ABSTRACT

The exact relation between the interactor and the Hermite normal form of a system P is established and their relation to state feedback compensation is shown. The Smith-McMillan form at infinity of P is then derived from these canonical forms.

INTERACTOR AND HERMITE NORMAL FORM

The interactor ξ_P of a proper plant $P(p\times m)$ and its extension, the Hermite normal form H_P, were introduced in [1], [2] respectively as appropriate canonical forms of P under dynamic compensation. It was shown in [3] that $H_P = \xi_P^{-1}$ when P nonsingular. The main difficulty in establishing the relation between ξ_P and H_P in the general case lies in the fact that ξ_P in [1] is defined only when P has full rank. A generalized version of the interactor is introduced here to overcome this difficulty.

If rank $P = r = p(m)$, the interactor is defined in [1] as the unique polynomial matrix ξ_P ($p \times p$) which satisfies:

$$\lim_{s \to \infty} \xi_P P = K_P, \quad \text{rank } K_P = p$$

with

$$\xi_P = \begin{bmatrix} 1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 1 \\ \end{bmatrix} \text{ diag } [s^i]$$

where u_{ij} is divisible by s (or is 0).

The generalized interactor of a proper P, where rank $P = r < \min(p,m)$, is defined as follows: Consider the top first r lin. indep. rows of P and let $P_r (r \times p)$ denote these rows; let P_{p-r} denote the remaining $p-r$ rows of P. This interchange of rows can be expressed as

$$C P = \begin{bmatrix} P_r \\ P_{p-r} \end{bmatrix}$$

where C is nonsingular with entries 0 and 1. Define the interactor ξ_P of P by:

$$\xi_P = \begin{bmatrix} \xi_{Pr} \\ \xi_{P_{p-r}} \end{bmatrix}$$

where ξ_{Pr} is the interactor of P_r defined in (1), (2) and

$$[y_r, y_{p-r}] C P = \begin{bmatrix} [y_r, y_{p-r}] P_r \\ [y_r, y_{p-r}] P_{p-r} \end{bmatrix} = 0$$

where $[y_r, y_{p-r}] = \gamma$ a minimal basis of the left kernel of $C P$ with y_{p-r} row proper and in (lower left) Hermite normal form; note that such basis is uniquely specified by CP [4]. The unique ξ_P satisfies:

$$\lim_{s \to \infty} \xi_P P = \lim_{s \to \infty} \begin{bmatrix} \xi_{Pr} P_r \\ \xi_{P_{p-r}} P_{p-r} \end{bmatrix} = K_P, \quad \text{rank } K_P = r$$

When rank $P = r = \min(p,m)$ and the top r rows of P are lin. indep. then $C = I$ and the above definition reduces to the definition of the interactor in [1].

The Hermite normal form H_P of P, where rank $P = r < \min(p,m)$ satisfies [2]:

$$P K_P = \begin{bmatrix} H_P \end{bmatrix}$$

where P biproper (i.e. P, P^{-1} proper) and the top first r lin. indep. rows of H ($p \times p$) are:

$$H^* = \begin{bmatrix} 1/s & 0 \\ \cdots & \cdots \\ 0 & m_r \end{bmatrix}$$

where $q_{ij} = 0$ when $m_j = 0$ or $q_{ij} = a/s$ proper when $m_j > 0$. Here H_P is the Hermite normal form of P over the principal ideal domain of proper transfer functions ($s = \text{all monic polyn. in } R[s]$).

Proposition 1: $\xi_P H_P = \begin{bmatrix} I_r \\ 0 \\ 0 \\ \end{bmatrix}$

Proof: ξ_P is defined in (4), $[y_r, y_{p-r}] C H_P = \gamma C \begin{bmatrix} P \\ 0 \end{bmatrix} = 0$ in view of (5), (7). The first r rows of $C H_P$ are $[H^*, 0]$, that is $[\xi_{Pr} C H_P] = [\xi_{Pr} H^*, 0] = [I_r 0]$ since it has been shown in [3], that $\xi_{Pr} H^* = I$. ΔΔΔ

Linear state feedback (lsf) compensation. It is now shown that H_P can be obtained as the closed loop transfer matrix when appropriate lsf is applied on P. To define lsf, consider the factorization $P = ND^{-1}$ which corresponds to the controllable realization $Dz = u$, $y = Nz$ [5]. Let D be column proper with column degrees $s_{Di} = d_i$, and define the lsf control law (F,G) by:

$$u = r z, G = I \quad \text{real} \quad |G| = 0 \quad \text{the closed loop transfer matrix is } N(D-F)^{-1} C = (ND^{-1}) \quad \Delta \Delta \Delta$$

Lemma 2. Let rank $P = r = p(< m)$ and let 0 be a ($p \times p$) polynomial matrix such that

$$\lim_{s \to \infty} 0P = P_K, \quad \text{rank } K_P = p$$

Then there exists lsf (F,G) such that

$$0 P F_F, G = \begin{bmatrix} I_p \\ 0 \end{bmatrix}$$

If $p = m$, (F,G) is unique.

Proof: Find F and G so that ON = $K_P(D-F)$ and $K_P G = \begin{bmatrix} Ip, 0 \end{bmatrix}$. It can be shown that such (F,G) always exists; it is unique when $p = m$.

Proposition 3 Let rank $P = r < \min(p,m)$. There exists lsf (F,G) such that

$$P F_F, G = \begin{bmatrix} I_r \\ 0 \\ 0 \end{bmatrix}$$

If $r = m$, (F,G) is unique.

The interactor ξ_P and the Hermite normal form H_P of P are established and shown in [3] that $H_P = \xi_P^{-1}$. The Smith-McMillan form at infinity of P is then derived from these canonical forms.
Proof: Use Lemma 2 to find \(\bar{P}_{F,G} \) such that \(\xi_F P_T \bar{P}_{F,G} \Delta \xi_F \).

A special case of this result (mp) has been shown in [6]; note also that \(P_{F,G} = P_T = 1 \) in [2] and used in [3] and elsewhere. Here \((P,G) \) is easily derived and it is shown to be unique when \(P = m \).

ZERO STRUCTURE AT INFINITY

\(P(s) \) has a finite zero of order \(k \) if \(P(1/\lambda) \) has a finite zero of order \(k \) at \(\lambda = 0 \) [4,7,8]. The infinite zeros \(\zeta \) of \(P \) are directly available if the Smith-McMillan factorization at infinity is known, namely

\[
P = B_1 \begin{bmatrix} A_r & 0 \\ 0 & \hat{A}_2 \end{bmatrix} B_2 \tag{13}
\]

where \(B_1, B_2 \) biproper and \(\hat{A}_2 \) is diagonal. Note that a version of Silverman’s structure algorithm was used in [15] to derive \(B_1, B_2 \) of (13). Lemma 6 then the row degrees of \(c_p \) are the zero orders of \(P \). Note that a version of Silverman’s structure algorithm was used in [15] to derive \(B_1, B_2 \) of (13).

Proposition 4. Assume rank \(P = p \) and let \(P \) satisfy (10). If \(P \) is row proper, its row degrees are the infinite zero orders of \(P \). Proof: Interchange rows so that \(K_0(s) \) has row degrees \(\hat{\zeta} \) and write \(K_0 = \text{diag} s^{-\hat{\zeta}} \hat{\zeta} \). \(\hat{\zeta} \) is biproper.

In view of (11), (13) is derived with \(B_1 = \hat{0}^{-1}, B_2 = [K \ 0] \). Smith form is \(S(1/s) \) is the Smith McMillan form at infinity of \(F \).

Lemma 6. Let rank \(P = p \). There exists real nonsingular matrix \(C \) so that \(\xi_F C_p \) is row proper.

Let rank \(P = r < \min (p,m) \) and choose \(C \) in (4) as follows: Find row proper minimal basis \(y \) of left kernel of \(P \) and collect \(r-\gamma \) columns of \(y \) to obtain \(y_{\gamma} \). Let \(y_{\gamma} \) row proper with row degrees those of \(y \); this specifies \(P_{F,G} \). Note that \(y_{\gamma}^{-1} y_{\gamma} \) proper. \(P_{F,G}^{-1} y_{\gamma} \) specifies the zero orders at infinity (Prop. 5). If the remaining \(r-\gamma \) rows of \(P \) are rearranged to satisfy Lemma 6 then the row degrees of \(\xi_F P_T \) are the zero orders at infinity of \(P \). Having established the relation between the zeros at infinity and \(H_{P}(\xi_F) \), it is straightforward to study the effect of feedback and cascade compensation on these zeros.

Example \(P = \begin{bmatrix} 1/s+1 & 1/s+2 \\ 1/s+3 & 1/s+4 \end{bmatrix} \); \(\xi_{P_T} = \begin{bmatrix} s & 0 \\ -s^2 & s^3 \end{bmatrix} \) row proper with row degrees 1, 3 the infinite zero orders of \(P \) (Prop. 4). The Smith McMillan form at infinity is given by (13) with

\[
\begin{align*}
\lambda_p &= \begin{bmatrix} 1/s & 0 \\ 0 & 1/s \end{bmatrix}, \quad B_1 = \xi_{\lambda_p}^{-1} \begin{bmatrix} 1 & 0 \\ s^{-2}/s & 1 \end{bmatrix} \\
B_2 &= \bar{P}_{F,G} = \begin{bmatrix} 6s^2/(s+1)(s+3) & 8s^2/(s+2)(s+4) \end{bmatrix} \\
\end{align*}
\]

Note that \(H_p(1/\lambda) = \begin{bmatrix} -1 & -2 & 3 \end{bmatrix} \) (Prop. 5)

If \(P \) as above but with \(s \) on the second row numerators then

\[
\xi_p = \begin{bmatrix} s & 0 \\ -s^2 & 2s^2 & s^3 \end{bmatrix}
\]

which is not row proper. Interchange rows of \(P \), that is

\[
C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Then \(\xi_{C_F} = \begin{bmatrix} -s^2 & 2s & s^3 \end{bmatrix} \) which is row proper with row degrees the infinite zero orders of \(P \) (Lemma 6, Prop. 4).

REFERENCES

