved by it. The main results are given in section 6.2. Theorem 6.2 proves that the

procedure does prevent deadlock. Theorem 6.3 proves the permissivity quality: the procedure is not more

restrictive than any supervisor which, given an initial marking µ, enforces that all transitions which can be

made live (that is all transitions which appear infinitely often in some transition sequence enabled by µ) are

live. In particular, this shows that our method is not more restrictive than any supervisor enforcing liveness.

Section 6.2.2 contains results which show that by (possibly) compromising some aspect of the performance

of the procedure, termination can be guaranteed. We end the result section whith some significant special

cases (section 6.3) and remarks (section 6.4). In particular, section 6.4.3 shows how to use our procedure for

maximally permissive deadlock prevention.

2 Review of Some Petri Net Basic Properties

In this paper we assume that the reader knows the fundamentals of Petri nets. Good introductions to Petri

nets are for instance [27], [7] and [28]. This section is meant mainly to introduce our notations.

A Petri net structure is a quadruple N = (P, T, F,W ) where P is the set of places, T the set of
transitions, F ⊆ (P × T ) ∪ (T × P ) is the set of transition arcs and W : F → N \ {0} is a weight
function. A marking µ of the Petri net structure is a map µ : P → N. A Petri net structure N with
initial marking µ0 is called a Petri net, and will be denoted by (N , µ0). For simplicity, we may denote
sometimes by Petri net a Petri net structure.

It is useful to consider a marking both as a map and as a vector. These requirements are not neces-

sarily conflicting, because there are authors ([28]) that define vectors as maps defined on a set A instead

of {1, 2, . . .m}, as is customary. The marking vector is defined to be [µ(p1), µ(p2), . . . µ(pn)]T , where
p1, p2, . . . pn are the places of the net enumerated in a chosen (but fixed) order and µ the current marking.

The same symbol µ will denote a marking vector. The marking vector of a Petri net may be regarded as the

state variable of the Petri net. An equivalent way of saying that place p has the marking µ(p) is that p has

µ(p) tokens.
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Figure 1 could be used to illustrate the graphical representation of Petri nets. A token is represented by

a bullet. The marking vector in figure 1(b) is [0, 1, 1]T . An arc weight is indicated near the arc when it is

not one. For instance, in figure 1(b) W (p3, t1) = 2 and W (t2, p2) = 4.

The preset of a place p is the set of incoming transitions to p: •p = {t ∈ T : (t, p) ∈ F}. The postset
of a place p is the set of outcoming transitions from p: p• = {t ∈ T : (p, t) ∈ F}. p is a source place if
•p = ∅ and a sink place if p• = ∅. Similar definitions apply for transitions. They are also extended for sets
of places or transitions; for instance, if A ⊆ P , •A = ⋃

p∈A
•p, A• = ⋃

p∈A
p•.

We use µ[t to denote that µ enables the transition t and µ[t > µ′ to denote that µ enables t and if t
fires, then the marking becomes µ′. The marking µ′ is reachable from µ if there is a sequence of markings
µ1, . . . µk, µk = µ

′, and a sequence of transitions ti1 , . . . tik s.t. µ[ti1 > µ1[. . . tik > µ′. The set of reachable
markings of a Petri net (N , µ) (i.e. the set of markings reachable from the initial marking µ) will be denoted
by R(N , µ).
In a Petri net N = (P, T, F,W ) with m places and n transitions, the incidence matrix is an m × n

matrix defined by D = D+ −D−, where the elements d+ij and d−ij of D+ and D− are
d+ij =W (tj , pi) if (tj , pi) ∈ F and d+ij = 0 otherwise;
d−ij =W (pi, tj) if (pi, tj) ∈ F and d−ij = 0 otherwise.
The incidence matrix allows an algebraic description of the marking change of a Petri net:

µk = µk−1 +D · uk (1)

where uk is called firing vector, and its elements are all zero excepting uk,i = 1, where i corresponds to

the transition ti that fired. We will denote by firing vector also a vector x associated with a sequence of

transitions that have fired, whose entries record how often each transition appears in the sequence. If x is

the firing vector of the transition sequence that led the Petri net from the marking vector µ0 to µk:

µk = µ0 +D · x (2)

A vector x is called place invariant if xT ·D = 0. A vector x is called transition invariant if D ·x = 0.
The support of a transition invariant x is ||x|| = {tj ∈ T : x(j) 6= 0}.
A Petri net (N , µ0) is said to be deadlock-free if for any reachable marking µ there is an enabled

transition. (N , µ) is in deadlock if no transition is enabled at marking µ.
Let (N , µ0) be a Petri net. A transition t is said to be live if ∀µ ∈ R(N , µ0) ∃µ′ ∈ R(N , µ) such that t

is enabled by µ′. A transition t is dead at marking µ if no marking µ′ ∈ R(N , µ) enables t. (N , µ0) is said
to be live if every transition is live.

A nonempty set of places S ⊆ P is called a siphon if •S ⊆ S• and trap if S• ⊆ •S. In particular,
S = P may be siphon. An empty siphon with respect to a Petri net marking µ is a siphon S such that∑
p∈S
µ(p) = 0. The attribute “empty” refers to the fact that S has no tokens. A siphon has the property that

if for some marking it is empty, it will be so for all subsequent reachable markings. A trap has the property

that if at some marking it has one token, then for all subsequent reachable markings it will have at least

one token. See figure 1 for siphon examples. In figure 1(a), {p1, p3} and {p2, p4} are traps. S is a minimal
siphon if there is no other siphon S′ (by definition, S′ 6= ∅) such that S′ ⊂ S.
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3 Deadlock and Liveness Properties of Petri Nets

This section introduces certain liveness and deadlock properties, focusing on their relation to structural prop-

erties of Petri nets and supervision. Throughout this section all transitions are considered to be controllable

and observable.

3.1 Intrinsic Properties

A Petri net N = (P, T, F,W ) is ordinary if ∀f ∈ F : W (f) = 1. In the construction of our procedure we
will need to refer to slightly more general Petri nets in which only the arcs from places to transitions have

weights equal to one. We are going to call such Petri nets PT-ordinary, because all arcs (p, t) from a place

p to a transition t satisfy the requirement of an ordinary Petri net that W (p, t) = 1.

Definition 3.1 Let N = (P, T, F,W ) be a Petri net. We call N PT-ordinary if ∀p ∈ P, ∀t ∈ T, if (p, t) ∈
F then W (p, t) = 1.

The basis of the results of this paper comes from a well known necessary condition for deadlock ([28]),

namely that a deadlocked ordinary Petri net contains at least one empty siphon. It can easily be seen that

the proof of this result also is valid for PT-ordinary Petri nets and so the following proposition follows:

Proposition 3.1 A deadlocked PT-ordinary Petri net contains at least one empty siphon.

An example is shown in figure 1(a). A simple way to generalize this result to more general Petri nets is

given in Proposition 3.2. The proof of Propositions 3.1 and 3.2 are similar.

Proposition 3.1 shows that deadlock can be prevented by ensuring in a nonblocking way that no siphon

ever loses all its tokens. The condition in Proposition 3.1 is only necessary. The example of figure 1(c)

illustrates that the condition of Proposition 3.1 is not sufficient and figure 1(b) that the result is not applicable

to Petri nets more general than PT-ordinary.

(a) (d)(b) (c)
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Figure 1: (a) A deadlocked PT-ordinary Petri net. An empty siphon is {p1, p4, p5}. (b) A deadlocked Petri
net with no empty siphon which is not PT-ordinary. (c) A deadlock-free Petri net (for the marking displayed)

with an empty siphon – {p1, p3}. (d) Example for Proposition 3.2.

Definition 3.2 (cf. [2]) Let N be a Petri net and µ a marking. N is said to be well-marked for µ if in
every siphon there is at least a token.
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Definition 3.3 Let N be a Petri net and MI be a set of initial markings. A siphon S is said to be

controlled with respect toMI if ∀µ0 ∈ MI , ∀µ ∈ R(N , µ0):
∑
p∈S
µ(p) ≥ 1.

A controlled siphon contains for all reachable markings at least one token. A trap controlled siphon

is a siphon that includes a trap. Recalling the trap property, for all markings such that the trap has one

token, the siphon is controlled.

We define an invariant controlled siphon as a siphon S of a Petri net N with the property that N
has a place invariant x such that for all i = 1, 2, . . . |P |, if x(i) > 0 then pi ∈ S. It is easy to show that for
all initial markings µ0, such that x

Tµ0 ≥ 1, the siphon S is controlled.
In particular, a siphon which contains a controlled siphon is controlled. Therefore in a Petri net such

that all minimal siphons are controlled, all siphons are controlled. Also, by Proposition 3.1, a PT-ordinary

Petri net is deadlock-free if all its siphons are controlled. This is not true for more general Petri nets. The

following result is also in [3].

Proposition 3.2 A deadlocked Petri net N = (P, T, F,W ) with marking µ has at least one siphon S such
that ∀p ∈ S ∃t ∈ p• with W (p, t) > µ(p).

Proof: Deadlock implies •P ⊆ P•. Otherwise, if ∃t ∈ •P \ P•, t can fire independently of the marking of
the net, and so µ would not be a deadlock marking. Let S = P , and since no transition is enabled, S is a

desired siphon. 2

Figure 1(b) shows a deadlocked Petri net. There are two minimal siphons: S1 = {p1, p2} and S2 =
{p2, p3}. The marking of p3 does not prevent t2 from firing but does prevent t1. The marking of p2 does not
prevent t1 but prevents t3. For the current marking [0, 1, 1], both siphons S1 and S2 satisfy the necessary

condition of the proposition. For the deadlock the marking [0, 0, 2], only one of them satisfies it. Another

example is in figure 1(d), where we see that the only siphon satisfying the requirement of the proposition is

the whole net. The requirement of Proposition 3.2 seems difficult to relax. For instance, it is not true that

if in all minimal siphons S, if ∃p ∈ S ∀t ∈ p • ∩ • S, µ(p) ≥W (p, t) then the Petri net is not in deadlock, as
it could be checked in figure 1(b).

Loss of liveness is a less severe form of deadlock, where some actions can no longer happen while others

may still be possible. Deadlock implies loss of liveness. An empty siphon in a PT-ordinary net is a necessary

and not a sufficient condition for deadlock, while for loss of liveness it is a sufficient but not a necessary

condition. Commoner’s Theorem states that in an ordinary free choice net N , if there are dead transitions
for a marking µ, then there is a reachable marking µ′ ∈ R(N , µ) such that a siphon is empty ([28] p.103).
Theorem 3.1 is the generalization to asymmetric choice nets. An asymmetric choice net is a Petri net

N = (P, T, F,W ) with the property that ∀p1, p2 ∈ P , p1 • ∩p2• 6= ∅ ⇒ p1• ⊆ p2• or p2• ⊆ p1•.

Theorem 3.1 [3] An asymmetric choice net (N , µ0) such that ∀p ∈ P ∀t ∈ p•: W (p, t) = V (p) for some
V : P → N, is live if and only if for all siphons S, ∀µ ∈ R(N , µ0) ∃p ∈ S such that µ(p) ≥ V (p).

3.2 Conditions for Deadlock Prevention and Liveness Enforcement

Definition 3.4 Let N = (P, T, F,W ) be a Petri net and U ⊆ N|P |. A supervisory policy Ξ is a function
Ξ : U → 2T that maps to every marking a set of transitions that the Petri net is allowed to fire. The markings
in N|P | \ U are called forbidden markings.
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We denote by R(N , µ0,Ξ) the set of reachable markings when (N , µ0) is supervised with Ξ. It is known
that if (N , µ0) is live, then (N , µ) with µ ≥ µ0 may not be live. The same is true for deadlock-freedom, as
shown in figure 2. The following result shows that if liveness is enforcible at marking µ or if deadlock can

be prevented at µ, then this is also true for all markings µ′ ≥ µ.

Proposition 3.3 If a supervisory policy Ξ which prevents deadlock in (N , µ0) exists, then for all µ ≥ µ0
there is a supervisory policy which prevents deadlock in (N , µ). The same is true for liveness enforcement.

Proof: Let µ1 ≥ µ0. A supervisory policy for (N , µ1) is Ξ1 defined as follows:

Ξ1(µ+ µ1 − µ0) =
{
Ξ(µ) ∩ Tf(µ) for µ ∈ R(N , µ0)
∅ otherwise

where Tf (µ) denotes the transitions enabled by the marking µ, apart from the supervisor. 2

(b)(a)

6

t
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t 2

t 3

t 4

p6

4 p

4

3

3t

2t
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5p4p

p

p2

11p

Figure 2: A Petri net that for the initial marking µ0 shown in (a) is live, and for the initial marking µ ≥ µ0
shown in (b) is not even deadlock-free.

Definition 3.5 [27] A Petri net is said to be (partially) repetitive if there is a marking µ0 and a firing

sequence σ from µ0 such that every (some) transition occurs infinitely often in σ.

The following lemma seems to be necessary for the necessity proof of Theorem 3.2, which is a known

result. The authors do not know a reference where the necessity proof of Theorem 3.2 appeared. We prove

the lemma as we need it in order to prove a number of other results, including Theorem 3.3 and Corollary

3.3.

Lemma 3.1 Let N = (P, T, F,W ) be a Petri net of incidence matrix D. Assume that there is an initial
marking µ0 which enables a firing sequence σ such that all transitions in U ⊆ T appear infinitely often in
σ. Then there is a nonnegative integer vector x such that Dx ≥ 0 and x(i) 6= 0 ∀ti ∈ U , where ti is the
transition corresponding to the i’th column of D.

Proof: In this proof the marking is regarded as the marking vector. Let U be the set of transitions which

appear infinitely often in an infinite firing sequence σ enabled for some marking µ0. We are to prove that a
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vector of nonnegative integers x, x(i) 6= 0 ∀ti ∈ U exists, such that D · x ≥ 0. When σ is fired, let µ0 be the
initial marking, µ1 the first marking reached after each transition from U has fired at least once, . . . µk the

first marking reached after each transition from U has fired at least k times.

Let Vn be a nonempty set of the form Vn = {y ∈ Nn :6 ∃yi ∈ Vn, y 6= yi, y ≥ yi or y ≤ yi}. Next it is
proved by induction that Vn is finite (i.e. it cannot have infinitely many elements). Assume that any Vn−1 is
finite. Then, let ys,n ∈ Vn; Vn ⊆

⋃
k,u

Ck,u, where Ck,u = {y ∈ Nn : y(jk) = u, y(ik) > ys,n(ik), 6 ∃yi ∈ Vn, y 6=
yi, y ≥ yi or y ≤ yi} is defined for 0 ≤ u < ys,n(jk) and k = 1, 2 . . . n(n− 1) corresponds to the possibilities
in which ik 6= jk, 0 ≤ ik, jk ≤ n can be chosen. The induction assumption implies that each Ck,u is finite,
because the component jk of the vectors is fixed and only the remaining n− 1 can be varied. So Vn is finite.
Let M be recursively constructed as follows: initially M0 = {µ0}; for all i, Mi = Mi−1 ∪ {µi} if

6 ∃y ∈ M : y ≥ µi or y ≤ µi and elseMi =Mi−1. The previous paragraph showed that ∃n0 ∈ N: ∀k > n0,
Mk =Mn0 . LetM =Mn0 and M̃ = {y ∈ Nn : ∃yx ∈ M, y ≤ yx}. Both are finite sets.
Here it is shown that 6 ∃i, j, 0 ≤ i < j, such that µi ≤ µj leads to contradiction. Assuming the contrary,

∀k > 0 ∃yx ∈ M such that µk+n0 ≤ yx and µk+n0 6= yx. If y ∈ Nn, yx ∈ M and yx ≥ y, then for u
such that u 6≥ yx and u 6≤ yx either y ≤ u or both y 6≤ u and y 6≥ u; for u such that u 6≥ y and u 6≤ y
either yx ≥ u or both yx 6≤ u and yx 6≥ u. Let M(1) be constructed in a similar way as M, but starting
from M(1)

0 = (M∪ {y}) \ {u ∈ M : u ≥ y}, where y = µ1+n0 , and using µn0+i instead of µi for M(1)
i .

For the same reason the construction ends in finitely many steps. Also, M(1) ⊆ M̃ and ∃n0,1 such that
∀k > 0 ∃yx ∈ M such that µk+n0,1 ≤ yx and µk+n0,1 6= yx. So we can continue in the same way withM(2),

. . .M(j), also subsets of M̃. However these operations cannot be repeated infinitely often: j ≤ N , where N
is the cardinality of M̃, becauseM(j) contains at least one element from M̃ \

j−1⋃
i=1

M(i). (This is so because

y ≤ u, y 6= u, u ∈ M(i) ⇒ y /∈ M(i), also u ∈ M(i) \ M(i−1) ⇒ ∃v ∈ M(i−1): v ≥ u, hence ∃u ∈ M(i):

y ≤ u implies ∃v ∈ M: y ≤ v.) So, M(j+1) cannot be constructed for some j, which implies µ1+n0,j 6≤ u,
∀u ∈M(j), which is contradiction.

Therefore ∃j, k, j < k, such that µj ≤ µk. Let x = qk − qj . Then µk − µj ≥ 0 ⇒ D · x ≥ 0, and by
construction x ≥ 0 and x(i) > 0 ∀ti ∈ U . 2

Theorem 3.2 [27] A Petri net is (partially) repetitive if and only if a vector x of positive (nonnegative)

integers exists, such that D · x ≥ 0, x 6= 0.

Proof: Necessity: The proof follows immediately from Lemma 3.1. Sufficiency (cf. [27]): Consider the finite

firing sequence σ1 in which we fire x(1) times t1, then x(2) times t2, and so on. Let n be the dimension

of x, X =
n∑
i=1

x(i) and qi for i ∈ 1, X the firing vectors after each transition from σ1 is fired (note that
qX = x). Then the initial marking defined by µ0(k) = max{0,− min

i∈1,X
{(D · qi)(k)}}, k = 1, n, enables σ1.

Since µX = µ0 +D · x, and so µX ≥ µ0, µX enables σ1 too. Now it is clear that µ0 enables σ = σ1σ1σ1 . . .,
which is an infinite sequence in which each transition tk s.t. x(k) 6= 0 appears infinitely often, and so the
net is (partially) repetitive. 2

It is not always possible to enforce liveness or to prevent deadlock in a Petri net. This may happen

because the initial marking is inappropriate or because the structure of the Petri net is incompatible with

the supervision purpose. The next corollary characterizes the structure of Petri nets that allow supervision

for deadlock prevention and liveness enforcement, respectively. It shows that Petri nets in which liveness is

enforcible are repetitive, and Petri nets in which deadlock is avoidable are partially repetitive.
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Corollary 3.1 Let N = (P, T, F,W ) be a Petri net.

(a) Initial markings µ0 exist such that deadlock can be prevented in (N , µ0) if and only if N is partially
repetitive.

(b) (cf. [30]) Initial markings µ0 exist such that liveness can be enforced in (N , µ0) if and only if N is
repetitive.

Proof: (a) If deadlock can be avoided in (N , µ0) then µ0 enables some infinite firing sequence σ, and by
definition N is partially repetitive.
On the other hand, if N is partially repetitive, then by theorem 3.2 there is a nonnegative integer vector

x, x 6= 0 such that Dx ≥ 0. Let σx be a firing sequence associated to a firing vector q = x and let q1 denote
the firing vector after the first transition of σx fired, q2 after the first two fired, and so on to qk = q. The

incidence matrix D can be written as D = D+ −D−, where D+ and D− correspond to the weights W (t, p)
and W (p, t), respectively. If the rows of the D− are dT1 , dT2 , . . ., dT|P |, then a marking which enables σx is

µ0(pi) = −min(0, min
j=1...k

dTi qj) i = 1 . . . |P | (3)

At least one deadlock prevention strategy exists for µ0: to allow only the firing sequence σx, σx, σx, . . . to

fire. This infinite firing sequence is enabled by µ0 because µ0 +Dx ≥ µ0 and µ0 enables σx.
(b) The proof is similar to (a). 2

Given a Petri net N = (P, T, F,W ), an initial marking µ0 and two supervisory policies Ξ1 : U1 → 2T
and Ξ2 : U2 → 2T , where U1, U2 ⊆ N|P | and µ0 ∈ U1 ∩ U2, Ξ1 is said to be more permissive than Ξ2, or
equivalently Ξ1 is less restrictive than Ξ2, if ∀µ ∈ U1 ∩ U2: Ξ2(µ) ⊆ Ξ1(µ).

Corollary 3.2 Let N = (P, T, F,W ) be a Petri net and D its incidence matrix. Let σ1 and σ2 be firing
sequences and (P1), (P2) the two properties below:

(P1) : (∃σ1 ∃µ′1, µ1 ∈ R(N , µ) s.t. µ1[σ1 > µ′1 and µ′1 ≥ µ1)
(P2) : (∃σ2 ∃µ′2, µ2 ∈ R(N , µ) s.t. µ2[σ2 > µ′2, µ′2 ≥ µ2 and all transitions of T appear in σ2)

(a) Deadlock can be prevented in (N , µ) if and only if (P1) is true.

(b) Liveness can be enforced in (N , µ) if and only if (P2) is true.

(c) (i) Nonzero nonnegative integer vectors x exist such that D · x ≥ 0 and all of them have no null
entries if and only if all supervisory policies which prevent deadlock also enforce liveness.

(ii) Consider an arbitrary initial marking µ0. All supervisory policies which prevent deadlock in

(N , µ0) and which are more permissive than any supervisory policy which enforces liveness in
(N , µ0), enforce liveness as well if and only if for all markings µ ∈ R(N , µ0), if (P1) is true then
(P2) is true.

Proof: (a) If (P1) is true, then a deadlock prevention strategy is to allow only a firing sequence that leads

from µ to µ1, and then only the infinite firing sequence σ1, σ1, σ1, . . .. Furthermore, if deadlock can be

prevented, N is partially repetitive by Corollary 3.1(a), so x ≥ 0 exists such that x 6= 0 and Dx ≥ 0, and
following the proof of Corollary 3.1(a), a marking µ can be chosen as in equation (3) for the sequence σx.

Then (P1) is true by taking µ1 = µ and σ1 = σx.
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(b) The proof is similar to (a).

(c) (i) “⇒” Let µ0 be the initial marking and let Ξ be an arbitrary supervisory policy which prevents
deadlock in (N , µ0). By part (a), (P1) is true for all µ ∈ R(N , µ0,Ξ). Let x1 be the firing vector associated
to the firing sequence σ1 from (P1) for some marking µ that was reached. In (P1), µ

′
1 ≥ µ1 implies Dx1 ≥ 0,

so x1 does not contain null elements. Hence σ1 includes all transitions of the net. Because µ was arbitrary,

and µ1 reached from µ enables σ1, this shows that for all reachable markings µ no transition is dead. So Ξ

also enforces liveness.

(i) “⇐” Assume the contrary. Then there is a nonnegative integer vector x such that Dx ≥ 0 and x
has some of its elements zero. Let Ξ be a deadlock prevention policy for (N , µ0), where µ0 is such that it
enables σx, a transition sequence that contains x(i) times each of the transitions ti of the net. If Ξ is defined

to allow only the repeated firing σxσxσx . . ., then deadlock is prevented but liveness is not enforced, since

σx does not include all transitions of the net. Contradiction.

(ii) “⇒” Assume the contrary. Then there is a supervisory policy Ξ which prevents deadlock and ∃µ ∈
R(N , µ0,Ξ) such that (P1) is true and (P2) is not. Then by part (b), (N , µ) cannot be made live, so Ξ does
not enforce liveness, which is a contradiction.

(ii) “⇐” Let Ξ be a supervisory policy which prevents deadlock in (N , µ0). The proof checks that for all
µ ∈ R(N , µ0,Ξ) there is a transition sequence enabled by µ whose firing is accepted by Ξ and which includes
all transitions. Let µ ∈ R(N , µ0,Ξ). Because deadlock is prevented, (P2) is true since (P1) is true. Let ΞL
be the supervisory policy that enforces liveness in (N , µ0) by firing σσ′σ2σ2σ2 . . ., where µ0[σ > µ[σ′ > µ2,
and σ2 and µ2 are the variables from (P2). Because Ξ is more permissive than any liveness enforcing policy,

Ξ is more permissive than ΞL. Thus Ξ allows σ
′σ2 to fire from µ. Therefore all transitions appear in some

firing sequence enabled by µ and allowed by Ξ. 2

The most important part of Corollary 3.2 is part (c), because it gives some insight about the relation

between deadlock prevention and liveness enforcement. We use Corollary 3.2(c) to characterize two classes

of Petri nets for which the deadlock prevention procedure introduced in section 5 also enforces liveness.

Figure 3(a) shows an example for part (c)-(i), in which all nonnegative vectors x such that Dx ≥ 0 are
a linear combination with nonnegative coefficients of x1 = [1, 2, 1, 1]

T and x2 = [2, 3, 3, 3]
T . Figure 3(b)

shows an example for part (c)-(ii) of Corollary 3.2. Indeed, all markings µ that enable any of t1, t2 or t4

satisfy (P2). Also, a marking that enables only t3 either leads to deadlock or enables the sequence t3, t4 and

hence satisfies (P2). For instance, the deadlock prevention policy that repeatedly fires t2, t1 does not enforce

liveness because it does not satisfy the requirement of Corollary 3.2(c)-(ii) to be more permissive than any

liveness enforcing supervisors.

Given a Petri net (N , µ0) and a supervisory policy Ξ, letR(N , µ0,Ξ) denote the set of markings reachable
from the initial marking µ0 when (N , µ0) is supervised by Ξ. A vector x ∈ S ⊆ Rn hasmaximum support
if no other vector in S has more nonzero entries than x. The minimum support is similarly defined.

Corollary 3.3 Consider a Petri net N = (P, T, F,W ) which is not repetitive, and let D be the incidence
matrix. Then at least one transition exists such that for any given initial marking it cannot fire infinitely

often. Let TD be the set of all such transitions. There are initial markings µ0 and a supervisory policy Ξ

such that ∀µ ∈ R(N , µ0,Ξ), no transition in T \TD is dead and there is a nonnegative integer vector x such
that Dx ≥ 0, x(i) 6= 0 ∀ti ∈ T \ TD and x(i) = 0 ∀ti ∈ TD.

Proof: There is an integer vector x ≥ 0 with maximum support such that Dx ≥ 0, which means that for all
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Figure 3: Examples for Corollary 3.2(c): (a) for part (i) and (b) for part (ii)

integer vectors w ≥ 0 such that Dw ≥ 0, ‖w‖ ⊆ ‖x‖. Indeed if y ≥ 0, z ≥ 0 are integer vectors and Dy ≥ 0,
Dz ≥ 0, then D(z + y) ≥ 0 and so y + z ≥ 0 and ‖y‖, ‖z‖ ⊆ ‖y + z‖.
If tj ∈ T can be made live for some initial marking by using an appropriate supervisory policy, there

is a marking that enables an infinite firing sequence σ such that tj appears infinitely often in σ. Therefore

by Lemma 3.1 ∃y ≥ 0 such that Dy ≥ 0 and y(j) > 0. Since x has maximum support, ‖y‖ ⊆ ‖x‖ and
so tj ∈ ‖x‖. This proves that all transitions that can be made live under some circumstances are in ‖x‖.
Therefore the transitions in TD = T \ ‖x‖ cannot be made live under any circumstances.
Let σx be a firing sequence associated with x, i.e. every ti ∈ T appears x(i) times in σx. Then there is

a marking µ0 given by equation (3) which enables the infinite firing sequence σx, σx, σx, . . .. Also, we may

choose Ξ to restrict all possible firings to the former infinite firing sequence, so all transitions in ‖x‖ can be
made live.

The remaining claim to be proved is that TD 6= ∅. Assume the contrary. Then T = ‖x‖, so all transitions
in T can simultaneously be made live for an appropriate initial marking, which contradicts the fact that N
is not repetitive. 2

Corollary 3.3 shows that for any Petri net structure which is not repetitive, there is a set of transitions

TD which cannot be made live under any circumstances. It also shows that all other transitions can be

simultaneously made live for appropriate initial markings and supervisory policies. Note that for repetitive

Petri nets TD = ∅. Another special case is TD = T , which occurs when the Petri net is not even partially
repetitive, and so deadlock can not be avoided for any initial marking.

It was already shown that only repetitive Petri nets can be supervised for liveness. We are interested

in the existence of a similar property for nonrepetitive Petri nets. Corollary 3.3 shows that the best a

supervisory policy could do is to enforce that all transitions in T \ TD are live. Therefore the liveness
property for partially repetitive Petri nets is that all transitions in T \ TD are live.
In what follows we define a class of subnets of a Petri net, which we call active subnets. An active subnet

can be made live by supervision for appropriate initial markings.

Definition 3.6 Let N = (P, T, F,W ) be a Petri net, D the incidence matrix and TD ⊆ T be the set of
all transitions which cannot fire infinitely often given any initial marking. NA = (PA, TA, FA,WA) is an
active subnet of N if PA = TA•, FA = F ∩{(TA×PA)∪ (PA×TA)}, WA is the restriction of W to FA
and TA is the set of transitions with nonzero entry in some nonnegative vector x which satisfies Dx ≥ 0.
The maximal active subnet of N is the active subnet NA = (PA, TA, FA,WA) such that TA = T \TD. A
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minimal active subnet has the property that the vector x defining it has minimum support and is nonzero.

Definition 3.7 Given an active subnet NA of a Petri net N , a siphon of N is said to be an active siphon
with respect to NA if it is, or includes, a siphon of NA. An active siphon is minimal if it does not include
another active siphon with respect to the same active subnet.

For instance, consider the Petri net in figure 4(a). The maximal active subnet has the set of transitions

TA = {t2, t3, t6, t7, t9} and the set of places PA = {p2, p3, p5, p6, p7, p8}. There are two other active subnets,
both minimal, NA1 and NA2 , which have PA1 = {p2, p3}, TA1 = {t2, t3}, PA2 = {p5, p6, p7, p8} and TA2 =
{t6, t7, t9}. The maximal active subnet is shown in figure 4(b). The Petri net has four minimal siphons:
S1 = {p1, p8}, S2 = {p1, p2, p3}, S3 = {p1, p4, p5, p6} and S4 = {p5, p6, p7}. S2 is a minimal active siphon
with respect to NA and NA1 , S3 is a minimal active siphon with respect to NA and NA2 , and S4 is a minimal
active siphon with respect to NA and NA2 . S1 is not an active siphon with respect to any of the active
subnets. Another example is in figure 4(c). The maximal active subnet is shown in figure 4(d). There is

no other nonempty active subnet. The minimal active siphons are: S1 = {p1, p4, p7}, S2 = {p2, p5, p7},
S3 = {p3, p5, p7} and S4 = {p6, p7}. Among them, only S4 is a minimal siphon of the Petri net.

Proposition 3.4 A siphon which contains places from an active subnet is an active siphon with respect to

that subnet.

Proof: Using the notations from Definition 3.6, let S be a siphon such that S ∩ PA 6= ∅. •S ⊆ S• implies
that •S ∩ TA ⊆ S • ∩TA. If t ∈ TA and for some p ∈ P : t ∈ p•, then p ∈ PA, by Definition 3.6. Hence
S •∩TA ⊆ (S∩PA)• and so S •∩TA = (S∩PA)•∩TA. Note also that •(S∩PA)∩TA ⊆ •S∩TA. Therefore
•S ⊆ S• implies •(S ∩ PA) ∩ TA ⊆ (S ∩ PA) • ∩TA, which proves that S ∩ PA is a siphon of NA. 2

The significance of the active subnets for deadlock prevention can be seen in the following results. First

we prove a technical result.

Lemma 3.2 Let NA = (PA, TA, FA,WA) be an active subnet of N . Given a marking µ of N and µA its
restriction to NA, if t ∈ TA is enabled in NA, then t is enabled in N .

Proof: By definition, there is an nonnegative integer vector x ≥ 0 such that Dx ≥ 0 (D is the incidence
matrix) and x(i) > 0 for ti ∈ TA and x(i) = 0 for ti ∈ T \ TA. This implies that there are markings such
that the transitions of TA can fire infinitely often, without firing other transitions (see proof of Corollary

3.1.) If t is not enabled in N , there is p ∈ •t such that p /∈ PA (the • operators are taken with respect to N ,
not NA,) since t is enabled in NA. Note that p /∈ PA implies •p∩ TA = ∅. If •p = ∅, t cannot fire infinitely
often, which contradicts the definition of TA, since t ∈ TA. If tx ∈ •p, the transitions of TA cannot fire
infinitely often without firing tx, which again contradicts the definition of T

A. Therefore t is also enabled in

N . 2

In general we may denote the maximal active subnet of a Petri net simply as the active subnet of the Petri

net, and so the active siphons are in general taken with respect to the maximal active subnet. Considering

the maximal active subnet instead of another active subnet is preferable in problems in which the objective

is enforcing transition liveness rather than total deadlock prevention. Note that in a repetitive Petri net all

siphons are active with respect to the maximal active subnet. The next result is a generalization of the well

known Proposition 3.1.
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Figure 4: The maximal active subnet for the Petri net in (a) is (b), and for the Petri net in (c) is (d).

Proposition 3.5 Let NA be an arbitrary, nonempty, active subnet of a PT-ordinary Petri net N . If µ is a
deadlock marking of N , then there is at least one empty minimal active siphon with respect to NA.

Proof: Since µ is a deadlock marking and N = (P, T, F,W ) is PT-ordinary, ∀t ∈ T ∃p ∈ •t: µ(p) = 0. The
active subnet is built in such a way that if the marking µ restricted to the active subnet enables a transition

t, then µ enables t in the total net (Lemma 3.2.) Therefore, because the total net (N , µ) is in deadlock,
the active subnet is too. In view of Proposition 3.1, let s be an empty minimal siphon of the active subnet.

Consider s in the total net. If s is a siphon of the total net, then s is also a minimal active siphon; therefore

the net has a minimal active siphon which is empty. If s is not a siphon of the total net: •s \ TA 6= ∅. Let S
be the set recursively constructed as follows: S0 = s, Si = Si−1 ∪ {p ∈ •(•Si−1 \ Si−1•) : µ(p) = 0}, where
µ is the (deadlock) marking of the net. In other words S is a completion of s with places with null marking

such that S is a siphon. By construction S is an active siphon and is empty for the marking µ. Hence an

empty minimal active siphon exists. 2

The practical significance of Proposition 3.5 is that it provides a support for doing deadlock prevention,

since deadlock is not possible when all active siphons with respect to a nonempty active subnet cannot

become empty. A less restrictive condition is given in the next result.

Proposition 3.6 Deadlock is unavoidable for the marking µ if for all minimal active subnets NA there is
an empty active siphon with respect to NA.

Proof: For any empty (active or not) siphon, all transitions in the postset of that siphon are empty.

Therefore for all active minimal subnets, some of their transitions are dead. In the proof of Lemma 3.1 it is

shown that if deadlock is avoidable, there is a reachable marking µ and a finite firing sequence σ such that

µ[σ > µ′, where µ′ ≥ µ. Moreover, this implies that µ enables σσ . . . σ . . .. Let q be the firing count vector
for σ. Then Dq ≥ 0. Consider x to be a vector defined as follows. If the active subnet for q is minimal then
x = q; else choose x such that ‖x‖ ⊂ ‖q‖, x 6= 0, x ≥ 0, Dx ≥ 0 and the active subnet associated to x is
minimal. The active subnet defined by x is minimal, and therefore has an empty siphon. This implies that

some of the transitions in ‖x‖ are dead. In view of Lemma 3.2, this contradicts the fact that all transitions
of σ can fire in the Petri net. 2
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The previous result gives support for maximally permissive deadlock prevention. Deadlock is avoidable

in a PT-ordinary Petri net as long as it can be insured that for all allowed markings, there is a minimal

active subnet such that all minimal active siphons have a token.

Consider again the examples in figure 4(a) and (c). Proposition 3.5 allows us to detect that the Petri net

in figure 4(a) is not in deadlock, if we take the active siphons with respect to NA1 . Also, the Petri net in
figure 4(c) is not in deadlock, as none of the active siphons is empty. Note that in both cases Proposition

3.1 cannot say whether it is or not deadlock, as some siphons are empty.

Further on we prove an existence result for supervisors which enforce linear constraints.

Theorem 3.3 Let N be a Petri net. Let Ξ be a quality like liveness, deadlock-freedom, a.o., that has the
property that for any marking µx so that Ξ can be enforced for µx, Ξ can be enforced for all markings µ ≥ µx.
If Ξ can be enforced in N for some markings, then N can be supervised with linear constraints to enforce Ξ
for some markings.

Proof: The set of markings acceptable for the supervisory policy Σ enforcing Ξ is a subset of the set of

markings such that Ξ holds in N . We call µ a minimal marking accepted by Σ if there is no acceptable
marking µi s.t. µi ≤ µ and µi 6= µ. LetM be the set of minimal markings accepted by Σ. We claim thatM
is finite. Assume the contrary. Let µk ∈ M. Then for all other markings µi ∈ M there are px, py ∈ P (P is
the set of places of N ) such that µi(px) > µk(px) and µi(py) < µk(py). Further on, we reach contradiction
by using a similar reasoning as in the proof of Lemma 3.1. SinceM is finite, we may find linear constraints

which enforce the condition that all reachable markings µ are in the space µ ≥ µi1 ∨ µ ≥ µi2 ∨ . . . µ ≥ µiN ,
whereM = {µi1 , µi2 , . . . µiN }. For instance a rough solution is to use a single linear constraint given by the
inequality µ ≥ µmax, where µmax(pi) = max

µk∈M
µk(pi) ∀pi ∈ P . 2

4 Preliminaries to the Deadlock Prevention Method

4.1 A Transformation of Petri Nets to PT-ordinary Petri Nets

Because Proposition 3.1 and Proposition 3.5 apply to PT-ordinary Petri nets, we are interested in using a

transformation to PT-ordinary Petri nets. In principle Proposition 3.2 could have been used instead, as it

applies to generalized Petri nets, but it is difficult to express its requirement in terms of linear inequalities.

We use a modified form of the transformation from Lautenbach and Ridder (1996), and we call it the

PT-transformation. Let N = (P, T, F,W ) be a Petri net. Transitions tj ∈ T such that W (p, tj) > 1 for
some p ∈ •tj may be split in (replaced with) several new transitions. When a transition tj is split, m new
transitions tj,0, tj,1, tj,2, . . . tj,m−1 are created. Together they emulate the functioning of tj in the original
net N . Let N ′ = (P ′, T ′, F ′,W ′) be the new Petri net obtained by splitting tj . For our purposes it is very
convenient to denote tj,0 simply by tj . In this way T

′ contains all transitions of T , rather than only T \ {tj}.
Therefore, according to this notation, when tj is split, it is replaced with tj , tj,1, tj,2, . . . tj,m−1. The split
operation is defined as follows.

The transition tj is split inm transitions, where m = max{W (p, tj) : (p, tj) ∈ F}. The new transitions
which replace tj in N ′ are named tj , tj,1, tj,2, . . . tj,m−1. Also, m− 1 new places are added: pj,1, pj,2,
. . . pj,m−1. In what follows, to avoid confusion, the preset/postset operator is denoted by • for the
evaluations in N , and by •′ for the evaluations in N ′. The next relations define the connections of the
new transitions and places.
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(i) •′pj,i = tj,i and tj,i•′ = pj,i for i = 1 . . .m− 1, pj,i•′ = tj,i−1 for i = 2 . . .m− 1 and pj,1•′ = tj .
(ii) •′tj,i = {p ∈ •tj : W (p, tj) > i} ∪ X , for i = 1 . . .m − 1, where X = ∅ for i = m − 1 and
X = {pj,i+1} otherwise.

(iii) •′tj = •tj ∪ {pj,1} and tj•′ = tj•.
(iv) ∀p ∈ •′tj,i: W ′(p, tj,i) = 1 and W ′(tj,i, pj,i) = 1, for i = 1 . . .m− 1.
(v) ∀p ∈ •′tj : W ′(p, tj) = 1 and ∀p ∈ tj•′: W ′(tj , p) =W (tj , p).
Note that the connections of tj in N ′ are the same as in N , except for an additional transition arc and
for the weights of the input arcs.

The PT-transformation consists in splitting all transitions t for which W (p, t) > 1 for some p ∈ •t. In
this way the transformed Petri net is PT-ordinary. A few properties are apparent:

|pj,i • | = | • pj,i| = 1 i = 1 . . .m− 1 (4)

|tj,i • | = 1 i = 1 . . .m− 1 (5)

We use the convention that a split transition tj is also a transition of the PT-transformed net, since we

denote tj,0 by tj .

Let PT be the set of places of the transformed net. To a marking µ of the original net we associate in

the transformed net a marking µT such that µT (p) = µ(p) ∀p ∈ P and µT (p) = 0 ∀p ∈ PT \ P .
Firing of an unsplit transition tj in the original net corresponds to firing the same transition in the

transformed net. Firing of a split transition tj in the original net corresponds in the transformed net to

firing the sequence tj,m . . . tj,1, tj. For similar initial markings µ and µT (see above) the firing sequence σT

corresponds to a firing sequence σ, such that every split transition tj in σ is replaced in σT by its components

tj,m . . . tj,1, tj , and firing σ in N produces a similar marking µ′ to the marking µ′T reached by firing σT in
the transformed net.
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Figure 5: (a) Original net and (b) transformed net.

Figure 5 shows an example, in which the transition t1 is split in t1,1 and t1, and the transition t2 is split

in t2,1, t2,2 and t2. Firing t1 in the original net corresponds to firing t1,1 and t1 in the transformed net, and

firing t2 in the original net corresponds to firing t2,2, t2,1 and t2 in the transformed net. Another example

is the Petri net of figure 8(a), which is changed as shown in figure 8(b) after it is PT-transformed. The

transition t2 is replaced by t2,1 and t2, and t3 by t3,1 and t3.
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4.2 Petri Net Supervisors Based on Place Invariants

This section outlines a method of [24] and [37]: supervisory control of Petri nets based on linear constraints.

We first consider the case of fully controllable and observable Petri nets.

4.2.1 Fully Controllable and Observable Petri Nets

The control problem is to enforce a set of nc linear constraints to prevent reaching undesired markings of a

Petri net. The constraints are written in a matrix form:

L · µp ≤ b (6)

where L is an integer nc × n matrix (nc - the number of constraints, n - the number of places of the given
Petri net), b is an integer column vector and µp denotes a marking vector.

Let µc be a vector of nc nonnegative slack variables, defined as:

µc = b− L · µp (7)

Let µc0 be the slack variables that correspond to the initial marking µp0, that is µc0 = b − Lµ0. Let q be
the firing count vector associated to the transitions fired to change the marking from µp0 to µp. If Dp the

incidence matrix, we have: µp = µp0 +Dq. Therefore µc = b− L · (µp0 +Dp · q), which also can be written
as:

µc = µc0 + (−LDp) · q (8)

In consequence µc may be regarded as a marking of some additional control places, where the extended

(supervised) Petri net has a marking vector µ = [µTp , µ
T
c ]
T , and an incidence matrix D = [DTp , D

T
c ]
T , and

where Dc = −LDp.
In the supervised net, initial markings µp0 such that L · µp0 6≤ b cannot be considered, since equation

(7) shows that in this case µc0 will not be nonnegative, and so not defined. (The marking is by definition

nonnegative in conventional Petri nets.) When the constraints are initially satisfied, the initial marking

of the control places may be chosen according to equation (7), and therefore the constraints will remain

satisfied for any reachable marking, since the Dc part of the incidence matrix prevents any firings which

would attempt to make any of the variables of µc negative.

The way the constraints are enforced prevents only forbidden markings to be reached, so the supervisor

is maximally permissive. The next theorem summarizes the construction above:

Theorem 4.1 Let a plant Petri net with controllable and observable transitions, incidence matrix Dp and

initial marking µp0 be given. A set of nc linear constraints Lµp ≤ b are to be imposed. If b− Lµp0 ≥ 0 then
a Petri net controller (supervisor) with incidence matrix Dc = −LDp and initial marking µc0 = b − Lµp0
enforces the constraint Lµp ≤ b when included in the closed loop system D = [DTp , DTc ]T . Furthermore, the
supervision is maximally permissive.

Proof: See [24] and [37]. 2

Because Dc = −LDp, every row of [L, I] is a place invariant of the incidence matrix of the closed loop
system, D.
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4.2.2 Petri Nets with Uncontrollable and Unobservable Transitions

Uncontrollable and/or unobservable events of the plant correspond to uncontrollable and/or unobservable

transitions in the Petri net model of the plant. Uncontrollable events cannot be inhibited and unobservable

events cannot be observed. As the Petri net supervisor is implemented in the form of control places connected

to the plant Petri net, we need to make sure that no control place ever attempts to inhibit an uncontrollable

transition enabled in the plant Petri net, and no control place marking is varied by firing unobservable

transitions. The constraints Lµ ≤ b which satisfy this requirement are called admissible constraints.
Note that the admissibility of a constraint may depend on the initial marking of the Petri net. (For instance,

all constraints are admissible in the trivial case with null initial marking.) In this paper we are interested in

constraints which are admissible for all initial markings. It can easily be seen that Lµ ≤ b is admissible for
all initial markings if and only if the following equations of [24] are true:

LDuc ≤ 0 (9)

LDuo = 0 (10)

where Duc and Duo denote the columns of the incidence matrix which correspond to uncontrollable and

unobservable transitions, respectively. From the viewpoint of this paper all linear constraints that have

matrices L that satisfy the conditions above are admissible. Such constraints may be enforced as in section

4.2.1. Constraints Lµp ≤ b which do not satisfy (9) and (10) may be transformed to a new set of constraints
L′µp ≤ b′ such that (i) L′ satisfies (9) and (10), and (ii) ∀µp ∈ Nnp : L′µp ≤ b′ ⇒ Lµp ≤ b. Unless ∀µp ∈ Nnp :
L′µp ≤ b′ ⇔ Lµp ≤ b, this approach of enforcing Lµp ≤ b may not be maximally permissive. Note that
enforcing linear constraints is maximally permissive in the case of fully controllable and observable Petri nets

(Theorem 4.1). Algorithms which transform linear constraints to admissible linear constraints are given in

[24].

4.3 Siphon Control Based on Place Invariants

Proposition 3.1 shows that in a PT-ordinary Petri net deadlock is not possible when all siphons are controlled.

Also, by Proposition 3.5, deadlock is not possible when all siphons which are active with respect to an active

subnet are controlled. Therefore it is important to define a method for siphon control. An easy way to

control a siphon is to create a place invariant which controls the siphon. This is the approach we choose.

Early references of this approach for siphon control are [2] and [10]. This section presents it as a special case

of the supervision method based on place invariants (section 4.2). The operations described in this section

do not rely on the fact that the structure they are applied to is a siphon.

4.3.1 Case 1: All Transitions are Controllable and Observable

Let N = (P, T, F,W ) be a Petri net. Given a set of places S, the desired control policy is ∑
p∈S
µ(p) ≥ 1.

This constraint is enforced using supervision based on place invariants, as described in [24], [37], and also

in section 4.2. In this way an additional place results, denoted C and called control place. The place

invariant thus created is x, such that x(i) = 1 for pi ∈ S, x(iC) = −1 and x(i) = 0 for all other indices,
where iC is the row index of C in the incidence matrix. The invariant corresponds to the equation

µ(C) =
∑
p∈S
µ(p)− 1 (11)
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where the constant (−1) results from the initial marking of the control place. There are several particular
cases:

1. •C = ∅ and C• 6= ∅: no transition increases the marking of S and there are transitions which decrease
the marking of S. In this case C alone makes up a minimal siphon which cannot be controlled (see

also [24], p.87-88).

2. C• ⊆ •S (in particular C• = ∅): no transition can make S token free. Also, C• ⊆ •S if and only if
S is a trap. Therefore when S is also a siphon, it is (trap) controlled for all initial markings µ0 that

satisfy
∑
p∈S0
µ0(p) ≥ 1.

3. •C = ∅ and C• = ∅: ∑
p∈S
µ(p) cannot vary, and so there is a place invariant x such that x(i) = 1

∀pi ∈ S and x(i) = 0 ∀p ∈ P \ S.

Case (a) detects transitions that cannot be made live when S is a siphon (Corollary 3.3). Case (b) shows

the case when S does not need control. This is from a structural viewpoint, as we do not consider whether S

does not need control for some initial markings, but rather if S does not need control for all initial markings

µ0 such that
∑
p∈S
µ0(p) ≥ 1. Therefore a control place will be produced for a siphon that is not a trap, but

includes a trap. The control place is useful for all initial markings in which the trap included in the siphon

has null marking; for such markings the siphon is not trap controlled.
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Figure 6: Siphon Control Examples. Connections to control places are dashed.

In figure 6(a) there is a single minimal siphon, {p1, p2, p4, p5, p6, p7}, which includes the trap {p4, p5, p6, p7}.
The siphon is not trap controlled because the marking of the trap is 0. The control place C prevents fir-

ing t1 to empty the siphon. The target Petri net of figure 6(b) has two minimal siphons, {p2, p3, p5} and
{p1, p3, p4, p5, p6}. Their control places are C1 and C2, respectively. C1 is an example of case (a). Also, the
control place C which would result for the minimal siphon {p2, C2} satisfies •C = ∅ and C• = ∅.
By Theorem 4.1, the enforcement of

∑
p∈S
µ0(p) ≥ 1 is maximally permissive. Because the enforcement

of this constraint makes the siphon controlled, there is no other more permissive way to control a siphon.

This is not the only way to provide maximally permissive control of a siphon; however, any other way is

equivalent. An important quality of this technique is that the supervised net remains a Petri net.

18

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



4.3.2 Case 2: Transitions Uncontrollable and/or Unobservable are Present

Let D be the incidence matrix of a Petri net, and let Duo and Duc be D restricted to the columns of unob-

servable and respectively uncontrollable transitions. In order that the constraint lTµ ≥ b be admissible, the
supervisor enforcing it should not need to detect unobservable transitions or inhibit enabled uncontrollable

transitions, and so the constraint is required to satisfy lTDuo = 0 and l
TDuc ≥ 0. There are methods that

allow to transform a constraint in a another constraint, in general more restrictive, which satisfies the last

two requirements. Two such methods can be found in [24] and another one in the appendix of this paper.

So when a desired constraint
∑
p∈S
µ(p) ≥ 1 is inadmissible, it can be transformed to a constraint of the form

lTµ ≥ b. In both the appendix and [24], b = 1 (in [24] consider the construction of Lemma 4.10). Therefore
the admissible form of the constraint

∑
p∈S
µ(p) ≥ 1 is ∑

p∈S
αpµ(p) ≥ 1. The algorithm of the appendix is

guaranteed to find a solution to this problem if any of the form lTµ ≥ b exists.
Note that the transformation to admissible constraints is not always possible. There are cases when

this is impossible because of limited information due to unobservable transitions and/or limited ability to

control firing transitions can make impossible the task to design a supervisor which guarantees that the

marking satisfies a certain constraint. Unlike the approach of the case of section 4.3.1, which corresponds to

maximally permissive siphon control, this approach is suboptimal in general. Note that when the admissible

constraint is obtained in the form
∑
p∈S
αpµ(p) ≥ 1 with all αp positive integers, the control of S is maximally

permissive, in the sense that the only forbidden markings are the markings for which µ(p) = 0 ∀p ∈ S. The
method from the appendix finds admissible constraints of the form

∑
p∈S
αpµ(p) ≥ 1, with αp nonnegative

integers, maximizing the number of coefficients αp which are nonzero. That method is guaranteed to find a

solution with all αp positive whenever such a solution exists.

5 The Deadlock Prevention Method

5.1 Introduction to the Method

Given a target Petri net N0, the deadlock prevention procedure generates a sequence of PT-ordinary Petri
nets, N1, N2, . . . Nk, increasingly enhanced for deadlock prevention. N1 is N0 transformed to be PT-
ordinary. The other Petri nets are largely obtained as follows: in each iteration i the new minimal active

siphons of Ni are controlled, and then, if needed, transitions are split; the resulting PT-ordinary net is Ni+1.
The active siphons (see Definition 3.7) of each Ni are taken with respect to an active subnet NAi computed
for every iteration i. Recall, for each controlled siphon a linear marking inequality is enforced. Let Liµ ≥ bi
be the total set of constraints enforced in Ni. Because Nk is the last Petri net in the sequence, it has no
uncontrolled active siphons. Therefore Nk is deadlock free for all initial markings which satisfy Lkµ ≥ bk.
Finally, the constraints defined by (Lk, bk) can be easily translated in constraints in terms of the markings

of N0; these constraints define the supervisor for deadlock prevention in N0.
The user is allowed to transfer to the procedure foreknowledge about the Petri net. This is done by using

initial constraints. For instance, if an invariant lTµ = c is true for all initial markings employed by the user,

the constraints [l,−l]Tµ ≥ [c,−c]T may be specified as initial constraints. The usage of initial constraints
LIµ ≥ bI could benefit problems in which one of the following is true: (a) the procedure should not generate
constraints which require LIµ 6≥ bI , (b) less complex supervisors can be obtained if the procedure takes in
account that markings such that LIµ 6≥ bI are never reached for all initial markings considered by the user

19

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



for the target Petri net, and (c) convergence help is needed.

The deadlock prevention procedure is defined in section 5.4. The sections preceding section 5.4 detail

the operations performed by the procedure. Sections 4.1, 4.2 and 4.3 have shown how the Petri nets are

transformed to be PT-ordinary, how constraints are enforced and how siphons are controlled. The precise way

in which the constraints are generated is considered in section 5.2. In some occasions, initial constraints may

be needed to help the procedure converge or to indicate place invariant constraints on the target net. Initial

constraints are considered in section 5.2.5. The active subnet NAi of the iteration i is usually the maximal
active subnet, but the method may take a smaller subnet in the following cases. The initial constraints

may conflict with constraints that the procedure wants to enforce. When a siphon constraint, due to the

initial constraints, cannot be enforced, all transitions connected to the siphon are considered to be dead.

Therefore they cannot be in the active subnet. A similar situation appears in the case of uncontrollable and

unobservable transitions, when no admissible constraint can be found to control a siphon. In this case the

procedure considers that all transitions connected to the siphon cannot belong to the active subnet. The

computation and the updating of the active subnet is shown in section 5.3.

5.2 Implicit Inequalities

The deadlock prevention procedure gradually restricts the sets of acceptable markings. To each (minimal

active) siphon corresponds a linear inequality, which expresses the requirement that the siphon is not empty.

As more and more siphons are controlled, the set of acceptable markings is restricted. In section 5.2.1 we

consider the form of the place invariants associated to control places. Section 5.2.2 considers the case when

the control of a siphon does not require a control place. Section 5.2.3 shows the way in which the procedure

constructs the sets of constraints. Section 5.2.4 defines the implicitly controlled siphons. In section 5.2.5 we

show how initial constraints on the target net are changed by the PT-transformation. Finally, section 5.2.6

considers the details of transforming constraints to admissible constraints.

5.2.1 The Enforced Place Invariants

Consider a siphon S. When the approach of section 4.3 is used, the control place C which results enforces

a constraint of the form
∑
p∈S
αpµ(p) ≥ 1, where αp ≥ 0. The most familiar case is when all transitions of S

are controllable and observable, in which αp = 1 ∀p ∈ S. The supervision based on place invariants creates
the following place invariant for C: µ(C) =

∑
p∈S
αpµ(p) − 1. The deadlock prevention procedure ensures

that the Petri net at the beginning of every iteration is PT-ordinary. However, by adding control places,

the net may no longer be PT-ordinary towards the end of the iteration. Therefore the deadlock prevention

procedure splits the transitions with arc weights greater than one, in order that the next iteration will have

a PT-ordinary net. This operation may change the place invariant of a control place. Proposition 6.6 proves

that a place invariant µ(C) =
∑
p∈S
αpµ(p)− 1 is transformed to

µ(C) +

k∑
i=1

mi−1∑
j=1

jµ(pi,mi−j) =
∑
p∈S
αpµ(p)− 1 (12)

The notations are as follows. k and mi are determined before the transition split: k = |C • |, mi =W (C, ti)
∀ti ∈ C•. For the places pi,j resulted by splitting the transitions ti ∈ C•, we use the notations of section
4.1. Note that for ti such that mi = 1 there are no places pi,j . In particular, if ∀ti ∈ C•: mi = 1, the place
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invariant is not changed

µ(C) =
∑
p∈S
αpµ(p)− 1 (13)

Assume that a control place C is added to Ni. One of the last operations applied in iteration i is to transform
the modified Ni to a PT-ordinary Petri net, which will be denoted Ni+1. The form of the place invariant
of C in Ni+1 is (12) or (13), depending on whether C introduced or not input transition arcs with weight
greater than one. By Proposition 6.7, the form of the place invariant will not be further changed in the

following iterations, it stays the same in all Ni+1, Ni+2, . . .. Therefore no update is necessary in a iteration
j for constraints added in previous iterations.

5.2.2 Constraints which do not need control place enforcement

There are siphons S such that if
∑
p∈S
µ0(p) ≥ 1 for the initial marking µ0, then

∑
p∈S
µ(p) ≥ 1 for all reachable

markings µ. Such a siphon does not need control. In order to reduce the complexity of the supervisor, such

siphons are identified (see case 2 at page 18) and no control places are added in such situations. Therefore,

instead of having a single set of constraints Lµ ≥ b we have two: Lµ ≥ b and L0µ ≥ b0. The constraints
Lµ ≥ b define the supervisor. The constraints L0µ ≥ b0 are the constraints such that whenever the initial
marking satisfies them, all reachable markings do. In consequence, the supervision for deadlock prevention

of the target net requires enforcing Lµ ≥ b and choosing an initial marking µ0 such that L0µ0 ≥ b0 and
Lµ0 ≥ b.
An example of siphon which does not require control is {C1, C2} in figure 9. Example 5.3 illustrates how

the constraints (L0, b0) are obtained.

5.2.3 Constructing the constraints of (L, b) and (L0, b0)

From equation (12) it can be seen that control places ensure inequalities of the form∑
p∈S
αpµ(p) ≥ 1 (14)

Section 5.2.2 showed that the inequalities which are enforced just by an appropriate initial marking (con-

straints which do not need a control place enforcement) have the same form. Assume that we consider an

inequality as in (14) added in iteration number i. Note that S in (14) may contain control places added in

the previous iterations i − 1, i − 2, . . ., 1. To reduce the number of variables, the constraints in (L, b) and
(L0, b0) are not specified directly in the form of (14). Instead, by repeated substitutions, the inequality is

written in the form lTµ ≥ c, where the entries of l corresponding to control places are null. (We substitute a
control place marking by its expression of the form (12).) This is how the inequalities Lµ ≥ b are obtained
from those associated to control places, and how L0µ ≥ b0 are obtained from the inequalities which do not
need control place enforcement.

The Petri nets N1, N2, . . . have an increasing number of places. So the dimension of the marking vector
µ is also increasing. The new places which are added in a iteration are control places and places resulted

by applying transition splits. For each new place the matrices L and L0 need a new column. Because the

columns corresponding to control places are always null, we omit them in our examples.

Finally note that the purpose of the procedure is to provide constraints in terms of the marking of the

target net N0. The constraints of the net Nk, where Nk denotes the Petri net of the last iteration of the
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procedure, are translated to constraints of N0 by removing all columns of L and L0 which do not correspond
to places of N0.

5.2.4 Implicitly controlled siphons

Any marking µ which does not satisfy Lµ ≥ b and L0µ ≥ b0 is said to be a forbidden marking. A
marking is valid if not forbidden and if all control place markings satisfy the proper invariant equations

(12). Consider that the current iteration of the algorithm has the number i and that currently a new siphon

S of Ni is considered for control. It is desired that the siphon never becomes empty, that is
∑
p∈S
µ(p) ≥ 1 is

always true. We say that S is (implicitly) controlled if the latter inequality is satisfied for all markings

µ which satisfy Lµ ≥ b and L0µ ≥ b0. For a controlled siphon a control place is not necessary and no new
constraint in (L0, b0) needs to be added.

5.2.5 Initial constraint transformation

The constraints which are already enforced in the target net N0 (due to the structure of N0) are called
initial constraints, because they are not produced by the deadlock prevention procedure and they exist

when the procedure is started. This section considers the way initial constraints are transformed before the

first iteration. As mentioned earlier in section 5.2.1, a constraint enforced in a iteration stays enforced for the

following iterations, by Proposition 6.7. However this property is not always true for the initial constraints,

since N0 may not be PT-ordinary (while all Ni, i ≥ 1, are so.)
To state the problem, assume that the marking constraints L0µ ≥ b0 are always true ∀µ ∈ R(N0, µ0),

∀µ0 ∈ MI , whereMI is some set of initial markings. Let N1 be the Petri net at the beginning of iteration
one, that is N1 is N0 PT-transformed. Let L′µ ≥ b′ be a constraint which is satisfied for all markings of N1
which are reached from all valid initial markings in some setM′. In view of Proposition 6.7, the constraint
stays enforced in all other nets Ni obtained in the following iterations, for all markings reachable from valid
initial markings with restriction to the places of N1 inM′. However, because N0 may not be PT-ordinary,
it may not be true that L0µ ≥ b0 is enforced in N1 for all markings reachable from valid initial markings
with restriction to the places of N0 inMI . Fortunately, the constraints L0µ ≥ b0 can be transformed in a
form which is true in N1. The idea of the transformation appears in Proposition 6.6. (Note that it is not
technically correct to say that L0µ ≥ b0 is enforced in both Nu and Nv, for some u 6= v, since the markings in
Nu and Nv have different dimensions; for the sake of simplicity, we mean that µ in L0µ ≥ b0 is the marking
restricted to the places of the net in which L0µ ≥ b0 has been originally written.)
Assume that k transitions are split in N0 to obtain the PT-ordinary net N1. Let t1, t2, . . . tk be the tran-

sitions of N0 which are split. Using the notations from the section 4.1, the transformed constraints L′0µ ≥ b′0,
which are true in N1, are obtained from L0µ ≥ b0 by substituting µ(p) with µ(p)+

k∑
i = 1
mi > 1

mi−1∑
j=1

jµ(pi,mi−j)

for all places p of N0, where mi = 0 if p /∈ •ti and mi =W (p, ti) otherwise. We see, the substitution of µ(p)
is simply µ(p) when no transitions in the postset of p are split. Also, when no transitions of N0 are split, we
have N1 equal to N0, and the constraint L0µ ≥ b0 remains unchanged.
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5.2.6 Transforming Constraints to Admissible Constraints

In this section we consider the way in which the procedure uses the approach of section 4.3.2. We are to find

the nonnegative integers αp of the inequality ∑
p∈S
αpµ(p) ≥ 1 (15)

such that the constraint is admissible and some other requirements, which we specify in this section, are

satisfied. Once the parameters αp are found, the constraint can be enforced with the invariant based approach

of section 4.2.1, as the constraint is admissible. Let a be the vector with zero elements for places not in S

and αp for the places p; then (15) can be written as a
Tµ ≥ 1. Let d be a column vector defined as follows

d(i) = 1 if pi is in the active subnet and d(i) = 0 otherwise. It is required that:

aTd > 0 (16)

Thus, enforcing that S is controlled, guarantees that the restriction of S to the active subnet is a controlled

siphon of the active subnet whenever (16) is true. Note that this is always the case when the siphon control

approach of section 4.3.1 is used (that is, when no transformation to an admissible constraint is necessary.)

As shown in section 5.2.3, the marking of the control places µc can be expressed only in terms of the

marking of the other places, µp, and so we have an equation: µc = Mµp − g, where M is a matrix and g
an integer vector. Let a = [aT1 , a

T
2 ]
T , where a1 and a2 are the restrictions of a to the control places and

respectively the other places of the net. Equation (15) can be written as

aT [MT , I]Tµp ≥ 1 + aT1 g (17)

Let Ds be the restriction of the current incidence matrix D to the columns of the new transitions resulted

by split operations in all previous iterations. The additional constraint is

aTDs ≤ 0 (18)

The last requirement ensures that the control place C which results by enforcing (15) satisfies C /∈ tj,i• for all
transitions tj,i resulted by splitting some transition tj . This requirement is necessary for Proposition 6.2(b).

Note that this proposition proves that the requirement is always satisfied in the case when the siphon control

approach of section 4.3.1 is used (that is, when no transformation to an admissible constraint is necessary.)

If Duc and Duo are the restrictions of the incidence matrix of N0 to the uncontrollable and unobservable
transitions, the admissibility requirements are (see section 4.2.2):

aTNrDuc ≥ 0
aTNrDuo = 0

(19)

where Nr is the restriction of [M
T , I]T to the columns which correspond to the places of N0. Let an be the

restriction of a to the places which resulted through transition split, let Pn = {p : an(p) 6= 0} and Tn = •Pn.
As a transition split property, each place p ∈ Pn has exactly one input transition, which is in Tn. Let Dsn
be the restriction of Ds to the columns which correspond to Tn. Note that an does not affect (19). Then we

can choose an such that:

aTDsn = 0 (20)

The advantage of doing this would be that the control place C will result with less connections, and so less

siphons in the next iteration. The method from the appendix can be easily adjusted to find a vector a with

nonzero elements (the elements are the parameters αp) given the constraints (16), (18), (19) and (20). The

transformation fails when no solution is found such that at least two αp, for p in NA, are nonzero.
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5.3 The Computation of the Active Subnet

The active subnets of a Petri net is defined in Definition 3.6. The procedure considers in every iteration

a single active subnet, preferably the maximal active subnet. The computation of the active subnet used

by the procedure in an iteration is given below. The active subnet can be easily found once all transitions

which cannot be made live under any circumstances are identified. Let D be the incidence matrix and i the

index of such a transition which cannot be made live. Corollary 3.3 shows that for all vectors x ≥ 0 such
that Dx ≥ 0: x(i) = 0. It also shows that if x(j) > 0, the transition of index j can be made live. Based on
this idea, a polynomial complexity algorithm which computes the active subnet is given below. The usage

of the input Z, which normally is the empty set, is discussed later in this section.

Input: The Petri net N = (P, T, F,W ) and its incidence matrix D; an optional set Z (default is Z = ∅) of
transition indices which identify transitions which cannot be made live for reasons other than structural.

Output: The active subnet NA = (PA, TA, FA,WA).

1. Transform Dx ≥ 0 in [D,−I] · [xT , yT ]T = 0, where y are the excess variables. Let n be the number of
rows of x and M = ∅.

2. For i = 1, 2, . . . n and i /∈M do

(a) Check feasibility of [D,−I] · [xT , yT ]T = 0 subjected to x(i) = 1, x(j) = 0 ∀j ∈ Z, x ≥ 0 and
y ≥ 0, with a linear programming method. If feasible, let [xTs , yTs ]T be a solution.

(b) Add all indices in ‖xs‖ to M .

3. The active subnet is NA = (PA, TA, FA,WA), where TA is identified by the set of indices M , PA =
TA•, FA = F ∩ {(TA × PA) ∪ (PA × TA)} and WA is the restriction of W to FA.

In the cases when the deadlock prevention procedure detects that it is unable to control certain siphons,

all transitions which belong to that siphons are marked to be removed from the active subnet. Considering

all such transitions marked by the deadlock prevention procedure, let Z be the set of their indices in D.

Then the active subnet is computed by using Z as input for the algorithm above. Using a nonempty set Z

adds to the feasibility problem of step 2a the additional constraints that x(j) = 0 ∀j ∈ Z. Note that in this
case the active subnet of the procedure is not the maximal active subnet (Definition 3.6).

Because of the iterative nature of the deadlock prevention procedure, the active subnet needs to be

recomputed in every iteration. In general, the algorithm above needs to be used only once, to compute NA1 .
Usually the other active subnets NA2 , NA3 , . . . can be computed by simply repeating the changes done to Ni
in NAi . (The procedure changes Ni by adding control places and splitting transitions.) This simpler way of
computing the active subnets is applied for all iterations which do not mark new transitions to be removed

from the active subnet. This is a very common situation. For instance this is always true for all problems

with no initial constraints on the target net and no uncontrollable and unobservable transitions.

Other details about the algorithm for the computation of the active subnet can be found in the appendix

of [15].

5.4 The Deadlock Prevention Procedure

Input: The target Petri net N0 and a possibly empty set of initial constraints (L0, b0).
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Output: Two sets of constraints (L, b) and (L0, b0) and a variable indicating the mode of termination.

(Deadlock is prevented for all initial markings µ0 such that Lµ0 ≥ b, L0µ0 ≥ b0 when (N0, µ0) is supervised
according to Lµ ≥ b.)
Procedure:

A. N0 is transformed to be PT-ordinary, as shown in section 4.1; the transformed net is N1. The initial
constraints (L0, b0), if any, are transformed as shown in section 5.2.5. If not previously defined, let

X = ∅.

B. The (maximal) active subnets NA0 and NA1 of N0 and N1 are computed such that they do not contain
the transitions in X . If NA0 is empty, the procedure terminates and declares failure. In particular,
when X = ∅ and NA0 is empty, deadlock cannot be prevented in N0 under any circumstances.

C. For i ≥ 1 do (the initial Petri nets of the iteration i are NAi and Ni.)

1. If no new uncontrolled minimal active siphon is found, the next step is D. (The active siphons are

taken with respect to the current active subnet NAi . A siphon S is uncontrolled if
∑
p∈S
µ(p) ≥ 1 is

not implied by Lµ ≥ b and L0µ ≥ b0)
2. For every new uncontrolled minimal active siphon S do

Let C be the control place which would result by controlling the siphon, and let lµ ≥ c be the
inequality

∑
p∈S
µ(p) ≥ 1 written in the form shown in section 5.2.3, that is without reference

to the marking of the control places. First, the approach of section 4.3.1 is considered for the

control of S through C.

(a) If C• ⊆ •S, then S does not need supervision and C is not added to Ni. The constraint (l, c)
is added to (L0, b0). The next step is 2c.

(b) If C• 6⊆ •S then
i. If (l, c) is an inadmissible constraint (because of uncontrollable and/or unobservable tran-

sitions), C is added to the net as shown in section 4.3.2 and section 5.2.6; (l, c) is set to

the obtained admissible constraint, expressed without reference to the marking of the

control places (section 5.2.3).

ii. Else, if (l, c) is admissible, C is added according to the method of section 4.3.1.

In both cases (i) and (ii) (l, c) is included in (L, b), except when the approach of the sections

4.3.2 and 5.2.6 fails to find an admissible constraint. When this failure occurs, all transitions

of S• are marked as transitions which cannot be prevented (by the supervisor) to become
dead. The active subnet, when updated in step 4, will not include these transitions.

(c) It is checked that the system of L0µ ≥ b0 and Lµ ≥ b is feasible. (This is always the case
when the procedure has no initial constraints (L0, b0) in step A.) If the system is feasible,

the procedure continues with the next new uncontrolled minimal active siphon. Else, if the

system is infeasible, all transitions of S• are marked as dead, in view of step 4. Also, C is
removed from Ni and (l, c) is removed from (L0, b0) or (L, b).

3. If the Petri net is no longer PT-ordinary, the transitions which do not comply with this requirement

are split (section 4.1.) The matrices L and L0 are enhanced with null columns, each column

corresponding to one new place resulted by transition split.
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4. The active subnet is updated according to the changes made in the total net in the steps C-2b,

C-2c and C-3. If the new subnet is empty, the procedure cannot generate a deadlock prevention

supervisor and so it terminates. If an infeasible system was obtained at a previous step C-2c, then

X is initialized to X = T0 \ TA and the procedure is restarted at the step A, where TA is the set
of transitions of the active subnet.

5. The final nets of the iteration i are denoted by NAi+1 and Ni+1. The next step is C-1.

D. The constraints (L, b) and (L0, b0) are modified to be written only in terms of the marking of the target

net N0. This is done by removing the columns of L and L0 corresponding to places not in N0 (see
section 5.2.)

E. The constraints (L, b) and (L0, b0) are considered for simplifications, to remove redundant constraints.

5.5 Remarks

1. The purpose of the procedure is to produce two sets of linear constraints on the marking of the target

net in the form Lµ ≥ b and L0µ ≥ b0, where L and L0 are integer matrices and b and b0 are integer
column vectors. For all initial markings µ0, such that Lµ0 ≥ b and L0µ0 ≥ b0, the target Petri net
supervised according to Lµ ≥ b is deadlock free by Theorem 6.2.

2. The supervisor enforcing Lµ ≥ b is built using supervisory control based on place invariants ([24] and
[37]). The procedure generates admissible constraints, so the supervisor results by the methodology of

section 4.2.1.

3. The procedure is allowed to start with initial constraints in (L0, b0). The user can employ initial

constraints of (L0, b0) to tell the procedure that in his application all reachable markings µ satisfy

L0µ ≥ b0. This allows specification of equations associated to place invariant properties of the net.
The procedure does not make any assumptions on the initial marking, so an invariant equation needs

to be specified if the user desires the procedure to use that invariant. (Specifying the constant of an

invariant equation requires information on the initial marking.)

4. The difference between the constraints (L, b) and (L0, b0) which are generated by the procedure is

that (L, b) need to be enforced by supervision, while (L0, b0) need not. (L0, b0) are guaranteed by the

structure of the target Petri net when supervised according to Lµ ≥ b, for all initial markings µ0 of
the target Petri net which satisfy L0µ0 ≥ b0 in addition to Lµ ≥ b.

5. Initial constraints in the form (L0, b0) are allowed. Without reducing the generality (see section 6.3.1),

no initial constraints of the form (L, b) are allowed.

6. In an iteration we only use one of the possible active subnets. Whenever possible, the active subnet

considered by an iteration is the maximal active subnet. The active subnet which is used in the iteration

i is denoted by NAi . Therefore, in iteration i, all active siphons are taken with respect to NAi .

7. The new minimal active siphons of Ni+1, i ≥ 1, can be computed without computing all minimal active
siphons. As shown in Proposition 6.8, each new minimal active siphon contains at least a control place

added in iteration i to Ni or a place from PAi \ PAi+1.
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Figure 7: Example 5.1: (a) the target net, (b) after one iteration, (c) the final net. C1 is a control place for

the siphon {p1, p2}, C2 for {p3, p4} and C3 for {C1, C2}.

8. Consider a special case: the target Petri net is repetitive, no initial constraints are given and no

uncontrollable and unobservable transitions are present. Repetitive Petri nets have the property that

markings exist such that liveness is enforcible via supervision. Therefore the maximal active subnet is

equal to the total net and so any siphon is an active siphon. In consequence, the description of the

procedure can be simplified by removing the steps 2c and 4. The procedure for this special case is

similar to that of [20], where the most notable differences are the following. Our procedure does not

assume the initial marking to be known. We use a different split transition operation. This makes sure

that the PT-transformation cannot disable the control of siphons. In this way the failure condition

mentioned in Lemma 5.1 in [15] does not appear now. We also check whether a siphon is uncontrolled.

This helps termination, as shown in the example of figure 11 in section 6.4.2.

9. With regard to [15], the most significant improvements are the following. Initial constraints and

uncontrollable and unobservable transitions are allowed. Redefining the active subnet allows improved

permissivity in the case of nonrepetitive target nets and redefining the split transition operation allows

less restrictive conditions for proving deadlock prevention.

5.6 Illustrative Examples

Example 5.1 Consider the Petri net of figure 7(a), which is repetitive. In a repetitive net any siphon is an

active siphon with regard to the maximal active subnet. The original net has two minimal siphons {p1, p2}
and {p3, p4}. Therefore two control places are added, C1 and C2, which enforce µ(P1) + µ(P2) ≥ 1 and
µ(P3)+µ(P4) ≥ 1, respectively. Since C1 and C2 supervise the two siphons according to the invariant based
approach (section 4.2 and 4.3), the following place invariants are created:

µ(C1) = µ(P1) + µ(P2)− 1 (21)

µ(C2) = µ(P3) + µ(P4)− 1 (22)

The current matrices L and b reflect the equations (21) and (22).

L =

[
1 1 0 0

0 0 1 1

]
b =

[
1

1

]
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Figure 8: Example 5.2: (a) N0; (b) N1; (c) NA1 , the same as NA2 and NA3 ; (d) N2; (e) N3 before the split
of t1; (f) the final Petri net supervised for deadlock-freedom

At the second iteration the only new minimal siphon is {C1, C2} and the inequality µ(C1) + µ(C2) ≥ 1 is
considered. As shown in section 5.2.3, all constraints can be written without reference to the control places.

In particular, the constraint µ(C1) + µ(C2) ≥ 1 can be written as µ(P1) + µ(P2) + µ(P3) + µ(P4) ≥ 3 (see
equations (21) and (22).) The method of section 4.3.1 is used for {C1, C2}, and a new control place C3
results. The place invariant of C3 is

µ(C3) = µ(P1) + µ(P2) + µ(P3) + µ(P4)− 3 (23)

The resulting net (figure 7(c)) has no new minimal siphons, therefore the procedure terminates. The matrices

L and b after the second iteration are:

L =

 1 1 0 0

0 0 1 1

1 1 1 1

 b =

 11
3


Because L and b cannot be simplified, the supervised net for deadlock prevention is the same as that of

figure 7(c). By Theorem 6.2, the supervised Petri net is deadlock-free for all initial markings µ0 such that

Lµ0 ≥ b. In this example no constraints (L0, b0) are produced. 2

Example 5.2 Consider the Petri net of figure 8(a), which is not PT-ordinary. Three transitions cannot

be made live, for any finite marking: t1, t2 and t3.
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Figure 9: Example 5.3: (a) N0; (b) the final Petri net supervised for deadlock-freedom

The first iteration begins with the PT-transformed net N1. There is a single minimal active siphon,
{p1, p2, p3}. A control place C1 is added to the total net (figure 8(d)). The active subnets in the iterations
1, 2 and 3 are shown in figure 8(c). The inequality associated with C1 is µ(p1) + µ(p2) + µ(p3) ≥ 1, so at
the end of this iteration L = [1, 1, 1, 0, 0] and b = 1.

In the second iteration there is a single new minimal active siphon, {p1, p2, p2,1, p3,1, C1}. The siphon is
uncontrolled, since µ(p1) +µ(p2) +µ(p2,1) +µ(p3,1) +µ(C1) ≥ 1, that is 2µ(p1)+ 2µ(p2) +µ(p3) +µ(p2,1) +
µ(p3,1) ≥ 2, is not implied by µ(p1)+µ(p2)+µ(p3) ≥ 1. The control place C2 which is added is also a source
place. The procedure terminates, since at the third iteration there is no new minimal active siphon. The

resulting matrices L and b after step D are:

L =

[
1 1 1

2 2 1

]
b =

[
1

2

]
There is one redundant constraint, so the final constraints are L = [2, 2, 1] and b = 2. The supervised net is

shown in figure 8(f). By Theorem 6.2 it is deadlock-free for all initial markings µ0 such that Lµ0 ≥ b. 2

Example 5.3 Consider the repetitive Petri net of figure 9(a), where t1 is unobservable. In the first iteration

there are two minimal siphons: {p1, p3} and {p2, p3}. Consider the siphon {p1, p3}. The marking constraint
µ(p1) + µ(p3) ≥ 1 is not admissible, so the approach of section 4.3.2 is used for the control. The resulting
admissible constraint is 2µ(p1) + µ(p3) ≥ 1. The control place C1 is added according to this constraint, and
the place invariant µ(C1) = 2µ(p1) + µ(p3)− 1 results. Similarly C2 enforces 2µ(p2) + µ(p3) ≥ 1 on {p2, p3}
and µ(C2) = 2µ(p2) + µ(p3)− 1. The matrices L and b after the first iteration are:

L =

[
2 0 1

0 2 1

]
b =

[
1

1

]
In the second iteration there is a single new minimal siphon, {C1, C2}. The control place which would
result by enforcing µ(C1) + µ(C2) ≥ 1 is C3 such that C3• = ∅. Therefore, {C1, C2} does not need control,
according to the step 2a of the procedure. µ(C1) + µ(C2) ≥ 1 is written as 2µ(p1) + 2µ(p2) + 2µ(p3) ≥ 3,
and so

L0 =
[
2 2 2

]
b0 =

[
3
]

The procedure terminates, since there is no new uncontrolled siphon in the third iteration. The supervised

net is shown in figure 9(b). Deadlock is prevented for all initial markings such that Lµ0 ≥ b and L0µ0 ≥ b0.
In fact, liveness is enforced and so the supervisor is maximally permissive by Theorem 6.3. 2
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6 Properties

6.1 Basic Properties of the Method

6.1.1 Introduction and Notations

In the deadlock prevention procedure, we start with a Petri net N0 = (P0, T0, F0,W0) that may not be PT-
ordinary. New Petri nets Ni = (Pi, Ti, Fi,Wi), i ≥ 1, are derived in a iterative process. The only operations
of an iteration that modify the structure of the net are the addition of a new control place (section 4.3) and

transition split (section 4.1).

Adding control places does not modify the set of transitions. The set of places is increased by the set of

new control places, and the set of transition arcs by the new arcs which connect the control places to already

existing transitions. The old arcs have unmodified weights; new arcs connecting the new control places may

have weights greater than one. If a weight of an arc entering a transition is greater than one, the Petri net

is not PT-ordinary and transitions not conforming to the requirement may be split.

The Petri net notations are: N0 = (P0, T0, F0,W0) – the initial Petri net, N1 = (P1, T1, F1,W1) – N0
PT-transformed, Ni = (Pi, Ti, Fi,Wi) – the Petri net produced by iteration i − 1 for i ≥ 2 and NAi =
(PAi , T

A
i , F

A
i ,W

A
i ) – the active subnet of Ni. (In an iteration we only use one of the possible active subnets;

the active subnet, denoted by NAi , is required in order to specify the active siphons.)
When a transition is split, one or more of its input arcs are replaced by a sequence of places and transitions.

Unlike the split operations of [20] and [15], in this paper a split transition is not removed from the Petri

net (see section 4.1.) Firing a split transition in the initial net is equivalent to firing it together with the

sequence of replacing transitions in the transformed net. Let TR be the set of transitions which are created

by transition split. Also, let PR be the set of places generated by transition split. Then for every Ni the set
of places is Pi = P0 ∪ PR ∪ C and the set of transitions is Ti = T0 ∪ TR, where C is the set of control places
which were added in the iterations 1, 2, . . . i.

Let σi(t) denote the transition sequence corresponding to the new transitions which appear when t is

split in Ni. That is, if t is first split in iteration k− 1, σi(t) = ∅ for i < k and σi(t) = σk+1(t) = tktk−1 . . . t1
for i ≥ k, where t1 . . . tk are the new transitions which result when t is split. We may omit the index i,
meaning σi(t) for σ(t) if the current referred net is Ni.
We also need notations to specify the transition sequences of Ni which resulted by successive splits of

a single transition of N0. For instance, a transition t of N1 is split in the first iteration and so t1, t2, t3,
result, then in the second iteration t1 and t2 are split and the new transitions are t1,1, t1,2, and t2,1, t2,2.

We know that by firing the sequence t3t2t1t in N2 we have the same effect as by firing t in N1. Also, firing
t3t2,2t2,1t2t1,2t1,1t1t in N3 corresponds to firing t in N1, but the same may be true for other ordering in a
sequence of these transitions, for instance for t3t2,2t1,2t2,1t2t1,1t1t.

The problem is to specify the transition sequences σ0,i(t) of Ni such that (a) σ0,i(t) enumerates the
transitions (including t itself) in which t of N0 is successively split until (and including) the iteration i− 1,
and (b) markings µ of Ni exist such that µ(p) 6= 0 only if p /∈ PR, that is p a place of N0 or a control place,
and µ enables σ0,i(t). Firing the sequence σ0,i(t) in Ni corresponds to firing t in N0. If t is not split, we let
σ0,i(t) = t. The notation σj,i(t) for i > j and t in Ni, will be similarly defined, by taking Ni instead of N0.
Because of the nature of the split operation, we need to specify sets of transition sequences, and this is

done by listing sequentially sequences and groups of sequences, where in each group the sequences can fire
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asynchronously. A group is included between braces. For instance, given the transitions t1, t2, t3 and t4,

{t1, t2t3}t4
defines the sequences t1t2t3t4, t2t1t3t4 and t2t3t1t4; the notation denotes that t1 and the sequence t2t3 can

fire asynchronously, but t4 can fire only after all of t1 and t2t3 have fired. We redefine PR to be the set of

places which appeared by transition splits in the iterations m, m + 1, . . . k − 1. The following algorithm
defines the set of transition sequences Σm,k which resulted by successive splits in the iterations m, m + 1,

. . . k − 1 of a single transition t of Nm.
Input: t: a transition of Nm, Nm and PR.
Output: Σm,k

n = 1, I = {1}, Σ1 = t
While I 6= ∅ do

For all i ∈ I do
Let tx be the first transition in Σi.

If | • tx ∩ PR| = 0 then
I := I \ {i}

else if | • tx ∩ PR| = 1 then
Let ty be the transition such that {ty} = •(•tx ∩ PR).
Σi := tyΣi

else if | • tx ∩ PR| = j > 1 then
Let ty1, . . . tyj be the transitions such that {ty1, . . . tyj} = •(•tx ∩ PR).
I := (I ∪ {n+ 1, . . . n+ j}) \ {i}
Σn+1 := ty1, . . . Σn+j := tyj

Σi := {Σn+1, . . .Σn+j}Σi
n := n+ j

end if

end for

end while

Σm,k = Σ1

We will denote by σm,k(t) an arbitrary transition sequence of Σm,k. In particular, σ0,k(t) considers split

transitions with respect to the original Petri net N0 instead of Nm. Note that unlike the sequence σ(t), a
sequence σm,k(t) is defined to contain t, and it ends with t.

The postset and the preset operations may generate confusion when we consider more Petri netsNi at the
same time, as they share common transitions and places. Therefore sometimes we need to use the following

notations:

1. x•i is x• evaluated in Ni, where x ∈ Pi ∪ Ti.
2. •ix is •x evaluated in Ni, where x ∈ Pi ∪ Ti.

6.1.2 Properties

This section introduces a number of properties which are useful in the proofs of the main results in section

6.2 and for a better understanding of the procedure.
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Proposition 6.1 Let NAk and Nk be the the active subnet and the total net after iteration number k − 1.
(a) Pk ⊆ Pk+1 and Tk ⊆ Tk+1 for all k ≥ 0.
(b) Any p ∈ Pk \ PAk has in Nk the property that •p ⊆ Tk \ TAk .
(c) Consider the step 2 of an iteration and let C be a control place added to the total net with regard to a

minimal active siphon that contains the siphon S of the active subnet. Then S is controlled by C in

the active subnet.

Proof: (a) By construction, control places are added to the total net and new places may be created by

transition split. In this way Pk+1 = Pk∪Ck∪PS,k, where Ck is the set of control places added in iteration k and
PS,k is the set of places resulted from transition split in iteration k. Also, by construction, when a transition

t is split, it is not removed (section 4.1), but new places and transitions are added; so Tk+1 = Tk ∪Ts, where
Ts is the set of transitions resulted through transition split in the iteration k.

(b) Immediate consequence of the construction of the active subnet.

(c) The incidence matrix of the active subnet can be obtained from the total subnet by removing the

columns and rows corresponding to transitions and places which are not in the active subnet. Also, the

constraint matrix la in the active subnet is the restriction to the places of the active subnet of the constraint

l. Therefore by enforcing the constraint of l in the total net, and then by removing the transitions which

do not belong to the active subnet, the same connections for the control place C are obtained as in the case

when la is enforced directly in the active subnet (see section 4.2). Because enforcing la ensures that S is

controlled (section 4.3.2), the conclusion follows. 2

Several properties related to transition splitting are given in the next two propositions.

Proposition 6.2 Let C be the set of control places added up to the iteration m. Then: (a) •P0∩(Tm\T0) = ∅,
(b) •C ∩ (Tm \ T0) = ∅ and (c) ∀t ∈ (Tm \ T0): |t • | = 1.

Proof: (a) The property is obvious just by inspecting the transition split operation: for m = 1 the property

is true, and for m > 1 it also is true since (i) transitions from a split operations are only in the preset of the

new places resulted through the split and (ii) transition splits for m > 1 are only due to adding new control

places, so the transitions connected to P0 remain the same throughout all iterations.

(b) and (c). Note that (c) is a consequence of (b): the only way a transition can get a new place in its

postset is by adding control places. Then if (b) is true, all transitions in Tm \ T0 keep their original postset,
and since the transitions t from split replacements are originally produced with |t • | = 1 (section 4.1), (c) is
verified.

The siphon control method for uncontrollable and unobservable transitions (section 4.3.2) is constructed

such that property (b) is true for all controls places which are added using it. However it remains to be

proved that the property is true when the more usual siphon control method (section 4.3.1) is used.

The proof is by induction. Assume that the property is true for all control places added so far, and let k

be the current iteration number. Then for all transitions t ∈ (Tk \T0): |t• | = 1. We assume by contradiction
that adding the control place C with regard to a siphon S connects C to t such that C ∈ t• and t ∈ (Tk \T0).
This implies that t increases the marking of S when it is fired; however, before adding C, |t • | = 1, so t
cannot increase the marking of S unless t ∈ S• and t /∈ •S. But this contradicts that S is a siphon. 2

Proposition 6.3 For every iteration index i:
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(a) If PAi ∩ P0 = ∅ then NAi is empty.
(b) Let t ∈ T0. If tx ∈ σ0,i(t) and tx ∈ TAi then every transition of σ0,i(t) preceding tx is in TAi , where a
transition ty of σ0,i(t) precedes tx if ∃t1 . . . tn ∈ σ0,i(t) such that tx ∈ tn • •, . . . t1 ∈ ty • •.

(c) Let C be the set of control places of Ni, that is all the control places which were added in iterations
1, 2, . . . i− 1. There is no siphon S of the total net or of the active subnet such that S ⊆ Pi \ (P0 ∪ C).

Proof: (a) PAi ∩P0 = ∅ ⇒ •P0 ∩TAi = ∅, so T0∩TAi = ∅. Recall, the transitions which are not in the active
subnet cannot fire infinitely often. Note that Ti \ T0 are transitions resulted from transition split. However,
by split transition construction, there is no cycle in which only transitions from Ti \ T0 appear and none
of the transitions from Ti \ T0 can be a source transition. Therefore the transitions in Ti \ T0 cannot fire
infinitely often. Hence, TAi is not a subset of Ti \ T0, so TAi = ∅.
(b) A transition belongs to the active subnet if finite markings exist such that it can fire infinitely often.

To prove the conclusion, it is enough to prove that tu ∈ σ0,i(t) and tu ∈ • • tx imply that tu is in the active
subnet. This can be shown as follows: ∃p ∈ PS (where PS is the set of places resulted from transition split
operations) such that tu ∈ •p and tx ∈ p•. Since | • p| = 1 (see the transition split operation) tu must be
able to fire infinitely often.

(c) Let PS be the set of places resulted from transition split: PS = Pi \ (P0 ∪ C). The proof is a direct
consequence of the splitting method (section 4.1). Thus, p ∈ PS cannot be a source place in the total net,
while the active subnet cannot anyway have source places. Further on, if PSx is the set of places from the

replacement of tx ∈ T0 in Ni, there are no cyclic structures only made up of places in PSx. Also, because
(• • PSx \ PSx) ∩ PS = ∅ and (PSx • • \ PSx) ∩ PS = ∅ there is no cyclic structure only made up of places in
PSx and other places from PS . The same justification also applies to the active subnet. 2

It is interesting to find out what happens to a siphon controlled with a control place when one or more

of its transitions are split. A transition t may be split after a control place C is added in the preset of

t and W (C, t) > 1. The following proposition shows that the siphons are not changed by transition split

operations.

Proposition 6.4 Given a PT-ordinary Petri net, let S be (i) a (minimal) siphon, or (ii) a (minimal) active

siphon. Assume that after adding some control places the net is no longer PT-ordinary. If some arbitrary

transition t is split, then S remains a (minimal) siphon in case (i), or a (minimal) active siphon in case

(ii).

Proof: Transition split operations do not change S• and •S, so S is still a siphon. In general, for all places
p but the new added control places p• and •p are not changed. So if S was a minimal siphon, it remains
minimal. If t was in the active subnet, it remains so. Indeed, the split replacement sequence produces the

same marking change to the original places of the net as firing t alone in the original net. If t was not in the

active subnet, no siphon of the active subnet is affected by splitting t. If t was in the active subnet, all its

replacing sequence is in it (Proposition 6.3(b)) and so we can apply the same reasoning to see that if s was

a minimal siphon of the active subnet, it remains so. Hence if S was an active siphon, it remains so. If S

is now not minimal, it includes a smaller active siphon S′ which includes the siphon s′ of the active subnet.
Using the same reasoning, S′ was a siphon in the original net and s′ a siphon in the original active subnet.
So S was not minimal if S is not minimal in the new net. In other words S was a minimal active siphon

only if S is so in the new net. 2
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Proposition 6.5 Let C be the control place which enforces lTµ ≥ b in Ni. Let PR be the set of places
resulted through transition split in iterations i through j − 1 and µ0 be a marking of Nj such that µ0(p) = 0
∀p ∈ PR and µ0(C) = lTµ0r − b. For all markings µ reachable from µ0 and such that µ(p) = 0 ∀p ∈ PR,
µ(C) = lTµr− b is satisfied. The notations µ0r and µr denote the markings µ0 and µ, respectively, restricted
to the places of Ni.

Proof: This is a direct consequence of the following facts: (a) C enforces lTµ ≥ b in Ni; (b) Let t ∈ Ti,
which is found split in Nj . Firing the entire split replacement sequence of t in Nj , modifies the marking of
the places of Pi in the same way as firing the transition t in Ni (see section 4.1.) 2

Proposition 6.6 Assume that a number of constraints are enforced on a PT-ordinary Petri net. Let C be

the control place added to enforce the constraint lTµ ≥ b, that is µ(C) = lTµ − b. Let t1, t2, . . . tk be all
transitions such that W (C, ti) = mi > 1. Next, the closed loop Petri net is transformed in a PT-ordinary

Petri net as shown in section 4.1. Then C enforces:

µe(C) +

k∑
i=1

mi−1∑
j=1

jµe(pi,mi−j) = l
Tµ− b (24)

in the PT-transformed Petri net, where µ is the marking vector µe restricted to the places of the original

Petri net and the usual notations of section 4.1 are used.

Proof: Before splitting the transitions, the invariant based method for enforcing constraints guaranteed that

the change in marking, by firing any transition, is the same for µ(C) and lTµ− b. This is no longer true for
t1, . . . tk after they have been split, because after this C is not connected to them in the same way as before

(now W (C, ti) = 1 for all i = 1 . . . k). However, the other connections between C and the rest of transitions

which affect lTµ − b remain the same. Hence, among the transitions which change by firing lTµ − b, only
t1, . . . tk produce a different marking change in C and l

Tµ− b. Besides, the transitions ti,j (i = 1 . . . k and
j = 1 . . .mi − 1) are the only which change the marking of C when fired, but do not affect the marking of
lTµ− b (see the split transition construction in 4.1).
Next we consider firing the transitions ti and ti,j , for i = 1 . . . k and j = 1 . . .mi − 1: the right hand side

of (24) is affected only when one of ti fires. Assume that equation (24) currently holds true. When ti,j fires,

j < mi−1, C looses 1 token, pi,j+1 looses 1 token and pi,j gets 1 token. The left side of (24) is thus changed
by −1 + (mi − j − 1)(−1) +mi − j = 0, so the equality still holds. For j = mi − 1, C looses one token and
pi,mi−1 gets one token, so the left side of (24) is not changed and the equality remains true. When ti fires,
C looses 1 token, pi,1 also looses 1, and so the marking change of the left side is −1 + (mi − 1)(−1) = −mi.
However the marking change of the right side is −mi too, because originally W (C, ti) = mi. Hence the
equality also remains true when one of ti fires. Since all possibilities have been exhausted, the conclusion is

established. 2

Proposition 6.6 shows that a constraint enforced in Ni stays enforced in all Nj , j > i. Indeed, note that
equation (24) implies lTµ ≥ b, which is what was desired.

Proposition 6.7 Let lTµ ≥ b be a marking inequality satisfied for all markings reachable from a set of
markingsM of Ni, i ≥ 1. Let PR be the set of places resulted through transition split in iterations i through
j − 1 and µ0 be a marking of Nj such that µ0(p) = 0 ∀p ∈ PR and lTµ0r ≥ b. Then for all markings µ
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reachable from µ0, l
Tµr ≥ b is satisfied. The notations µ0r and µr denote the markings µ0 and µ, respectively,

restricted to the places of Ni.

Proof: Note that Ni can be regarded as a subnet of Nj : all places and transitions of Ni appear in Nj ,
with the same connections between them. The new places (the places of Nj which do not appear in Ni) are
connected through new transitions or by new transition arcs added to transitions of Ni. So the new places
only restrict the possible transition firings of the Ni part of Nj . Therefore the reachable set of markings of
the Ni part of (Nj , µ0) is a subset of R(Ni, µi), which only contains markings for which S is not empty. 2

In particular, Proposition 6.7 proves that if S ⊆ Pi and
∑
p∈S
µ(p) ≥ 1 is ensured for all markings reachable

from a set of markings M of Ni, then S is a controlled siphon in Nj , j > i, for all markings µ reachable
from markings µ0 such that µ0(p) = 0 ∀p ∈ PR: µ0(p) = µi(p) ∀p ∈ Pj ∩ Pi and µi ∈M.
The next proposition is significant for the efficiency of the implementation of the step C:2 of the procedure.

It shows that since in each iteration i we look for new minimal active siphons, it is enough to seek only the

minimal active siphons which contain the new control places added in the previous iteration and the places

of PAi \PAi+1. Note that PAi \PAi+1 6= ∅ may occur due to the steps C:2b and C:2c of the procedure, when the
target Petri net has uncontrollable and unobservable transitions or when (tight) initial constraints are given.

The next result is useful, as the implementation of the procedure does not need to compute all minimal

active siphons (which could be computationally expensive.)

Proposition 6.8 The new minimal active siphons of Ni+1, i ≥ 1, contain at least one of the control places
added in the iteration number i or one of the places of PAi \ PAi+1.

Proof: Consider the iteration i ≥ 1, which starts with the initial Petri net Ni and generates Ni+1. Assume
that S is a siphon of Ni+1 which is a counterexample to the claim of the proposition. S could be new only
if (a) S is not a siphon of Ni, or if (b) S was a siphon of Ni but not an active siphon, or if (c) S is not a
minimal active siphon of Ni.
In case (a), Tx = •S \S• 6= ∅ in Ni, but •S \S• = ∅ in Ni+1. But this is not possible, as S ⊆ Pi and the

procedure adds no new transitions in the postset or preset of p ∈ Pi for i ≥ 1. Indeed, Ni is PT-ordinary,
so only the control places added in iteration i could be connected to new transitions (resulted through the

split operation.)

Case (b) isn’t either possible. If S is an active siphon of Ni+1, then S ∩ PAi+1 6= 0. By Proposition
3.4, S ∩ PAi = 0. Since S ⊆ Pi, it follows that Pi ∩ (PAi+1 \ PAi ) 6= ∅. By definition, PAi = TAi •i and
PAi+1 = T

A
i+1•i+1. Also, TAi+1 \ TAi = TR, where all transitions of TR are transitions which result through the

transition split operation in the iteration i. Since in the iteration i ≥ 1 only weights of arcs in the postset
of the new control places may be greater than one: TR • ∩Pi = ∅, and from Pi ∩ (PAi+1 \ PAi ) 6= ∅ we get
Pi ∩ (TAi •i+1 \TAi •i) 6= ∅, which is impossible.
In case (c), let S′ ⊂ S be a minimal active siphon of Ni. S′ is still a siphon of Ni+1. If S′ is active in

Ni+1, then it is a minimal active siphon of Ni+1. Indeed, assume the contrary. Then there is S′′ ⊂ S′ which
is minimal. Then, by the same proof as in (a), S′′ is a siphon of Ni and by the same proof as in (b) S′′ is
an active siphon of Ni. But S′′ ⊂ S′, so S′ is not minimal in Ni, which is contradiction. So S′ is a minimal
active siphon of Ni+1. But this contradicts S′ ⊂ S and S minimal and active. Therefore S′ cannot be an
active siphon of Ni+1. This implies that S′∩(PAi \PAi+1) 6= ∅ (and so S∩(PAi \PAi+1) 6= ∅), which contradicts
the fact that S is a counterexample to the claim of the proposition. 2
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Figure 10: Example for Proposition 6.8

An example is given in figure 10. Consider that the Petri net from the figure is N0 and that t2 and t4
are uncontrollable. As N0 is PT-ordinary, N1 = N0. Note that PA1 = {p2, p3, p4, p5}. S = {p1, p2, p3, p4, p5}
is an active siphon, but it is not minimal. However S′ = {p1, p2, p3} is minimal and active. Because of
the uncontrollable transitions, the control of the siphon S′ fails. Therefore N2 = N1, but PA2 is reduced
to {p4, p5}. S is a minimal active siphon in N2, while S′ is no longer active. Note that S, which is a new
minimal siphon of N2, contains the places p2 and p3, which are in PA1 \ PA2 .
In the next definition we will denote by valid markings those markings in which the invariant relations

associated with every control place hold and in which places obtained by transition split have the marking

0. Also we define equivalence of markings, which is an equivalence relation on the Petri nets N1, N2, N3, ...
generated in each iteration. A class of equivalence contains the valid markings of the nets Nk which have
the same marking for the places p ∈ P0.

Definition 6.1 Let Ni, (Li, bi) and (Li0, bi0) be the Petri net and respectively the sets of constraints, all at
the beginning of iteration i ≥ 1, or for the initial Petri net, in which case i = 0. Let C be the set of control
places that were added beginning with iteration one and PR = Pi \ (P0 ∪ C). A marking µ of Ni is said to be
a valid marking if µ(p) = 0 ∀p ∈ PR, Liµe ≥ bi and Li0µe ≥ bi0, where µe is a marking of N0 such that
µe(p) = µ(p) ∀p ∈ P0, and the marking of every control place C of an active siphon S satisfies the equation
(12) that C is to enforce.

The definition above applies also for N1, where in case that no initial constraints exist, the remaining
requirement for µ to be a valid marking of N1 is µ(p) = 0 ∀p ∈ PR. When we refer to a marking µ of N0, µ
is always valid when the procedure starts with no constraints in (L0, b0). Otherwise, µ is valid if it satisfies

the constraints stated at the beginning of the procedure.

A Petri net Ni may not be well-marked for a marking that is valid. Indeed, the definition of valid
markings does not require the new siphons of Ni not to be empty. Previous siphons cannot be empty for
a valid marking, because of the constraints Liµe ≥ bi and Li0µe ≥ bi0 which encode this requirement for
previous siphons.

Definition 6.2 Let µe be a valid marking of N0 and µ a valid marking of Ni. If µe(p) = µ(p) ∀p ∈ P0, then
µe and µ are said to be equivalent markings. Moreover, two valid markings µi of Ni and µj of Nj also
are called equivalent markings if they have the same equivalent marking in N0.

The way in which equivalence is defined implies that if two markings are equivalent they must also be

valid. Equivalence is not defined for markings that are not valid.

Proposition 6.9 Any valid marking of Ni has at most an equivalent marking in Nj for 0 ≤ i < j. Every
valid marking of Nj has a unique equivalent marking in Ni when 0 ≤ i < j.
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Proof: By definitions 6.1 and 6.2, for any Ni a valid marking µi of Ni has a unique equivalent marking µ
in N0. Also, µi is the unique equivalent marking of µ in Ni. Indeed, the marking of the control places of Ni
are the values of the excess variables associated to Liµ ≥ bi. The marking of the other places that do not
appear in the original net N0 must be zero, in order that µi be valid. So µi can have only one equivalent
marking µj in Nj . The equivalent marking µj may not exist if µ, the equivalent marking of µi in N0, does
not satisfy the additional constraints added in iterations i, . . . j − 1.
Because the constraints of iteration j, (Lj , bj) and (Lj0, bj0), include the constraints of iteration i, (Li, bi)

and (Li0, bi0), it is clear that Ljµ ≥ bj ⇒ Liµ ≥ bi and Lj0µ ≥ bj0 ⇒ Li0µ ≥ bi0. So, if µj is a valid marking
of Nj , and µi is µj restricted to the places of Ni, µi is also valid. By definition, if the marking µ of N0 is
equivalent to µj then µ is µj restricted to the places of N0. Because µi and µj have the same equivalent
marking in N0, they are therefore equivalent. 2

Proposition 6.10 The equivalence of markings is an equivalence relation.

Proof: The proof follows immediately by checking the symmetry, reflexivity and transitivity of the relation.

2

In [24] it was shown that adding control places to a net results in an incidence matrix of the form

D2 =

[
D1

Dc

]
(25)

where D1 is the incidence matrix of the initial net.

Proposition 6.11 Let Di and Dj be the incidence matrices of Ni and Nj, i < j. If no transitions were
split in iterations i, . . . j − 1, then Dj can be written in the form:

Dj =

[
Di

Dc

]
(26)

where the lines of Dc correspond to the control places added in iterations i, . . . j − 1.

Proof: Because no transitions were split, the inequalities enforced from iteration i to j − 1 can be written
only in term of the places of Ni (see section 5.2). Then, by enforcing these linear inequalities directly to Ni
the closed loop is the same net as Nj , and so the incidence matrix can be written as in equation (26) by
Theorem 4.1 of section 4.2. 2

Proposition 6.12 Let µi and µk be two markings of Ni and Nk, i < k.
(a) µi and µk are equivalent markings if and only if they are valid and ∀p ∈ Pi, µi(p) = µk(p).

(b) Assume that µi and µk are equivalent. Let t be an arbitrary transition of Ni. If σi,k(t) is enabled in
Nk, then t is enabled in Ni.

(c) If Si is an active siphon of Ni and µk(p) = 0 ∀p ∈ Si, then µk is not a valid marking of Nk. However,
if µi(p) = 0 ∀p ∈ Si, µi may be a valid marking of Ni.

(d) Consider that the original Petri net has controllable and observable transitions. If µi is a valid marking

and it does not have an equivalent marking in Nk, j exists, such that i ≤ j < k, Nj has a marking µj
equivalent to µi and Nj has an empty active siphon with respect to µj.
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(e) If µi and µk are equivalent, t ∈ T0, µi[σ0,i(t) > µ′i and µk[σ0,k(t) > µ′k then µ′i and µ′k are equivalent.

Proof: (a) Two markings are equivalent if they are valid. If valid, the marking of the places from replacement

sequences are zero, while equivalence implies µi(p) = µk(p) ∀p ∈ P0. The marking of the common control
places of Ni and Nj are equal, being uniquely determined by the marking of the original places, for all valid
markings (see section 5.2.) Hence the conclusion follows. On the other hand, by Proposition 6.9, µi and µj

have equivalent markings µ0,i and µ0,j in N0. Because P0 ⊆ Pi and ∀p ∈ Pi µi(p) = µk(p): µ0,i = µ0,j .
Therefore µi and µj are equivalent.

(b) As a basic split transition property, firing a transition t of N requires the same marking of places
in N as firing the replacing sequence σ(t)t in N ′, the net obtained by splitting t (refer to section 4.1).
Because successive transition split does not affect this property, firing σi,k(t) in Nk has the same marking
requirements on the places of Ni as that of firing t in Ni.
(c) The deadlock prevention procedure adds constraints for all uncontrolled active siphons. So, the

constraints (Lk, bk) and (Lk0, bk0) on Nk include the requirement that active siphons of previous iterations
be controlled. So µk cannot satisfy these constraints, and therefore is not a valid marking of Nk. Further
on, if Si is not implicitly controlled by the constraints added in the iterations 1, 2, . . . i − 1, there are valid
markings of Ni such that Si has no tokens.
(d) Let (Lx, bx) and (Lx0, bx0) be the constraints associated to Nx, where x > i is the first index such that

µi does not satisfy one or both of (Lx, bx) and (Lx0, bx0). Because the requirements that are not satisfied

only can correspond to the condition that some siphons of Nx−1 be not empty, the conclusion follows for
j = x− 1.
(e) Because no tokens remain in split replacement places by firing the entire sequences σ0,i(t) and σ0,k(t)

replacing t, both µ′i and µ
′
k are valid. Let µ

′
0,i and µ

′
0,k be their equivalent markings in N0 and µ0 the

equivalent marking of µi and µk in N0. By part (b), µ0[t > µ′0,i and µ0[t > µ′0,k. So µ0,i = µ0,k and hence
µ′i and µ

′
k are equivalent. 2

Proposition 6.13 Let µi,1 and µj,1 be two equivalent markings of Ni and Nj, i < j. If µi,2 and µj,2 are
two other equivalent markings of Ni and Nj and a transition t exists, such that µi,1[t > µi,2 in Ni, then
µj,1[σi,j(t) > µj,2 in Nj.

Proof: If σi,j(t) is enabled by µj,1 and µj,1[σi,j(t) > µ
′
j,2 then µ

′
j,2(p) = µi,2(p) ∀p ∈ Pi and µ′j,2(p) = 0 ∀p ∈

Ps follow directly from split transition properties, where Ps is the set of the places resulted through transition

splits. Therefore, since µj,1 is valid, µ
′
j,2 is also, because the constraints are satisfied (see Proposition 6.5).

Then by Propositions 6.9 and 6.12(a), µj,2 = µ
′
j,2.

If σi,j(t) is not enabled by µj,1, let k be the first index such that σi,k(t) is not enabled in Nk by µk,1,
which is the equivalent marking of µi,1 in Nk. Because σi,k−1(t) is enabled in Nk−1, there is a control place
that prevents σi,k(t) to fire, because of a constraint added in iteration k − 1. So µk−1,2 cannot satisfy one
of the constraints added in iteration k − 1, and therefore µk−1,2 has no equivalent marking in Nk. But this
is a contradiction, because j ≥ k implies ∃µk,2 equivalent to µj,2 (Proposition 6.9), and µj,2 is equivalent
to µi,2, which in turn is equivalent to µk−1,2. (The fact that the markings µi,2 and µk−1,2 are equivalent
follows from µi,2(p) = µk−1,2(p) ∀p ∈ Pi because of the split transition construction (section 4.1), µi,1 and
µk−1,1 are equivalent, µi,1[t > µi,2 in Ni and µk−1,1[t > µk−1,2 in Nk−1.) 2

Corollary 6.1 Let µ(1) and µ(2) be two markings of N0 such that µ(1)[t > µ(2) (where t ∈ T0) and satisfying
the constraints produced by the procedure after termination: Lµ(1) ≥ b, L0µ(1) ≥ b0, Lµ(2) ≥ b, µ(1)[t > µ(2).
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Then the markings µ
(1)
k and µ

(2)
k of Nk equivalent to µ(1) and respectively to µ(2) are defined for any k, µ(1)k

enables σ0,k(t) and µ
(1)
k [σ0,k(t) > µ

(2)
k .

Proof: Because µ(1) and µ(2) satisfy the constraints generated by the procedure, all the control places that

were added have a well defined marking, in accord with the supervisory policy. So µ
(1)
k and µ

(2)
k are defined

for all iteration indices k. Then, by Proposition 6.13, the remainder of the conclusion follows. 2

Theorem 6.1 The following statements are true:

(a) Let σi be an arbitrary firing sequence of Ni and σj = σi,j(σi) the corresponding firing sequence in Nj ,
i < j. If µj is a marking of Nj that enables σj, then the marking µi of Ni such that µi(p) = µj(p)
∀p ∈ Pi enables σi. Also if µi[σi > µ′i and µj [σj > µ′j then µ′i(p) = µ′j(p) ∀p ∈ Pi.

(b) Assume that the procedure does not start with initial constraints, or if it does, all valid markings µ of

N0 have the property that exists µ′ ≥ µ, µ′ has an equivalent marking in Nk. Let σ be an arbitrary
transition sequence of N0 and σk = σ0,k(σ) the corresponding sequence in Nk. If a valid marking µ of
N0 exists which enables σ, a valid marking µk of Nk exists which enables σk.

(c) In the conditions of part (b), if some marking µ′k of Nk exists which enables σk, then a marking of Nk
exists which enables σk and which also is valid.

Proof: (a) If the property is true for all σi finite, than it is also true for all σi infinite. Indeed, if the property

would not be true for some σi infinite, then there is a partition σi = σi,1σi,2 such that σi,1 is finite and σi,1

does not satisfy the property. Therefore, in what follows the proof considers only the case when σi is finite:

σi = t1, t2, . . . ts, where every tk is a transition of Ti.

The set Pj is the disjoint set union Pj = Pi ∪ C ∪ PR, where C is the set of control places added in
the iterations i through j − 1 and PR is the set of places resulted from split transition operations in the
same iterations. Firing σi,j(t1) requires the same number of tokens from places of Pi as firing t1 in Ni, as
a split transition property, and may require additional tokens from C. Therefore t1 is enabled by µi. Let
µi,1 and µj,1 be the markings reached by firing t1 and σi,j(t1), respectively. Again, as a split transition

property, firing t1 in Ni and σi,j(t1) in Nj modifies in the same way the marking of Pi, and firing σi,j(t1)
does not change the marking of PR. Hence µj,1(p) = µi,1(p) ∀p ∈ Pi and µj,1(p) = µj(p) ∀p ∈ PR.
Continuing in the same way with t2, t2 is enabled and the markings reached by firing t2 and σi,j(t2) satisfy

the same property, and by induction it follows that the markings µi,1 . . . µi,s and µj,1 . . . µj,s exist such that

µi[t1 > µi,1[t2 > . . . µi,s−1[ts > µi,s, µj [σi,j(t1) > µj,1[σi,j(t2) > . . . µj,s−1[σi,j(ts) > µj,s, µj,s(p) = µi,s(p)
∀p ∈ Pi and µj,s(p) = µj(p) ∀p ∈ PR. So the conclusion follows with µ′j = µj,s and µ′i = µi,s.
(b) This proof uses induction. The induction is on i = 1, 2, . . . k − 1. Note that all valid markings µ of

N0 have the property that there is a valid marking µ′ ≥ µ such that µ′ has an equivalent marking in Ni, for
i = 1, 2, . . . k. This is so because the set of constraints a valid marking of Ni must satisfy is a subset of the
constraints of Nk, for i < k. Suppose that µi of Ni enables the sequence σi = σ0,i(σ). We build µi,2 such
that µi,2 enables σi and µi,2 has an equivalent marking µi+1 in Ni+1. By Proposition 6.13, this would show
that µi+1 enables σi+1 = σ0,i+1(σ) in Ni+1.
Let S0 denote the set of active siphons of Ni which either are token-free under the marking µi, or become

so by firing σi. By Proposition 6.3(c) each siphon s ∈ S0 includes at least an original place and/or a control
place. Using the relations from section 5.2, a valid marking µi,2 ≥ µi can be chosen such that ∀s ∈ S0,
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∑
p∈s
µi,2(p) ≥

∑
p∈s
µi(p) + 1. By construction, for the marking µi,2 no siphon s is token-free, µi,2 also enables

σi and no siphon s becomes token-free when firing σi. Thus µi,2 has an equivalent marking µi+1 which

enables σi+1 in Ni+1.
(c) Let PR be the set of all places of Nk that have resulted through transition split in previous iterations.

Let µ′′k be defined as µ
′′
k(p) = µ

′
k(p) ∀p ∈ Pk \ PR and µ′′k(p) = 0 ∀p ∈ PR. Then µ′′k enables σk. Indeed, let’s

assume the contrary. Then σk can be partitioned in the sequence σk = σ1txσ2, where tx ∈ Tk, µ′′k [σ1 > µ′x,
µ′k[σ1 > µx, µx enables tx but µ

′
x does not enable tx. The only possibility is that PR∩•tx = {px}, µx(px) > 0

and µ′x(px) = 0 (refer also to the split transition construction in section 4.1.) Because σk = σ0,k(σ) and
σ is a sequence of transitions of N0, σ1 has the form σ0,k(t1)σ0,k(t2) . . . σ0,k(tn)σx, where t1, . . . tn are not
necessarily distinct transitions of T0 and σx is the first part of some σ0,k(tn+1). It follows that σ0,k(tn+1) has

the form σxtxσy. However, firing σx always brings a token in the replacement place px such that px• = {tx},
which contradicts µ′x(px) = 0.
Because µ′′k enables σk, we can always choose a valid marking µk such that µk ≥ µ′′k (see the form of the

constraints added by the procedure in section 5.2.) Therefore µk is valid and enables σk. 2

Corollary 6.2 Consider the assumption of Theorem 6.1(b) to be true.

(a) Deadlock-freedom cannot be enforced for any finite marking in Nk if and only if it also cannot be
enforced in N0.

(b) Liveness cannot be enforced for any finite marking in Nk if and only if it also cannot be enforced in
N0.

Proof: Deadlock-freedom may be enforced in a net in which there is a marking allowing an infinite firing

sequence. Thus necessity results directly from Theorem 6.1(b) and sufficiency from Theorem 6.1 parts (a)

and (c), where part (c) is used for the case when initial constraints exists, and so not all possible markings

of N0 are valid. The proof of part (b) is similar. 2

Theorem 6.1(a) showed that if i < j and µi, µj are equivalent markings of Ni and Nj , then a firing
sequence σi is always enabled by µi in Ni, when its counterpart σj = σi,j(σ) is enabled by µj in Nj . The
converse generally is not true. However, it is true for the particular case when i = 0, because N1 differs from
N0 only by the fact that N1 is the PT-transformed version of N0 and no constraints were yet enforced.

Proposition 6.14 Every valid marking µ of N0 has an equivalent marking µ′ in N1. Moreover, if µ and µ′
are equivalent, σ is a transition sequence enabled by µ and σ′ = σ0,1(σ), then µ′ enables σ′.

Proof: The equivalent marking µ′ of µ is defined by µ′(p) = µ(p) ∀p ∈ P0 and µ′(p) = 0 ∀p ∈ P1 \ P0. The
fact that ∀t ∈ T0, µ[t > µ1 implies both µ′[σ0,1(t) > µ′1 and µ1 is equivalent to µ′1, is a property of transition
split. Thus the remainder of the conclusion follows immediately. 2

6.2 Main Results

The most important results concerning the procedure are the theorems proving deadlock prevention and an

important permissivity property. We include them in section 6.2.1. The termination of the procedure is

considered in section 6.2.2.
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In Theorem 6.2, it is shown that the procedure provides a supervisor preventing deadlock. Theorem

6.3 gives a permissivity estimate of the supervisor generated by the procedure: the supervisor is at least as

permissive as any supervisor enforcing liveness for all transitions which can be made live.

We use the same notations as in the description of the procedure in section 5.4, as well as the notations

from section 6.1.1. That is, in every iteration i the active subnet NAi = (PAi , TAi , FAi ,WAi ) and the total net
Ni = (Pi, Ti, Fi,Wi), σi,j(σ) the replacement sequence in Nj of the transition sequence σ of Ni, i < j and
σi,j(t) the replacement sequence in Nj of the transition t of Ni.

6.2.1 Success and Permissivity Results

Lemma 6.1 Assume that the procedure terminated normally (that is not at steps B or C.4) in k−1 iterations.
Then Nk is deadlock-free for all valid initial markings.

Proof: In every iteration, the new minimal active siphons are controlled in step 2 of the procedure. The

controlled siphons remain controlled (for valid markings) in the subsequent iterations (Proposition 6.7).

Because the procedure terminated, all minimal active siphons of Nk are controlled for valid initial markings,
as the marking of the control places is defined for valid markings. Therefore, by Proposition 3.5, Nk is
deadlock-free for all valid initial markings. 2

Theorem 6.2 Given a target Petri net N0, assume that the procedure terminates and that it terminates
normally (i.e. not at steps B or C.4). Let (L, b) and (L0, b0) denote the two sets of constraints generated by

the procedure. The target net N0 in closed loop with the supervisor enforcing Lµ ≥ b is deadlock-free for all
initial markings µ0 of N0 such that Lµ0 ≥ b and L0µ0 ≥ b0.

Proof: By construction, every marking of the original Petri net N0 which satisfies the constraints has an
equivalent marking in Nk such that all active siphons of Nk are well-marked. The proof uses the fact that
for any such marking, there is an infinite transition sequence enabled in Nk (Lemma 6.1). It proves by
contradiction that no marking of N0 satisfying the constraints is a deadlock marking for the closed loop
Petri net.

Assume that from a good initial marking µ0 of N0, the closed loop net (let it be NS) reaches a marking
µ such that all possible firings in N0 would lead either to deadlock markings or to markings which do not
comply with the enforced constraints, Lµ ≥ b (this is deadlock in NS .)
Let µ0,k and µk be the equivalent markings of µ0 and µ in Nk. Because µk is valid, by Lemma 6.1 µk

enables an infinite transition sequence σ in Nk. Let TR be the set of transitions that appeared by split
transition operations. Let C be the set of control places. Revisiting the transition split operation (section
4.1) and by Proposition 6.2(b), firing any t ∈ TR always reduces the marking of some places in P0 ∪ C and
firing t ∈ T0 (note that T0 = Tk \ TR) may increase the marking of some places in P0 ∪ C. Because the total
marking of P0∪C is finite, σ must include transitions t ∈ T0. Let t1 be the first transition in T0 that appears
in σ. Since all transition of σ before t1 are in TR, firing them only decrease markings of P0∪C, and t1 cannot
fire unless all other transitions of σ0,k(t1) fired before (as µk is valid), it follows that σ0,k(t1) is enabled by

µk. But this implies that t1 is also enabled by µ in NS , which is a contradiction. 2

The assumptions of Theorem 6.2 are that the procedure terminates and that it terminates normally.

The next result characterizes the cases when the procedure terminates with a failure at step B. It shows
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that when there are no uncontrollable and unobservable transitions, this implies that deadlock prevention is

impossible, given the initial constraints (if any are given.)

Proposition 6.15 Deadlock cannot be prevented for any initial marking if the procedure terminates at step B.

Proof: If the maximal active subnet of the target Petri net is empty, the procedure terminates at step B.

An empty maximal active subnet implies that deadlock is unavoidable for any initial marking, in view of

Corollary 3.3. Next, note that the procedure terminates at step B only if the maximal active subnet of N0
is empty. Indeed, assume the contrary. Then the procedure may terminate at step B after it is restarted

from a step C.4 with X 6= ∅. Assuming such an occurrence, let i be the iteration number at C.4. Since the
procedure did not terminate at C.4, there is a nonempty active subnet of Ni+1 excluding the transitions of
X ; let it be NAi+1. Next, note that T0 ∩ TAi+1 6= ∅. There is a valid marking of Ni+1 enabling an infinite
firing sequence σ in which the transitions appearing infinitely often are the transitions of TAi+1. This implies

that there is a marking of N0 enabling a firing sequence σ0 in which the transitions which appear inifinitely
often are the transitions of T0 ∩ TAi+1. Then T0 ∩ TAi+1 defines a nonempty active subnet of N0 which does
not contain the transitions of X . This contradicts the assumption that the procedure terminates at step B.

2

Given a set T of transitions, we say that a Petri net is T -live if all transitions in T are live.

Proposition 6.16 Let TA0 be the set of transitions of the maximal active subnet of N0. TA0 -liveness is not
enforcible in N0 for any initial marking if the procedure terminates at step B, or if N0 has no uncontrollable
and no unobservable transitions and an infeasibility occurs at a step C.2.c.

Proof: The first part is a direct consequence of Proposition 6.15. For the second part, note that infeasibilities

may occur only if initial constraints are given. Consider the occurrence of the first infeasibility: there is an

active siphon which due to the initial constraints must be empty for all markings. We show in the proof

of Theorem 6.3 that this implies that there is no TA0 -liveness enforcing supervisor when the markings are

restricted by the given initial constraints. 2

In the case of Petri nets without uncontrollable and unobservable transitions, termination at step C.4 may

only occur only if initial constraints are given and infeasibilities occur at one or more steps C.2.c. Therefore,

Proposition 6.16 has the simple consequence below:

Proposition 6.17 When N0 has no uncontrollable and no unobservable transitions, TA0 -liveness is not
enforcible in N0 for any initial marking if the procedure terminates at step C.4.

As shown in section 4.3, the siphon control approach used by the procedure enforces inequalities of

the form
∑
p∈S
αpµ(p) ≥ 1 in order to control a siphon S, where αp are nonnegative integers. When all

transitions are controllable and observable, αp = 1 ∀p ∈ S. The coefficients αp may have other values when
uncontrollable and unobservable transitions are present. The next two results are proved for the case when

for all controlled siphons S, the enforced constraint satisfies αp 6= 0. The requirement is always satisfied
for the Petri nets with controllable and observable transitions. The meaning of the requirement is that all

minimal active siphons S are maximally permissive controlled (that is, only the markings µ which satisfy

µ(p) = 0 ∀p ∈ S are forbidden.)
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Lemma 6.2 Assume that for all minimal active siphons S controlled by the procedure in the iterations 1 . . . i

(i ≥ 1) the enforced constraint has the form ∑
p∈S
αpµ(p) ≥ 1, where αp are positive integers. Let S be an

active siphon of Ni+1 which does not appear in Ni. Let µi+1 be a valid marking of Ni+1 and µi the equivalent
marking in Ni. Assume that S is empty for the marking µi+1. Let ts be an arbitrary transition of Ni with
the property that there is a transition t ∈ S• of Ni+1 such that ts = t or ts is split in Ni+1 and t appears
in the transition replacing sequence σi,i+1(ts). If ∃µ ∈ R(µi) such that µ[ts > µs, then (Ni, µs) has at least
one empty active siphon.

Proof: Let C be the set of control places added to Ni+1. Note that Pi+1 is made up of Pi, C and the set of
places that result through transition split, PR = Pi+1 \ (Pi ∪ C). Let σ be the firing sequence that was used
to reach µ: µi[σ > µ. Consider firing σ in (Ni, µi) and σ′ = σi,i+1(σ) in (Ni+1, µi+1). The only reason for
σ′ not to be enabled in Ni+1 by the marking µi+1 would be that a control place prevents it.
If σ′ is not enabled, σ = σ1t1σ2, µi[σ1 > µ1, µi+1[σi,i+1(σ1) > µ′1, µ1 enables t1, but µ′1 does not enable

σi,i+1(t1). This corresponds to the following: Ni has an active siphon S1, that is controlled in Ni+1 with
C1; when C1 was added, t1 ∈ C1•, and if W (C1, t1) > 1, t1 was split in step 3 of iteration i in σi,i+1(t1) or
if W (C1, t1) = 1, σi,i+1(t1) = t1. So t1 ∈ S1•, and since t1 would not be allowed by C1 to fire from µ1, it
means that firing it would make S1 empty. Since t1 is fired in the sequence σ = σ1t1σ2, after σ is fired, S1

is an empty active siphon in (Ni, µs).
If σ′ is enabled by µi+1, let µ′ be the marking reached: µi+1[σ′ > µ′. Because σ′ may contain only entire

replacements of split transitions and µi+1 is a valid marking (which implies µi+1(p) = 0 ∀p ∈ PR), µ′(p) = 0
∀p ∈ PR. Also, µi+1 and µi are equivalent and σ′ = σi,i+1(σ), therefore µ(p) = µ′(p) ∀p ∈ Pi (Theorem
6.1(a)). Because S is a siphon, S empty for µi+1 implies S empty for all reachable markings, and so for µ

′

too. There are two cases: (a) ts is not split in Ni+1 and (b) ts is split.
(a) If ts is not split, •ts ∩PR = ∅. Further on, µ enables ts in Ni but µ′ does not enable ts in Ni+1, so in

Ni+1, •ts ∩C 6= ∅ and there is C ∈ •ts ∩C such that µ′(C) = 0. Let SC be the active siphon of Ni controlled
by C. ts was not split, so W (C, ts) was 1; ts enabled by µ, µ

′(C) = 0 and ts ∈ C• ⇒ ts ∈ (SC•) \ (•SC).
Since SC ⊆ Pi and µ′(C) = 0,

∑
p∈SC

µ(p) = 1.Because ts is enabled by µ, firing ts empties SC , so there is an

empty active siphon in (Ni, µs).
(b) If ts was split, then ts was connected to one or more of the control places C of C, for only transitions

connected to such places are split. (This is so because for all i ≥ 1 Ni is PT-ordinary, and hence only the
new added control places can make the Petri net not to be PT-ordinary). We let CS be the set of control
places added to •ts in the iteration i. By recalling the split transition operation (sections 4.1), it is easy to
notice that t ∈ S• implies ∃C ∈ CS such that C ∈ S. Let SC be the active siphon controlled by C. Since
C ∈ S and S is empty, ∑

p∈SC
µ(p) = 1. Since before the split of ts: C ∈ •ts, firing ts in Ni reduces the

marking of SC , and since the total marking of SC is one, SC becomes empty. 2

Note that Lemma 6.2 applies for i ≥ 1. It also applies for i = 0 when N1 = N0, that is when N0 is
PT-ordinary.

Theorem 6.3 Assume that for all minimal active siphons S controlled by the procedure, the enforced con-

straint has the form
∑
p∈S
αpµ(p) ≥ 1, where αp are positive integers, and no failure to transform a constraint

to an admissible form occured. The deadlock prevention method provides a supervisor at least as permissive

as any supervisor subject to the same initial constraints (if any initial constraints are given) and which en-
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forces that all the transitions of the target Petri net which appear in the maximal active subnet are live, if

any such supervisor exists.

Proof: Let S be the set of supervisors satisfying the initial constraints, which also enforce that all transitions
which appear in the maximal active subnet are live in the target Petri net. Note that when we compare

our procedure to other supervisor we assume an initial marking for which that supervisor is defined: we do

not require the supervisors in S to be defined for all initial markings for which the supervisor given by our
procedure is defined.

We first consider the case when there are no initial constraints. The proof is by contradiction. It shows

that any marking forbidden by the deadlock prevention method also is forbidden by any supervisor in S.
Recall that our procedure forbids markings which will produce an empty active siphon in an Nk for some k.
Let µ(1) be a marking of N0 and µ(1)k the equivalent marking in Nk. Suppose that for the marking µ(1)k

there is an empty active siphon Sk in Nk. Because µ(1)k is valid, Sk is a new siphon which does not appear
in Nk−1; µ(1) is forbidden by iteration k, which adds the constraint that Sk be well-marked.
Assume that µ(1) is not forbidden by some supervisor enforcing in N0 that all transitions of the active

subnet are live and that there is an infinite firing sequence σ enabled by µ(1) such that every transition of

NA0 appears infinitely often in σ. According to Lemma 6.2, there is a transition t′k−1 of Nk−1 such that in
any possible firing sequence, after t′k−1 fires in Nk−1, there is an empty active siphon Sk−1 of Nk−1. Let
tk−1 ∈ T0 such that t′k−1 appears in σ0,k−1(tk−1). Let µ(2) be the marking of N0 that appears while σ is
fired, immediately after tk−1 fires for the first time. Also, let σ1 be the subsequence of σ that was fired so
far, that is µ(1)[σ1 > µ

(2). Let i ≥ 0 be the largest integer, such that µ(2)i is an equivalent marking of µ(2)

in Ni. By Lemma 6.2, i ≤ k − 1. Indeed, if σ1 is allowed to fire in Nk−1, there is an empty siphon Sk−1 for
the marking µ

(2)
k−1, but there is no valid marking of Nk such that Sk−1 is empty. Now, the fact that µ(2) has

an equivalent marking µ
(2)
i in Ni but not in Ni+1 shows that there is an empty active siphon Si in Ni and

that Si does not appear in Ni−1 (Proposition 6.12(d)). Further on, the same idea as before is used, that a
transition ti−1 with the same property as tk−1 exists, and following this idea, an index j ≤ i − 1 is found
such that for the marking µ(3) of N0 there is an empty active siphon in Nj−1. This procedure is repeated
and finally two cases may appear (Lemma 6.2 applies for i > 0 only) after the first n transitions of σ are

fired, where n is a finite number. Let σp denote the sequence that enumerates the first n transitions of σ,

and let µ(p) be the marking reached by firing σp (that is, µ
(1)[σp > µ

(p)) and µ
(p)
1 the equivalent marking

in N1. Then (a) there is an empty active siphon in (N0, µ(p)) or (b) there is an empty active siphon in
(N1, µ(p)1 ). Case (a) contradicts the fact that every transition appears infinitely often in σ and µ(1) enables
σ, since after n firings none of the transitions in the postset of the empty siphon may fire again. Case (b)

leads to the same type of contradiction, because by Proposition 6.14 the sequence σ′ = σ0,1(σ) is enabled by
µ
(1)
1 , where µ

(1)
1 is the equivalent marking of µ

(1) in N1, and by construction every transition of NA1 appears
infinitely often in σ′.
The case when there are initial constraints is similar to the case when there are no such constraints if

the procedure is never in the situation that the constraints at step C:2c of the procedure are infeasible. In

the case when infeasibilities at some steps C:2c occur, consider the first occurence: there is an active siphon

S which must be empty for all valid markings, in order not to have a conflict with the initial constraints.

(In such a situation, being unable to control S, the procedure shrinks the active subnet such that S is no

longer an active siphon.) Then, by the first part of the proof, there are no superviors in S. (S is empty, as
the initial constraints conflict with the requirement that the transitions of the active subnet are live.) 2
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Theorem 6.3 states that the supervisor provided by the procedure is more permissive than any supervisor

which enforces that all transitions of the maximal active subnet are live in the target net. Note that this

is not necessarily the same thing as maximally permissive deadlock prevention (refer to section 6.4.3.) The

comparison assumes that the other arbitrary supervisors are subjected to the same initial constraints. In

particular, when the target Petri net is repetitive, liveness enforcing supervisors exist, and so we have the

following corollary. Note also that Theorem 6.3 always applies for Petri nets with controllable and observable

transitions.

Corollary 6.3 In the conditions of Theorem 6.3, the deadlock prevention procedure provides a supervisor at

least as permissive as any liveness enforcing supervisor (subject to the same initial constraints), if any such

supervisor exists.

In other words, the corollary states that the set of markings forbidden by the deadlock prevention

supervisor is a subset of the set of markings forbidden by any liveness enforcing supervisor. The corollary

also shows that if for some Petri net the procedure yields a supervisor which enforces liveness, the supervisor

also is maximally permissive. Note that although the procedure was not designed for liveness enforcement,

it is common for it to also enforce liveness (in addition to deadlock-prevention). Theorem 6.3 applies for a

supervisor obtained after an arbitrary number of iterations; the proof does not assume that the procedure

terminates.

6.2.2 Termination Results

The procedure, as defined, may not terminate for any Petri net structure. By analysing cases in which the

procedure does not terminate, we considered two approaches to help the procedure terminate. To formally

guarantee termination, we restrict the class of Petri nets to structurally bounded Petri nets and assume that

some bounds of the reachable marking space are known. This is a reasonable assumption for Petri nets

modeling real systems, because in general every quantity has some bound. For each of the two changes, if

the procedure is started with initial constraints (L0, b0) which bound the reachable space, termination can

been guaranteed. However note that the two approaches we propose may help termination by themselves,

that is even when the initial constraints (L0, b0) do not have a bounded feasible region, and not only for

structurally bounded Petri nets. A Petri net N is structurally bounded [27] if for all initial markings µ0,
R(N , µ0) is bounded.

6.2.2.1 Approach A In this approach we change the procedure as follows: all constraints are stored

only in the form in which only the marking of the places of the target net,N0, appears. That is, the marking
of the places resulted by transition split is ignored (assumed to be zero.) A siphon is implicitly controlled if

the inequality associated to it, which is now written only with respect to the places of N0, is implied by the
current set of constraints, also written only with respect to the places of N0.
The difference from the usual approach is that the contribution of the places resulted by transition split is

ignored when a siphon is checked whether it is implicitly controlled. Naturally, approach A does not change

the procedure for those Petri nets in which the final Petri net Nk has no split transitions.

Theorem 6.4 Let N be a Petri net and (Li, bi) be a set of constraints Liµ ≥ bi, µ ≥ 0, with bounded feasible
region. Then the deadlock prevention procedure of approach A terminates if started with initial constraints

(L0, b0) which equal (Li, bi).
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Proof: Let MR be the bounded feasible region of Liµ ≥ bi, with µ nonnegative integer vector. Let FN
be the set of markings forbidden by the control places added up to some point. Let S be the next siphon

considered for control, and fS the set of markings which would be forbidden in the target net N by enforcing∑
p∈S
µ(p) ≥ 1. S is not implicitly controlled if (fS \FN )∩MR 6= ∅. Since each siphon which is not implicitly

controlled adds at least a new marking µF ∈ MR to the set of forbidden markings, and sinceMR is finite,

after we control a finite number of siphons, all new siphons are implicitly controlled and so the procedure

terminates. 2

Theorem 6.4 is important because it gives a sufficient (but not necessary) condition for termination which

is not very restrictive for real applications, where in general the capacity of every place is finite.

The usage of the procedure with the approach A can be summarized as follows:

• Find a set of constrains Liµ ≥ bi with bounded feasible set F , where µ is a nonnegative integer vector,
such that for all initial markings µ0 of N which are of interest: R(N , µ0) ⊆ F . LetMI be the set of

initial markings of interest.

• Use the procedure with the approach A and with initial constraints (L0, b0) which equal (Li, bi).
• The supervisor can be used for the initial markings µ0 ∈ MI which satisfy Lµ0 ≥ b and L0µ0 ≥ b0,
where (L, b) and (L0, b0) are the two sets of constraints generated by the procedure.

The disadvantage of approach A is that Theorem 6.2, which guarantees deadlock prevention, may not

apply in certain cases. Theorem 6.3 still applies, since the siphon control method is the same, and the only

difference is that some siphons, which normally wouldn’t be considered to be (implicitly) controlled, may be

considered so when the approach A is used. (So this difference does not change the proof of Theorem 6.2.)

6.2.2.2 Approach B In this approach we simply use a set of initial constraints with bounded feasible

region. This is enough to guarantee termination if transition splits can occur only in finitely many iterations

(which in practice is often the case).

Theorem 6.5 Let N be a Petri net and (Li, bi) a set of constraints Liµ ≥ bi, µ ≥ 0, with bounded feasible
region. Assuming that in the case of N transition splits can occur only in finitely many iterations, the
deadlock prevention procedure terminates if started with initial constraints (L0, b0) which equal (Li, bi).

Proof: Note that in step A the constraints (Li, bi) are transformed as in section 5.2.5 to a new form

L′0µ ≥ b′0, which is true in all Nj , j ≥ 1. By construction, since the feasible set of Liµ ≥ bi is bounded
(and so finite), so is the feasible set of L′0µ ≥ b′0. The proof is by contradiction. Assume that the procedure
does not terminate. After the last iteration in which transition splits occur, the size of the marking vector is

no longer changed. The set of possible markings is bounded to some setMR due to the initial constraints.

Thus, each time a new constraint is added to (L, b) or (L0, b0), at least one new marking ofMR is forbidden.

BecauseMR is finite, after a finite number of iterations all new siphons (if any) considered in the step 2(b)

of the procedure are implicitly controlled, and so the procedure terminates. 2

The usage of the procedure with the approach B can be summarized as follows:

• Find a set of constrains Liµ ≥ bi with bounded feasible set F , where µ is a nonnegative integer vector,
such that for all initial markings µ0 of N which are of interest: R(N , µ0) ⊆ F . LetMI be the set of

initial markings of interest.
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• Use the procedure with initial constraints (L0, b0) which equal (Li, bi).

• The supervisor can be used for the initial markings µ0 ∈ MI which satisfy Lµ0 ≥ b and L0µ0 ≥ b0,
where (L, b) and (L0, b0) are the two sets of constraints generated by the procedure.

Unlike in approach A, both Theorem 6.2 and Theorem 6.3 apply. The disadvantage of approach B is

that the formal result which guarantees termination is somewhat weak, as it may be hard to know whether

the assumption on transition splits holds true.

6.3 Special Cases

6.3.1 Additional Constraints

We consider the case when additional constraints are to be enforced. Let (La, ba) be the additional constraints

and N the Petri net. A good way to proceed with the deadlock prevention procedure is to apply it rather to
the supervised Petri net NL, which contains the additional places necessary to enforce (La, ba) according to
the invariant based approach ([24], also outlined in section 4.2). So the procedure would start with N0 = NL
and initial constraints (L0, b0) reflecting the invariants associated to enforcing (La, ba).

The reason why it is not a good idea to apply the deadlock prevention procedure first to N and then
to enforce (La, ba) is that additional constraints can make deadlock possible. Indeed, we can easily find

examples of deadlock-free Petri nets which with additional marking constraints may reach deadlock.

6.3.2 Finite Capacity Petri Nets

In many applications it is reasonable to assume that the maximum number of tokens that a place may have

is bounded. In this case the Petri nets may be extended with an additional function K which maps its

capacity to each place. This type of Petri net is called place/transition net [28]. So, a place/transition

structure is represented by the quintuple N = (P, T, F,W,K), where K : P → N is the capacity function,
and with an additional initial marking we have a place/transition net, denoted by (N , µ0). The capacity
of a place is allowed to be infinite. The firing rule of a transition in place/transition nets is the same as for

conventional Petri nets, except that a transition is not enabled by a marking if firing it would cause a place

to exceed its capacity.

Let N = (P, T, F,W,K) be a place/transition structure and NR = (P, T, F,W ) the corresponding Petri
net structure. N can be transformed in an equivalent conventional Petri net NE by enforcing in NR, to each
place p with finite capacity, the linear constraint µ(p) ≤ K(p). The conventional Petri net is obtained using
the invariant based approach of [24], outlined also in section 4.2.

If all the places have finite capacity, the equivalent Petri net is by construction structurally bounded.

The deadlock prevention procedure can be started as in section 6.3.1, with constraints (La, ba) describing

µ(p) ≤ K(p) for all p ∈ P . The method can be guaranteed to terminate as shown in section 6.2.2, since a
bound on the marking of each place is known. Indeed, the upper bound for the marking of any place p ∈ P
is the finite capacity K(p) and the upper bound for the marking of a control place pc enforcing for a place

p ∈ P the constraint µ(p) ≤ K(p), is also K(p).

6.3.3 Safe Petri Nets

An ordinary Petri net (N , µ0) is safe if for all reachable markings the marking of any place is at most 1.
We consider the case when a Petri net N needs to be made safe by supervision. The deadlock prevention

47

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



procedure may be used to provide such a policy which is not blocking.

Let (La, ba) be the constraints associated to µ(p) ≤ 1, for all places of N . Then we can proceed as shown
in section 6.3.1.

The deadlock prevention procedure is guaranteed to terminate when one of the approaches of section

6.2.2 is used, because it is known that 1 is an upper bound of the marking of each place.

6.3.4 Some Particular Cases when Liveness is also Enforced

It is possible that if the initial Petri net is an asymmetric choice net the final Petri net still will be an

asymmetric choice net. By Theorem 3.1, this is a sufficient condition for liveness for all valid initial markings.

Both parts of Corollary 3.2(c) are useful for the deadlock prevention procedure. The second part applies

because of Corollary 6.3. Corollary 3.2(c) provides conditions that let us know before applying the procedure

whether the supervisor also will enforce liveness. In the case of asymmetric choice net result, we need first

to run the procedure, and then check whether the final result complies with Theorem 3.1.

The conditions of Corollary 3.2(c)(i) can be easily checked using a similar procedure to that which

computes an active subnet. It is not clear at this time if the conditions of Corollary 3.2(c)(ii) have practical

importance. It depends on whether or not there is an efficient procedure to check them.

The class of Petri nets on which the procedure enforces liveness may be larger then that resulting from

Corollary 3.2(c), because the class of deadlock prevention supervisors more permissive than liveness enforcing

supervisors is rather large.

Note that whenever the supervisor provided by the procedure enforces liveness, it is the maximally

permissive supervisor, by Corollary 6.3.

6.4 Final Remarks and Directions for Further Research

6.4.1 Faster Convergence For Nonrepetitive Petri Nets

When a loss of permissivity in firing the transitions which cannot be made live is acceptable enough, the

procedure can be applied to the active subnet NA0 rather than to the total target net N0. Considering
this modification, the constraints obtained for NA0 are used for the supervision of N0. The benefit of this
approach results from the fact that generally, the number of minimal siphons which appear by approaching

NA0 may be sensibly smaller than the number of minimal active siphons considered when approaching N0.
Thus faster converegence can be obtained.

6.4.2 The Termination Problem

6.4.2.1 Converging Constraints Theorem 6.4 shows how we can guarantee the termination of the

procedure in the case of structurally bounded Petri nets. The termination of the procedure is facilitated

by considering only minimal siphons that are not implicitly controlled (see section 5.2). For instance, the

procedure does not terminate for the Petri net of figure 11 if implicitly controlled siphons are not eliminated.

However this operation does not guarantee termination in general. For instance, if in figure 11 we change

the weight of (t2, p1) to 2, the procedure does not terminate, failing to generate one of the good constraints.

Instead it generates a sequence of constraints converging to that constraint. When W (t2, p1) = 1 that good

constraint is generated from a siphon appearing in iteration 2, which does not appear for W (t2, p1) = 2, and

which allows to consider as controlled the siphon that generates the recurrent behavior.
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Figure 11: Example for the termination problem

Checking whether a siphon is implicitly controlled is equivalent to an integer programming feasibility

problem, which is an NP type problem [35].

6.4.2.2 Nonconvex Feasible Sets We consider a set F ⊆ Nk to be convex if any convex combination
of elements of F which is in Nk also is in F . In other words, F ⊆ Nk is convex if ∀n ≥ 2, ∀x1, x2, . . . xn ∈ F
and ∀α1, α2, . . . αn ∈ R+ such that

n∑
i=1

αi = 1, if y =
n∑
i=1

αixi and y ∈ Nk, then y ∈ F . By using theorems 6.2
and 6.3, we can see that when a convex combination of markings for which liveness is enforcible produce a

deadlock marking, the procedure cannot terminate. Indeed the feasible region of a set of linear inequalities

is a convex set, so the method cannot converge to a set of constraints satisfying both theorems 6.2 and 6.3.

We show two examples in Figure 12(a) and (b). In case (a), the Petri net is live for the markings [2, 0]

and [0, 2], but not for [1, 1]. The set of markings for which liveness is enforcible equals the set of markings

for which the Petri net is live, which is not convex. In case (b), which corresponds to the PT-transformation

of (a), deadlock can occur. Preventing deadlock is equivalent to enforcing liveness (by Theorem 3.2(c-i)),

and deadlock can be prevented for the markings [2, 0, 0, 0] and [0, 2, 0, 0], but not for [1, 1, 0, 0]. In both cases

(a) and (b) the method cannot terminate. For instance, in case (a), after 3 iterations (figure 13), the subnet

containing C2, p1,1, C3 and p2,1 is similar to the target net (a), and this generates a cyclic behavior which

leads to divergence.

A solution to avoid this type of problem is to improve the procedure as follows:

1. For all places p, let M(p) = {x : ∃t ∈ •p :W (t, p) = x or ∃t ∈ p• :W (p, t) = x}.

2. Let d be the greatest common divisor of M(p). If d > 1, then the following changes are made: (a) all

weights of the arcs connected to p are divided by d; (b) in all constraints, replace µ(p) by bµ(p)/dc.

In this way we obtain more sets of linear inequalities, rather than just one for all markings. Given an

initial marking µ0, we obtain the constraints (L, b) by replacing bµ(p)/dc with µ(p)/d+ bµ0(p)/dc−µ0(p)/d.
We see, L does not depend on µ0, but b does.

However this solution is not applicable for the structurally unbounded Petri net structure shown in Figure

12(c). We can easily see that there are initial markings for which enforcing deadlock-freedom with a convex

set of allowed markings conflicts with being more permissive than any liveness enforcing supervisors. Indeed,

from the marking µ0 = [2, 0, 0, 0], both µ1 = [0, 2, 0, 0] and µ2 = [1, 1, 0, 0] are reachable. (µ2 is reached

by firing t1, t5 and t6.) Because for µ0 and µ1 liveness is enforcible and µ2 = 0.5µ0 + 0.5µ1 is a deadlock

marking, the procedure cannot terminate.

49

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



(b) (c)(a)

p1

2p

p3 p

3

4

t 1
t

2

t 3

1 4t

2t

4

t

4p

3p
p2

1p

2

2

2

2
2t

1t

p2

1

t

t

2

2
t 6

t 5

p 2

2

2

2
2

3

3

Figure 12: Examples for section 6.4.2.2
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Figure 13: Example for section 6.4.2.2

6.4.3 Maximally Permissive Deadlock Prevention

Most applications do not need a maximally permissive deadlock prevention supervisor. Indeed, it is generally

desired that all local deadlock is prevented, not that only part of the net is not deadlocked. An example in

which our deadlock prevention procedure is not maximally permissive with regard to deadlock prevention is

in figure 14(a). The constraints Lµ ≥ b and L0µ ≥ b0 provided by the procedure are

L =

[
1 1 0 0 1

0 0 1 1 1

]
b =

[
1

1

]
(27)

L0 =
[
1 1 1 1 1

]
b0 =

[
2
]

(28)

Maximally permissive deadlock prevention is described by Lµ ≥ b, where:

L =
[
1 1 0 1 1

]
b =
[
1
]

(29)

Often a maximally permissive deadlock prevention supervisor cannot be defined just as a conjunction

of linear inequalities. For instance consider the Petri net of figure 14(b). Both marking vectors µ1 =

[0, 0, 2, 0, 0, 0, 0] and µ2 = [0, 0, 0, 2, 0, 0, 0] are acceptable for deadlock prevention, but µ3 = 0.5µ1 + 0.5µ2 is

not.

Note that maximally permissive deadlock prevention is achieved with the following procedure:

Procedure MaxPDP
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Figure 14: (a) Example in which the deadlock prevention procedure is not maximally permissive with respect

to deadlock prevention; (b) a similar example in which the limitation is due to the fact that a disjunction of

inequalities is required

1. Let NA0,1, NA0,2 . . . NA0,u be the minimal active subnets of the target Petri net N0.

2. Apply u times the deadlock prevention procedure (section 5.4) for N0, each time starting with a
different minimal active subnet as the initial active subnet of the procedure.

3. Let L0,1µ ≥ b0,1, L0,2µ ≥ b0,2, . . . L0,uµ ≥ b0,u and L1µ ≥ b1, L2µ ≥ b2, . . . Luµ ≥ bu be the
constraints obtained.

4. Consider the following supervisor:

(a) An initial marking µ0 is allowed if Iu(µ0) = {j = 1 . . . u : L0,jµ0 ≥ b0,j and Ljµ0 ≥ bj} is
nonempty.

(b) Given the initial marking µ0, let µ be the current marking, t a transition of the target net N0
which is enabled by µ and µ′ the marking reached by firing t. The supervisor also enables t if
∃j ∈ {1, . . . u} such that L0,jµ ≥ b0,j , Ljµ ≥ bj and Ljµ′ ≥ bj.

Theorem 6.6 The procedure MaxPDP enforces maximally permissive deadlock prevention if each time the

usual deadlock prevention procedure is applied in step 2, the conditions of both Theorem 6.2 and Theorem

6.3 are satisfied.

Proof: Deadlock is prevented since for all reachable markings at least one of the supervisors forN0,1, N0,2 . . .
N0,u can be used, and each of them prevents deadlock. Next we need to prove that a marking unacceptable to
the supervisor leads to deadlock. Assume such a marking µ. Let x1, x2 . . .xu be nonnegative integer vectors

defining the minimal active subnets (see the definition.) The proof of Theorem 6.3 applies without change

if we replace in its statement maximal active subnet with initial active subnet, where the latter refers to the

case when the procedure starts with an active subnet different than the maximal active subnet. Therefore we

can apply Theorem 6.3 to infer that given µ, for all i = 1 . . . u, not all transitions in ‖xi‖ can be made live. If
µ is not be a deadlock marking, there is a set of transitions Tx which can fire infinitely often. Therefore there

is a nonzero nonnegative integer vector x such that Dx ≥ 0 and ‖x‖ ⊆ Tx (by Lemma 3.1 and Theorem 3.2,
where D is the incidence matrix.) It is not possible that ‖x‖ ⊂ ‖xi‖, as NA0,i is minimal. Moreover, because
we consider all minimal active subnets, there is j ∈ {1, . . . u} such that ‖xj‖ ⊆ ‖x‖. But this contradicts
that all transitions of Tx can be made live given µ. Hence only markings for which deadlock is unavoidable

are forbidden. 2
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7 Summary of Results

We introduce new theoretical results on the supervision of Petri nets for deadlock prevention and a new

deadlock prevention procedure for Petri nets. The general theoretical results are given in section 3:

• Corollary 3.2(c) provides sufficient conditions for deadlock prevention methods to enforce liveness. It
applies to the deadlock prevention procedure which we propose.

• Corollary 3.3 proves that for any nonrepetitive Petri net structure there is a set of transitions which
cannot be made live under any circumstances. This result is important for defining the active subnets

of a Petri net.

• Proposition 3.5 is a generalization of a classic result. The generalization is especially important for
nonrepetitive Petri nets.

• Proposition 3.6 is the basis for maximally permissive deadlock prevention.

The deadlock prevention procedure has been stated in section 5.4. Variations of this procedure have been

given in section 6.2.2 and 6.4.3. The procedure has the following characteristics:

• Given a Petri net structure, the procedure generates two sets of linear constraints (L0, b0) and (L, b),
such that for all initial markings µ0 which satisfy L0µ0 ≥ b0 and Lµ0 ≥ b, the Petri net in closed loop
with the supervisor enforcing Lµ ≥ b is deadlock free.
• No assumptions are made on the Petri net structure. The method is effective for the Petri nets
generally considered in the deadlock prevention literature, as well as for those which may be generalized,

unbounded, nonrepetitive and with uncontrollable and unobservable transitions.

• The user is allowed to specify initial constraints in the form of initial constraints in (L0, b0). In this
way the procedure knows that only markings such that L0µ ≥ b0 are used. Using initial constraints
benefits problems in which one of the following is true: (a) the procedure should not generate constraints

requiring L0µ 6≥ b0, (b) permissivity can be compromised to reduce the complexity of the supervisor
(for instance by using certain place invariants in the structure of the target Petri net) (c) convergence

help is needed.

The main results concerning the deadlock prevention procedure are proved in section 6.2. The fact that

uncontrollable and unobservable transitions are allowed affects the permissivity related results. These results

are proved for a restricted class of Petri nets with uncontrollable and/or unobservable transitions.

• In the conditions of Theorem 6.2, deadlock is prevented.
• The case when the structure of N0 does not allow deadlock to be prevented is detected in Proposi-
tion 6.15.

• Theorem 6.3 shows that the procedure is no more restrictive than any supervisor which enforces that
all the transitions of the maximal active subnet are live in the target net, where the transitions which

can be made live for some marking are in the maximal active subnet.

• There are particular cases in which the supervisor generated by the procedure also enforces liveness.
When this is true, in the conditions of Theorem 6.3, the supervisor is a maximally permissive liveness

enforcing supervisor. Such particular cases are identified by Corollary 3.2(c).
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• Two approaches have been proposed to help the procedure terminate. Theorem 6.4 and Theorem 6.5
guarantee termination for the two approaches.

• A variant of the procedure is given in section 6.4.3. Theorem 6.6 guarantees maximally permissive
deadlock prevention for this variant.

APPENDIX

A Bounding the reachable space with a polytope1

We have considered using initial constraints to help the procedure terminate, and we have shown that of

special interest are the initial constraints describing a polytope which bounds the reachable space of the PN.

Here we consider structurally bounded PNs and present an algorithm to bound the reachable space with a

polytope. Assume that the inital markings of interest are given by the polytope

Lzµ0 ≤ bz (30)

The state equation of the PN is

µ = µ0 +Dq (31)

where q is the firing count vector andD the incidence matrix. The intersection of (30), q ≥ 0, and µ0+Dq ≥ 0
is a polytope for structurally bounded PNs, and projecting it on the variable q yields a set of inequalities

Cq ≤ d (32)

Then, by projecting the intersection of (32), µ ≥ 0, and Lzµ− LzDq ≤ bz on µ we obtain
LIµ ≥ bI (33)

which is the desired polytope.

B A Method to Obtain an Admissible Siphon Constraint

1. Find the maximum support of l ≥ 0 such that li = 0 for pi /∈ S and
lTDuc ≥ 0

lTDuo = 0

A possible method to find the maximum support is in the appendix of [15].

2. Let l0 be a vector l of maximum support and e a vector of the same size such that ei = 1 if l
0
i 6= 0 and

ei = 0 otherwise. Solve the linear program

min
l
eT l

l ≥ e

lTDuc ≥ 0

lTDuo = 0

1Appendix A has been added to the report at the November 2001 revision.
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3. Let lx be a solution of the linear program. Any solution provided by the computer is rational, so let

ly be lx multiplied with the least common denominator of its entries. Then lyµ ≥ 1 is an admissible
form of

∑
pi∈S
µ(pi) ≥ 1.

This method might give as answer relatively large numbers, so it might be more convenient to replace

steps 2 and 3 with a modified step 2 in which we have the additional constraint that l should be an integer

vector (that is, we have a linear integer program instead of a linear program.)

References

[1] Banaszak Z., B. Krogh, “Deadlock Avoidance in Flexible Manufacturing Systems with Concurrently

Competing Process Flows” in IEEE Trans. on Robotics and Automation, 6(6).

[2] Barkaoui, K., I. Abdallah, (1995) “Deadlock Avoidance in FMS Based on Structural Theory of Petri

Nets,” IEEE Symposium on Emerging Technologies and Factory Automation.

[3] Barkaoui, K., J.-F. Pradat-Peyre, (1996) “On Liveness and Controlled Siphons in Petri Nets,” in Ap-

plication and Theory of Petri Nets, Springer Verlag.

[4] Boer E, T. Murata, (1994) “Generating Basis Siphons and Traps of Petri Nets Using the Sign Incidence

Matrix,” IEEE Trans. on Circuits and Systems, 41(4).

[5] Coffman E., Elphick M., Shaoshani A., (1971) “System Deadlocks,” Computing Surveys, vol. 3, pp.67-68,

June 1971.

[6] Commoner F., (1972) Deadlocks in Petri nets, Applied Data Research Inc., Wakefield, Massachusetts

01880, Report Nr. CA-7206-2311, 1972.

[7] David R., A. Hassane, (1994) “Petri Nets for Modeling of Dynamic Systems – A Survey,” in Automatica,

32(2).

[8] Dijkstra E., (1965) “Cooperating Sequential Processes,” in Programming Languages, Genuys F. editor,

London, Academic Press, 1965.

[9] Ezpeleta J., J. Couvreur, M. Silva, (1993), “A New Technique for Finding a Generating Family of

Siphons, Traps and ST-Components. Application to Colored Petri Nets,” in Advances in Petri Nets,

Lecture Notes in Computer Science, Springer-Verlag 1993.

[10] Ezpeleta J., J. Colom, J. Martinez, (1995) “A Petri Net Based Deadlock Prevention Policy for Flexible

Manufacturing Systems,” IEEE Trans. on Robotics and Automation, 11(2).

[11] Fanti M., B. Maione, S. Mascolo, B. Turchiano, (1997) “Event-Based Feedback Control for Deadlock

Avoidance in Flexible Production Systems,” in IEEE Trans. on Robotics and Automation, 13(3).

[12] Giua A., F. DiCesare, M. Silva, (1992) “Generalized Mutual exclusion Constraints on Nets with Uncon-

trollable Transitions,” in Proc. of the IEEE International Conference on Systems, Man and Cybernetics.

[13] Hack M., (1972) Analysis of Production Schemata by Petri Nets, Technical Report 94, Project MAC.

54

M.V. Iordache, J.O. Moody and P.J. Antsaklis, “Automated Synthesis of Deadlock Prevention Supervisors 
using Petri Nets." Technical Report isis-00-003, Dept. of Electrical Engr., Univ. of Notre Dame, May 2000.



[14] Iordache M., (1999) Deadlock Prevention in Discrete Event Systems Using Petri Nets, Master’s Thesis,

University of Notre Dame.

[15] Iordache M., J. Moody, P. Antsaklis (1999)A Method for Deadlock Prevention in Discrete Event Systems

Using Petri Nets, Technical Report of the ISIS Group, ISIS-99-006, University of Notre Dame, available

at http://www.nd.edu/~isis/tech.html.

[16] Iordache M., J. Moody, P. Antsaklis (2000) “A Method for the Synthesis of Deadlock Prevention Con-

trollers in Systems Modeled by Petri Nets,” in the Proceedings of the 2000 American Control Conference.

[17] Krogh B., (1987) “Controlled Petri Nets and Maximally Permissive Feedback Logic,” in Proceedings of

25th Annual Allerton Conference, University of Illinois, Urbana.

[18] Lautenbach K., (1987) “Linear Algebraic Calculation of Deadlocks and Traps,” in Concurrency and

Nets, Springer-Verlag 1987.

[19] Lautenbach K., H. Ridder, (1994) “Liveness in Bounded Petri Nets which are Covered by T-Invariants,”

in Applications and Theory of Petri Nets, Lecture Notes in Computer Science, p. 358-375, Springer-

Verlag 1994.

[20] Lautenbach K., H. Ridder, (1996) “The Linear Algebra of Deadlock Avoidance — A Petri Net Ap-

proach,” Research Report at Institute for Computer Science, University of Koblenz, Germany.
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