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Abstract 

Given an arbitrary Petri net structure which may have 
uncontrollable and unobservable transitions and may 
be unbounded, the procedure described in this paper 
generates a supervisor for liveness enforcement. The 
supervisor is specified as a conjunction of linear mark- 
ing inequalities. For all initial markings satisfying the 
linear marking inequalities, the supervised Petri net is 
live. Moreover, the supervision is least restrictive in 
the fully controllable and observable case. 

1 Introduction 

Liveness in a Petri net means that for all markings 
reachable from an initial marking any transition can 
eventually be fired. This implies absence of deadlock. 
In general Petri nets may not be live. Our procedure 
finds a supervisor such that given a Petri net, the super- 
vised Petri net is live for all initial markings satisfying 
a set of linear inequalities. For the Petri nets which do 
not need supervision for liveness, the procedure may 
still be used to generate the set of initial markings €or 
which the Petri net is live. 

The procedure is recursive. At every iteration it finds 
local deadlock situations, corrects them, then trans- 
forms the Petri net to a convenient form, to be an 
asymmetric choice ordinary Petri net. The supervi- 
sors are built according to the invariant based super- 
vision defined in [8, 121. This has the advantage that 
the supervisors are defined independently of the initial 
marking and the supervised Petri net can still be repre- 
sented as a Petri net. It is a distinguished feature of our 
procedure that the supervisors it provides are not de- 
pendent on a single initial marking, but are valid for ini- 
tial markings €or which liveness can be enforced. When 
the Petri net structure is fully controllable/observable 
and our procedure terminates, the supervisor is maxi- 
mally permissive. In this case for each initial marking 
for which the supervisor is defined there is no other 
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liveness enforcing supervisor less restrictive, and for all 
markings for which the supervisor is not defined live- 
ness enforcing is impossible. In principle a reachability 
graph could be used to generate a liveness enforcing su- 
pervisor when the initial marking is given and the Petri 
net is bounded. However we consider arbitrary Petri 
nets, which may be unbounded, and we characterize 
the set of markings for which liveness can be enforced. 
Thus the problem we solve cannot be solved with finite 
automaton techniques. 

The procedure can be automatically performed by a 
computer. However it may not always terminate and 
each iteration may perform computationally expensive 
operations. Nevertheless, all computations are per- 
formed off-line. Thus the supervisors designed by the 
procedure are appropriate for real-time applications. 

There are not many results in the literature about en- 
forcing liveness in Petri nets. An unfolding based live- 
ness enforcing approach for ordinary and n-safe Petri 
nets appears in [3]. A method for liveness enforcement 
in a class of conservative ordinary Petri nets has been 
given in [2]; the approach is not maximally permis- 
sive. A liveness enforcing approach €or a restricted 
class of ordinary Petri nets is given in [lo]. Another 
liveness enforcing approach appears in [ll]; it is based 
on the coverability graph, and hence the initial mark- 
ing is required. Our approach is most related to the 
deadlock prevention procedure we presented in [6],  and 
its improvement in [4]. While our former procedure 
prevented deadlock but was not guaranteed to enforce 
liveness, the procedure of this paper is guaranteed to 
enforce liveness. 

We begin by introducing in section 2 notations, defini- 
tions and the previous results which we use. Then in 
section 3 we define two transformations which we use in 
the liveness enforcement procedure, which is defined in 
section 4. We state our theoretical results in section 5. 

O-7803-6495-3/01/$10.00 0 2001 AACC 4943 

2 Preliminaries 

We assume that the reader is familiar with the usual 
Petri net notations and definitions; see for instance [9]. 
We denote a Petri net structure by n/ = (P, T, F, W ) ,  
where P is the set of places, T the set of transitions, F 
the set of transition arcs and W the weight function. A 
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firing sequence is a sequence of transitions. A firing 
sequence may be infinite. A Petri net ( N , h )  is said 
to be live if for all reachable markings p and for all 
transitions t of N there is a firing sequence o enabled by 
p which includes t .  We regard a supervisory policy 
as a map from a set of markings to the power set of the (a) (b) (C) Id) 
set of transitions. Thus, a supervisory policy associates 
to a marking a set of transitions which are allowed to 
be fired if enabled. We will say that a Petri net can be 
made live if there is a supervisory policy such that the 
supervised Petri net is live, A Petri net is repetitive 
IS] if a marking cl0 and an infinite firing sequence D 

t l  t2 t3 t l  t, 

Figure 1: Illustration of the transformatiom: (a) ini- 
tial configuration; (b) transition split for PT- 
transformation; (c)  another initial configura- 
tion (d) transition split for AC- transformation. 

enabled by p0 exist, such that every transition occurs 
infinitely often in U. A Petri net can be made live only 
if it is repetitive. Note that it can easily be checked 

F, P E p)- Then t j  is 
t j , O ,  t j J ,  t j , 2 ,  tj,m--l- 

generated %l,  pj,2, PAm-1, where: 

in = n ( t j )  transitions: 
m - new places are 

whether a Petri net is repetitive [4]. 

A Petri net is ordinary if Vf E F : W ( f )  = 1. We 
say that a Petri net is PT-ordinary if Vp E P,W E 
T ,  if (p, t )  E F then W(p, t )  = 1. A Petri net is with 
asymmetric choice if for all places pl and pz  such 
that pl nl?2° # 0: PIo c h0 Or mo PIo* The set 

a minimal siphon if there is no other siphon S' such 
that S' C S. The siphon S is empty with respect to 
the current 
s is controlled [I1 with respect to an initial 
if for all reachable markings S is never empty. The 

a. opj,i = Q i ,  tj ,ie = p .  3>1 . and p .  3,s .0 = t . .  3,a-17 for i = 

b. ~ t j , ~  = { p  E otj  : W(p, t j )  > i } ,  for i = 0. .  . m - 1 

cm t j700 = t j b  

Note that t j  resembles tj,o: tj,o has all the connections c is a siphon Of if # and bS c So* is of t j  plus one additional transition arc. After the split 
is pedomed,  we denote tj,o b y  t j .  
inequalities, t j  changes a inequality 

the latter is obtained by substituting for all p E ot 

l . . . m - 1  

terms of 

P if P(P) = 0 VP E s. A siphon gpp(p) 2 f to ghp(p) + Bip(pj,+) 2 f ,  where 

following theorem is a special case of a result in [I]: 

Theorem 2.1 A PT-ordinary asymmetric choice Petri 

U-1 

PO + P(P> + ip(pj,v-i)  (1) 
i=l 

and v = W ( p , t j ) .  We use the convention that a split net is live iff all minimal siphons are controlled. 
transition t j  is also a transition of the PT-transformed In 

Given a set Of inequalities Of the 
Paper we use the supervisory technique Of 1% 121* 

L p  3 b> the 
net, since we denote tj,o by t j .  Firing an unspfit trmsi- 
tion ti in the original net corresponds to firing the siLme construction of the supervisor enforcing it is outlined 

. in the following theorem of [8, 121 transition in the transformed net. a split tran- 
sition t j  in the original net corresponds to firing the 

initial marking ,U@ be given. A set of n, linear con- 
straints Lpp 5 b are to be imposed. If b - Lp@ > 0 
then a Petri net supervisor with incidence matrix D, = 
-LOp and initial marking pd = b - LpPo enforces the 
constraint Lpp 5 b when included in the closed loop 
system D = ID:, D:]]'. Furthermore, the supervision 
is marimally permissive. 

3 Petri Net Transformations 

3.1 Transformation to PT-ordinary Petri Nets 
We use a modified form of the transformation of [7], and 
we call it PT-transformation. Let N = (P, T ,  F, W )  
be a Petri net. The PT-transformation consists in 
splitting all transitions t such that W(p, t )  > 1 for some 
p E et .  We d e h e  the transition split as follows. 
Given t j  E T ,  let n ( t j )  = max{W(p,tj) : ( p , t j )  E 

3.2 Transformation to Asymmetric Choice 
Petri Nets 
Let N = ( P , T , F , W )  be a Petri net and N' = 
(PI, TI, F', W') be the transformed Petri net, where 
P PI, T g TI. The idea of the transformation is 
as follows. Given the transition t ,  pi E et  and p j  E et  
such that p p  g pje  and p jo  pi., remove t from ei- 
ther the postset of pi or that of pj by adding a new 
place and a new transition. The idea is illustrated in 
Figure 1 (c-d) . 
Algorithm of the AC-Transformation 

Input: N and optionally M c P; the default value of 
M is M = P. 

Output: N' 
Initialize N' to N .  
set/postset with respect to NI.) 

(The algorithm takes the pre- 
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For every t E T with 1 tl > 1 do 
A. Construct U = { (p i , p j )  E P x P : pi E .t,pj E 

B. if U is empty, then continue with the next iteration. 
C .  Let Q := 0. 
D. For every (pi ,  p j )  E U 
D.l. A placep E { p i , p j } n M  is selected. If two choices 

D.1.a. p = pi (or p = p j )  if pi (or p j )  has been previ- 
ously selected for another element of U. 

D.1.b. otherwise p is chosen such that p appears in 
other element of U. If both pi and p j  sat- 
isfy this property, select p E { p i , p j }  such that 
I P  I = m a { l ~ i  I ,  IPj I}- 

D.1.c. if none of pi and p j  appears in another element of 
U ,  select p E { p i , p j }  such that Ip. I = max{lpi 
I )  IPj I}. 

D.2. Ifaplacepcould beselected (i.e. i f { p i , p j } f l M  # 

E. For all p E &, delete fiom N’ the transition arc 
@,t) and add a new place p‘ and a new transi- 
tion t’ such that et’ = { p } ,  t’. = {p ’ ] ,  p‘. = {t},  
W’(p, t‘)  = W’( t ’ ,p ‘ )  = 1 and W‘cp’, t )  = W(p, t). 

%Pi. 51 p j  and Pj .  pi.}. 

are possible: 

0) then Q := Q U { p }  

We call the transformation to asymmetric choice Petri 
nets AC-transformation. The operation in the step 
E is a transition split. The transition split of the 
AC-transformation is slightly different from the tran- 
sition, split of the PT-transformation. With regard 
to marking inequalities, when t is split into { t ’ , t } ,  
a marking inequality C g p p ( p )  2 f is changed into 
C g p p ( p )  + g p o p ~ o )  > f, where po = .t’ and ph = t’.. 

4 The Liveness Enforcement Procedure 

4.1 Introduction to the Method 
Let NO = (PO, To, Fo, WO) be a Petri net structure. The 
liveness enforcement procedure generates marking con- 
straints L p  > b, L E Pxlpol and b E W, such that 
when NO is supervised such that L p  > b holds true, the 
supervised structure is live for all initial markings po 
satisfying Lpo 2 b. 

In order to generate L p  > b, the procedure itera- 
tively generates the asymmetric choice PT-ordinary 
Petri nets NI, Nz, N3, . . . &. NI is No transformed 
to  be PT-ordinary and with asymmetric choice. For 
i = l . . .k ,  let Lip 2 bi be L p  2 b at the iteration 
i, where p is the marking of the places which are not 
control places; let p, be the marking of the control 
places. For i = 1 . .  . k - 1, the uncontrolled new mini- 
mal siphons of Ni are controlled by adding new places 
to the net (section 4.2). (A minimal siphon S of N; is 
new if i = 1 or if i > 1 and S is not a siphon of N;-1; 
S is uncontrolled if not controlled for p such that 

Lip  2 bi, p(p) = 0 for p PO and p, = L i p  - bi.) 
The obtained Petri net structure may no longer be 
PT-ordinary and with asymmetric choice and hence is 
transformed to be so; the result is N i + l .  The procedure 
terminates for i = k such that JI(~ has no uncontrolled 
new minimal siphons. Each time the procedure con- 
trols a siphon S, a new constraint of the form (2) is 
included in Lip 2 bi. The constraints Lkp  1 bk are 
translated to be written only in terms of the places of 
the target Petri net NO. The result is the final L p  2 b. 

Section 4.2 describes the constraints L p  2 b. Section 
4.3 considers transforming the constraints of the form 
(2) when dealing with Petri nets with uncontrollable 
and unobservable transitions. The procedure is stated 
in section 4.4 and examples are given in section 4.5. 

4.2 Generating Constraints 
The condition that a siphon S is controlled is 

CPb) L 1 (2) 
P a  

We use the approach of Theorem 2.2 to control S. This 
yields an additional place C called control place, and 
creates the place invariant described by the equation 

P(C> =CAP) - 1 (3) 
P G  

For a control place C added in some iteration the final 
form of the invariant is not (3) but 

P(C> + P P P W  = 110) - 1 (4) 
PEW P € S  

due to the PT and AC-transformations performed at 
the end of the iteration. In (4) U is the set of additional 
places generated by the PT and AC transformations 
and /3, 2 0. In general a siphon S may contain con- 
trol places added in previous iterations; their markings 
satisfy equations (4). Then, by repeated substitutions, 
we get the requirement (2) on S expressed in the form 
lTp  > c, where the vector 1 has zero entries for con- 
trol places. The constraint (2) written as ZTp > c is 
included in L p  2 b. An important feature of our pro- 
cedure is that the siphons of Ni, i > 1, are siphons in 
N ; + l ,  and they are controlled in Nit,. The PT and AC 
transformations performed in an iteration affect only 
the connections of the control places added in that it- 
eration.Thus the constraints included in L p  _> b in an 
iteration remain valid in the subsequent iterations. 

It may be possible that a siphon S ,  due to structural 
properties of the net, cannot become empty if initially 
S is not empty. This case corresponds to CO C .S. 
Then C is unnecessary, and we only need to require that 
ZTpo 2 c for all initial markings PO. All constraints for 
such siphons are written as Lop0 > bo and they are not 
included in L p  2 b. 
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The constraints for NO are obtained from that of Nk by 
removing the columns of L and LO which correspond 
to places not in No. 

4.3 Admissible Constraints 
If the Petri net contains uncontrollable and unobserv- 
able transitions, it is necessary that the final con- 
straints L p  > b of NO are admissible [SI. That is, the 
supervisor enforcing L p  > b does not attempt to dis- 
able enabled uncontrollable transitions and to observe 
unobservable transitions. It has been noticed in [8] 
that if D,, and D,, represent the incidence matrix re- 
stricted to the set of uncontrollable and unobservable 
transitions, respectively, then the admissibility require- 
ment is satisfied if LD,, > 0 and LD,, = 0. 

In order to generate admissible constraints, when (2) 
would result in an inadmissible constraint, the proce- 
dure changes (2) to the form 

CffPPb) 2 1 (5) 
P G  

where cu, > 0 are integers, at least two of aP are 
nonzero and ( 5 ) ,  expressed in the form ZTp 2 c (section 
4.2) and restricted to the places of NO, is admissible. 
We present the algorithm which transforms constraints 
(2) to admissible constraints of the form (5 )  in [4]. 

4.4 The Procedure for Liveness Enforcement 
Input: The target Petri net NO. 
Output: Two sets of constraints (L,b) and (&,bo) 
(liveness is enforced in (NO, b) supervised according 
to  Lp 2 b for all initial markings po such that Lpo 2 b 
and Lop0 2 bo) 

A. NO is transformed to be PT-ordinary and then to 
have asymmetric choice, as shown in the sections 3.1 
and 3.2. The transformed net is NI. Let i = 1. 

B. For i 2 1 do (the initial Petri net of the iteration i 
is Ni.) 

BA. If no new uncontrolled minimal siphon is found, 

B.2. For every new uncontrolled minimal siphon S: 
the next step is C. 

Let C be the control place which would result 
by controlling the siphon, and let l T p  2 c be (2) 
written in the form shown in section 4.2. First, 
the approach of section 4.2 is considered for the 
control of S through C. 

B.2.a. If CO C_ OS,  then S does not need supervision 
and C is not added to Ni. The constraint (Z,c) 
is added to (LO, bo). 

mS, C is added by enforcing (2) in the 
Petri net (section 4.2), if (2) is admissible. If 
(2) is inadmissible, it is transformed to (5), and 
C is added to enforce (5). If the transformation 
to the form (5) is not possible, the procedure 
terminates. as it cannot enforce liveness. 

B.2.b. If CO 

Figure 2: Illustrative example: (a) NO; (b) the Petri net 
supervised for liveness 

B.3. If the Petri net is no longer PT-ordinary, the Petri 
net is PT-transformed (section 3.1.) 

B.4. If the Petri net is no longer with asymmetric 
choice, the Petri net is AC-transformed (section 
3.2), where the second argument M of the AC- 
transformation is taken to be the set of the control 
places added in the current iteration. 

B.5. The matrices L and LO are enhanced with new 
columns, each column corresponding to one new 
place resulted in the steps B.3 and B.4. 

B.6. The ha l  net of the iteration i is denoted Ni+l, 
i + i + 1 and the next step is B.1. 

C. The constraints (L, b) and (LO, bo) are modified to 
be written only in terms of the marking of the target 
net NO. This is done by removing the columns of L 
and Lo corresponding to places not in NO. 

D. (Optionally) The redundant constraints of (L, b) 
and (LO, bo) are identified and removed. 

E. The supervisor of NO is built according to the con- 
straints Lp > b (Theorem 2.2). 

4.5 Illustrative Examples 
Example 1: Consider the repetitive Petri net of figure 
2(a), where tl is unobservable. In the first iteration 
there are two minimal siphons: { p l , p 3 }  and {pz,p3}. 
Consider the siphon (p l , p3 } .  The marking constraint 
p(p1) +p&) 2 1 is not admissible, so it is transformed 
to the following form (5):  2p(pl)  + p&) 2 1. The 
control place C1 is added according to this constraint, 
and the place invariant p(C1) = 2p(pl) + p(p3) - 1 
results. Similarly C2 enforces 2 p h )  + p(p3) > 1 on 
{p2,p3} and p(C2) = 2 p h )  + p(p3) - 1. The matrices 
L and b after the first iteration are: 

2 0 1  
L = [ o  2 11 b = [ : ]  

In the second iteration there is a single new minimal 
siphon, (Cl,C2). The control place which would re- 
sult by enforcing p(C1) + p(C2) > 1 is Cs such that 
C3o = 8. Therefore, according to the step B.2.(a) 
of the procedure, {Cl,C2) does not need control. 
p(C1) + p(C2) 2 1 written in the form ITp 2 c is 
2&l) + 2 P h )  + 2p(P3) 2 3, and so 

& = [ 2  2 2 1  b o = [ 3 ]  
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Figure 3: Target PN (left) and supervised PN (right). 

The procedure terminates at the third iteration, since 
no new uncontrolled siphon is found. The supervised 
net is shown in Figure 2(b). By Theorem 5.1, liveness 
is enforced for all initial markings such that Lpo 2 b 
and Lop0 2 bo, that is for po E {z E V : ( ~ ( 1 )  > 
0 A 4 2 )  > 0) V ( ~ ( 1 )  > 0 A z(3) > 0) V ( ~ ( 2 )  > 0 A 
z(3) > 0) V (z(3) > 1)). Moreover, by Theorem 5.2, 
the supervisor is maximally permissive. 

Example 2: We apply our procedure to the Petri net 
of Fig. 3(c) in [2]. The Petri net and the supervised 
Petri net which results by applying our procedure are 
represented in Figure 3. The target Petri net is ordi- 
nary, but not with asymmetric choice. Before the f is t  
iteration, the AC-transformation is applied, and thus 
t 2  is split in t 2  and th, and a new place p; results. 

At the first iteration the following minimal siphons 
are found: sl = {p6,p8,p14), s2 = { ~ , p l 5 ) ,  
s3 = (Pl,i@,%%,P5,~6$7”Pk), s4 = {p4,&’5,p13), 
s5 = {p4,p6,p13rp14), s6 = {p3,p9,p12), s7 = 
{ p 5 , ~ , p 1 2 , P 1 3 ) ,  s8 = {p6,p9,p12,P13,p14), s9 = 
b ” P l l , p ; )  and 4 0  = {p4,p8,p9,pIO)- s5, si‘ and 
s8 generate the control places CI, c2 and c3, while 
the others generate constraints in (LO, bo). 

At the second iteration, the following new mini- 
mal siphons are found: SI = { p  5 , p 8 , c l ) ,  s2 = 
{P4,P5,Cl ,c2) ,  s3 = {p4,P6,P14,cl ,c2) ,  s4 = 
{P5,P9,p12, cl, c2), s5 = {PB,P9,P12,P14, cl, c 2 ) 9  

s6 = {p3 ,p4 ,c2)  and s7 = {p3,p4,p5rp8,C3}- The 
only uncontrolled siphon is S2, which generates the 
fourth control place C4. 

At the third iteration there is only one new minimal 
siphon: S = {p3,p8,C4). 5’ is not uncontrolled, and 
so no new control place is added. Therefore, no new 
siphons result and so the procedure terminates. 

The liveness enforcing supervisor is defined by L p  2 b, 
where (L, b) contain the following (we let pi = p(pi)): 

p4 + p ~ - + p i 3  +pi4 1 1 (6) 

p5 +p9 +plZ +pi3 1 (7) 
p e + p 9 + P n + p i 3 + p i 4  2 1 (8) 

2p4 + 2pS + P0 + p9 + p12 + 2P13 + p14 L 3 (9) 

The initial marking h must also satisfy the constraints 
of (Lo, bo): 

(10) 
p0.Z +pO,15 2 1 (11) 

(12) 
(13) 
(14) 

P0.7 +PO.ll 1 1 (15) 
(16) 

By Theorems 5.1 and 5.2, the supervisor enforces live- 
ness and is maximally permissive. Comparing our re- 

t g ,  t10 ,  t li  from the marking of Figure 3 is allowed in 
our approach, but not allowed in [2] (see Fig. 6 in [2]). 
This emphasizes the fact that our supervisor is least 
restrictive. However this advantage may come at the 
price of increased computational complexity. 

P0,6 + P0.8 + P0.14 2 1 

p0.l + pO,2 + 110.3 + p0,5 + p0,6 + p0,7 2 1 
P0.4 -k p0,5 + p0,13 2 1 
p0,3 + pO.9 + P0,12 1 1 

p0,4 + p0.8 + pO,9 + p0,lO 1 1 

sult to 121, firing t 8 ,  t 8 ,  t l ,  t2, t 9 ,  t10, t 3 ,  t 4 ,  t 5 ,  til, 

5 Theoretical Results 

In this section we present our main theoretical results. 
We provide the proofs in the technical report [5]. 

5.1 Performance Results 
Theorem 5.1 Assume that the procedure terminates, 
and that at terminates at the step E. Let ( L , b )  and 
(LO, bo) denote the two sets of constraints generated by 
the procedure. The target net supervised according 
to L p  2 b is live for all initial markings cl0 of No sat- 
isfsling Lpo 2 b and LOM 2 bo. 

If a siphon control failure occurs at a step B.2.b, the 
procedure terminates at that step instead of step E. 
Note that such a failure is possible only for Petri 
nets which contain uncontrollable and/or unobservable 
transitions. The theorem also implies that the proce- 
dure will not terminate at step E ifN0 is not repeti- 
tive, for liveness cannot be enforced in such a Petri net. 
However it can be easily verified whether a Petri net 
structure is repetitive. For instance the algorithm of 
[4] for the computation of the maximal active subnet 
may be used. 

The next theorem states that the liveness enforcement 
supervisor provided by the procedure is least restric- 
tive. The condition required by the theorem is true for 
all fully controllable and observable Petri nets and for 
some Petri nets with uncontrollable and unobservable 
transitions. Indeed, for fully controllable and observ- 
able Petri nets, (2) is always admissible, and therefore 
always in the form (5). 
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Theorem 5.2 Assume that f o r  all minimal active 
siphons S the procedure is able to  find admissible con- 
straints of the form (5) with all aP positive integers. 
Then the liveness enforcement supervisor provided b y  
the procedure is least restrictive. 

Theorems 5.1 and 5.2 imply that in the case of fully 
controllable and observable Petri nets, the procedure 
will not terminate unless the least restrictive liveness 
enforcing supervisor can be represented as a set of lin- 
ear marking inequalities. 

5.2 Modification for Guaranteed Termination 
The procedure can be modified to guarantee termina- 
tion. The modification we propose affects the perfor- 
mance of the supervisor. Thus Theorem 5.2 is no longer 
guaranteed to apply, but Theorem 5.1 still applies. 

The modification of the procedure for termination is 
as follows. The siphon control method is modified. 
Let S be an uncontrolled siphon. Instead of enforcing 

p(p) 2 1 is used, 
P E S  PESflR 
where R is the set of places which have not been gen- 
erated by transiton splits. When uncontrollable and 
unobservable transitions are present, the latter form of 
the inequality is used for the transformation to an ad- 
missible constraint. Furthermore, we start the proce- 
dure with nonempty constraints (LO, bo). This requires 
an additional operation in step A: (LO, bo) are trans- 
formed according to the PT and AC transformations 
performed to obtain NI from NO. 

Theorem 5.3 Let N be a Petri net and (Li, bi) be a set 
of constraints Lip 2 bi, p 2 0, with bounded feasible re- 
gion. The modified liveness enforcement procedure ter- 
minates if started with initial constraints (LO, bo) which 
equal (Li , bi) . 

Note that in the case of nonrepetitive Petri nets, be- 
cause Theorem 5.1 still applies, after the procedure 
terminates there will be no initial marking to satisG 
alI constraints. Indeed, when no initial constraints are 
given, L, Lo, b and bo are nonnegative, and so there is 
always p such that Lop 2 bo and L p  2 b. This may no 
longer be the case when at the beginning of the pro- 
cedure (LO, 4) is initialized to (&, bi) ,  since Li and bi 
may not be nonnegative. 

The usage of the procedure modified for termination is 
outlined below. Note that this procedure modification 
is applicable to bounded Petri nets. 

0 Find a set of constrains Lip 2 bi with bounded 
feasible set F such that for all initial markings po 
of N which are of interest: R(Af,h) C F. Let M I  
be the set of initial markings of interest. 

0 Use the modified procedure with initial constraints 
(Lo, bo) which equal (Li , bi) . 

p(p) >_ 1, the constraint 

0 The supervisor can be used for the initial markings 
po E MI which satisfy Lpo 2 b and Lop0 2 bo, 
where (L, b) and (LO, bo) are the two sets of con- 
straints generated by the procedure. 

6 Conclusion 

This paper presents a liveness enforcement procedure. 
The supervisors generated enforce liveness and, in the 
case of Petri nets with controllable and observable tran- 
sitions, are least restrictive. The superviors are defined 
as a set of linear marking inequalities, and are indepen- 
dent of the initial marking. 
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